A New Result On $\left|A, p_{n}, \delta\right|_{k}$-Summabilty

Ripendra Kumar \&Aditya Kumar Raghuvanshi

Department of Mathematics IFTM University Moradabad, U.P., India, 244001
Abstract: In this paper we have established a new theorem on $\left|A, p_{n}, \delta\right|_{k}$-summability which gives some new and interesting results and previous known results as a corollary.
Keywords: $\left|\bar{N}, p_{n}\right|$-summability, $|A|_{k}$-summability, $|A, \delta|_{k}$-summability, $\left|A, p_{n}, \delta\right|_{k}$-summability and infinite series.
Mathematical classification :40D25, 40E05, $40 F 05 \& 40 C 10$.

I. Introduction:

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sum $\left(s_{n}\right)$ and let $A=\left(a_{n v}\right)$ be a normal matrix of non zero diagonal entries. Then A defines the sequence to sequence transformation mapping the sequences $s=\left(s_{n}\right)$ to $A_{s}=\left(A_{n}(s)\right)$,
where

$$
\begin{equation*}
A_{n}(\mathrm{~s})=\sum_{v=1}^{\infty} A_{n v} s_{v} \tag{1.1}
\end{equation*}
$$

The series Σa_{n} is said to summable $|A|_{k}, k \geq 1$ if (RHOADES and SAVAS [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{1.2}
\end{equation*}
$$

where $\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)$ and it is said to be summable $|A, \delta|_{k}, k \geq 0$ and $\delta \geq 0$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|\Delta \mathrm{~A}_{n-1}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

where $P_{-i}=p_{-i}=0, i \geq 1$ and $\sum a_{n}$ is said to be summable $\left|A, p_{n}\right|_{k}, k \geq 1$ if (ÖZARSLAN, [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

And is said to be summable $\left|A, p_{n}, \delta\right|_{k}, . k \geq 1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

If $P_{n}=1, \delta=0,\left|A, p_{n}, \delta\right|_{k}$-summability is the same as $|A|_{k}$-summability also if we take $a_{n v}=\frac{p_{v}}{p_{n}}$, then $\left|A, p_{n}\right|_{k}$-summability is the same as $\left|\bar{N}, p_{n}\right|_{k}$-summability (BOR [1]).

A sequence $\left(b_{n}\right)$ of positive numbers is said to be δ-quasi monotone, if $b_{n}>0$ ultimately and $\Delta b_{n} \geq-\delta_{n}$ where $\left(\delta_{n}\right)$ is a sequence of positive numbers (SAVAS [4]).
and a sequence $\left(d_{n}\right)$ is said to be almost increasing if there exist a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that

$$
A c_{n} \leq d_{n} \leq B c_{n} \text { for each } n
$$

II. Known Result:

Concerning with absolute matrix summability factor SAVAS [5] has proved the following theorem. Theorem 2.1

Let A be a lower triangular or Normal matrix with non-negative entries satisfying

$$
\begin{gather*}
\bar{a}_{n, 0}=1 \tag{2.1}\\
a_{n-1}, v \geq a_{n v} \text { for } n \geq v+1 \tag{2.2}\\
n a_{n n}=O(1) \tag{2.3}\\
\sum_{n=v+1}^{m+1} n^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|=O\left(v^{\delta k} a_{v v}\right) \tag{2.4}\\
\sum_{n=v+1}^{m+1} n^{\delta k}\left|\hat{a}_{n, v+1}\right|=O\left(v^{\delta k}\right) \tag{2.5}
\end{gather*}
$$

where A associates with two lower triangular matrices $\bar{A} \& \hat{A}$ defined.

$$
\begin{gathered}
\bar{a}_{n v}=\sum_{r=v}^{n} a_{n r}, n, v=0,1,2 \text { and } \\
\hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2,3
\end{gathered}
$$

If $\left(X_{n}\right)$ is an almost increasing sequence such that,

$$
\begin{align*}
\left|\Delta X_{n}\right| & =O\left(\frac{X_{n}}{n}\right) \text { and } \tag{2.6}\\
\lambda_{n} & \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.7}
\end{align*}
$$

Suppose that there exist a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi monotone with $\Sigma n X_{n} \delta_{n}<\infty, \Sigma A_{n} X_{n}$ is convergent and

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{\left|\lambda_{n}\right|}{n}<\infty \tag{2.8}\\
\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \tag{2.9}
\end{gather*}
$$

where $t_{n}=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$,
then the series $\Sigma a_{n} \lambda_{n}$ is summable $|A, \delta|_{k}, k \geq 1$ and $\delta \geq 0$.

III. MAIN RESULT:

The goal of this paper is to generalize the theorem (2.1) for $\left|A, p_{n}, \delta\right|_{k}$-summability.

Theorem 3.1

If $A=\left(a_{n v}\right)$ is any normal matrix associated with two lower sub-matrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows
and

$$
\begin{gather*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1,2 \tag{3.1}\\
\hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-v, v} \tag{3.2}
\end{gather*}
$$

where $\hat{a}_{0,0}=\bar{a}_{0,0}=a_{0,0}$.
If the conditions

$$
\begin{equation*}
\bar{a}_{n, 0}=1 \tag{3.3}
\end{equation*}
$$

$a_{n-1, v} \geq a_{n, v}$ for $n \geq v+1$
and let $\left(p_{n}\right)$ be the sequence of positive numbers such that,

$$
\begin{gather*}
P_{n}=O\left(n p_{n}\right) \text { as } n \rightarrow \infty \tag{3.4}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right) \tag{3.5}\\
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|=O\left(\frac{P_{v}}{p_{v}} a_{v v}\right) \tag{3.6}\\
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right|=O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\right) \tag{3.7}
\end{gather*}
$$

If $\left\{X_{n}\right\}$ is an almost increasing sequence such that $\left(\frac{P_{n}}{p_{n}}\left|\Delta X_{n}\right|\right)=O\left(X_{n}\right)$ and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exist a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi monotone with $\Sigma n X_{n} \delta_{n}<\infty$, $\Sigma A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n, if

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{p_{n}\left|\lambda_{n}\right|}{P_{n}}<\infty \tag{3.8}\\
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \tag{3.9}
\end{gather*}
$$

where $t_{n}=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$
are satisfied then the series $\sum a_{n} \lambda_{n}$ issummable $\left|A, p_{n}, \delta\right|_{k}, k \geq 1, \delta \geq 0$.

IV. LEMMA:

We need the following lemmas for the proof of theorem (3.1).

Lemma 4.1.

Under the condition of theorem, we have ((SAVAS [4])

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \tag{4.1}
\end{equation*}
$$

Lemma 4.2 (SAVAS [5])

Let $\left\{X_{n}\right\}$ is an almost increasing sequence such that

$$
\left|\Delta X_{n}\right|=O\left(\frac{X_{n}}{n}\right)
$$

If $\left(A_{n}\right)$ is δ-quasi monotone with $\Sigma_{n} X_{n} \delta_{n}<\infty, \Sigma A_{n} X_{n}$ is convergent, then
$\sum_{n=1}^{\infty} n X_{n}\left|\Delta A_{n}\right|<\infty$ and
$n A_{n} X_{n}=O(1)$

V. Proof Of Theorem:

Let $\left\{y_{n}\right\}$ be the nth term of the A-transform of $\sum_{i=0}^{n} \lambda_{i} a_{i}$ then,

$$
\begin{align*}
& Y_{n}=\sum_{i=0}^{n} a_{n i} s_{i} \\
= & \sum_{i=0}^{n} a_{n i} \sum_{i=0}^{i} \lambda_{v} a_{v} \\
= & \sum_{v=0}^{n} \lambda_{a} a_{v} \sum_{i=v}^{n} a_{n, i} \\
= & \sum_{v=0}^{n} \bar{a}_{n v} \lambda_{v} a_{v} \tag{5.1}
\end{align*}
$$

and

$$
\bar{y}_{n}=y_{n}-y_{n-1}=\sum_{v=0}^{n}\left(\bar{a}_{n v}-\bar{a}_{n-1, v}\right) \lambda_{v} a_{v}
$$

$=\sum_{v=0}^{n} \hat{a}_{n v} \lambda_{v} a_{v}$
we may write

$$
\begin{aligned}
y_{n}=\sum_{v=1}^{n} & \left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) v a_{v} \\
& =\sum_{v=1}^{n}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right)\left[\sum_{r=1}^{v} r a_{r}-\sum_{r=1}^{v-1} r a_{r}\right] \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{v=2}^{n} v a_{v} \\
& =\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right| \lambda_{v} \frac{v+1}{v} t_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1}\left(\Delta \lambda_{v}\right) \frac{v+1}{v} t_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{1}{v} t_{v}+(n+1) \frac{a_{n n} \lambda_{n} t_{n}}{n} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4} \text { (say) }
\end{aligned}
$$

To complete the proof, it is sufficient, by Minkowski's inequality, to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, r}\right|^{k}<\infty, \text { for } r=1,2,3,4 \tag{5.4}
\end{equation*}
$$

Using Hölder's inequality and (5.3), we get

$$
\begin{aligned}
I_{1}=\sum_{n=1}^{m} & \left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 1}\right| \\
& =\sum_{n=1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\sum_{v=1}^{n-1} \Delta_{v} \hat{a}_{n, v} \lambda_{v} \frac{v+1}{v} t_{v}\right|^{k} \\
& =\mathrm{O}(1) \sum_{n=1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{v}_{v v}\right| \lambda_{v} \| \mathrm{t}_{v} \mid\right)^{k} \\
& =\mathrm{O}(1) \sum_{n=1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\left.\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{v v}\right| \lambda_{v}\right|^{k}\left|\mathrm{t}_{v}\right|^{k}\right)\left(\sum_{v=1}^{n-1} \Delta_{v} a_{v v}\right)^{k-1} \\
& =\left.\mathrm{O}(1) \sum_{n=1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}} a_{n n}\right)^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{v v}\right| \lambda_{v}\right|^{k}\left|\mathrm{t}_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{align*}
& =\mathrm{O}(1) \sum_{n=1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}} a_{n n}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v} \| \Delta \hat{a}_{v v}\right|\left|t_{v}\right|^{k}\right) \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}} a_{n n}\right)^{k-1}\left|\Delta_{v} \hat{a}_{n, v}\right| \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\lambda_{v}\right| a_{v v}\left|t_{v}\right|^{k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left[\sum_{r=1}^{v} a_{r r}\left|t_{r}\right|^{k}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k}+\sum_{r=1}^{v-1} a_{r r}\left|t_{r}\right|^{k}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k}\right] \\
& =\mathrm{O}(1) \sum_{v=1}^{m-1} \Delta\left(\left|\lambda_{v}\right| \sum_{r=1}^{v}\left|t_{r}\right|^{k}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1}+\left|\lambda_{m}\right| \sum_{r=1}^{m}\left|t_{r}\right|^{k}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1}\right. \\
& =\mathrm{O}(1) \sum_{v=1}^{m-1}\left|A_{v}\right| X_{v}+\mathrm{O}(1)\left|\lambda_{m}\right| X_{m} \\
& =\mathrm{O}(1) . \tag{5.5}
\end{align*}
$$

Again, using the hypothesis of the theorem (3.1) and Lemma (4.1), using Hölder's inequality

$$
\begin{aligned}
I_{2}= & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 2}\right|^{k} \\
& =\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n, v+1}\left(\Delta \lambda_{v}\right) \frac{v+1}{v} t_{v}\right| \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1} \| \Delta \lambda_{v}\right|\left|\frac{v+1}{v}\right|\left|t_{v}\right|\right]^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right]^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\right]\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1} \| \Delta \lambda_{v}\right|\right]^{k-1}
\end{aligned}
$$

from (Rhoades and Savas[3]).

$$
\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right| \leq M a_{n n}
$$

Hence

$$
\begin{aligned}
I_{2}= & \mathrm{O}(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}} a_{n n}\right)^{k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\left\|\Delta \lambda_{v}\right\| t_{v}\right|^{k} \\
& =\left.\mathrm{O}(1) \sum_{v=1}^{m}\left\|\Delta \lambda_{v}\right\| t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}} a_{n n}\right)^{k-1}\left|\hat{a}_{n, v+1}\right| \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v} \| t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right| \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|\Delta \lambda_{v} \| t_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{O}(1) \sum_{v=1}^{m} \Delta\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left(\frac{P_{v}}{p_{v}}\right)\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\left(\frac{p_{v}}{P_{v}}\right) \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \Delta\left(\frac{P_{v}}{p_{v}}\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{r}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1}\left|t_{r}\right|^{k}+\mathrm{O}(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1}\left|t_{r}\right|^{k} . \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \Delta\left(\frac{P_{v}}{p_{v}}\left|\Delta \lambda_{v}\right|\right) X_{v}+\mathrm{O}(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \Delta\left(\frac{P_{v}}{p_{v}}\left|\Delta \lambda_{v}\right|\right) X_{v}+\mathrm{O}(1) \sum_{v=1}^{m-1}\left|A_{v-1}\right| X_{v-1}+\mathrm{O}(1) m\left|A_{m}\right| X_{m} \\
& =\mathrm{O}(1)
\end{aligned}
$$

Next using the hypothesis of the theorem (3.1) and Hölder's inequality

$$
\begin{aligned}
I_{3}= & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 3}\right|^{k} \\
& =\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\sum_{v=1}^{n-1}\right| \hat{a}_{n, v+1}\left|\lambda_{v+1} \frac{t_{v}}{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left[\frac{\left|\lambda_{v+1}\right|}{v}\left|\hat{a}_{n, v+1}\right|\left|t_{v}\right|\right]^{k} \\
& =\mathrm{O}(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left[\sum_{v=1}^{n-1} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k}\left|\hat{a}_{n, v+1}\right|^{k}\right]\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \frac{\left|\lambda_{v+1}\right|}{v}\right]^{k-1} \\
& =\mathrm{O}(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}} a_{n n}\right)^{k-1}\left[\sum_{v=1}^{n-1} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k}\left|\hat{a}_{n, v+1}\right|\right]\left[\sum_{v=1}^{n-1} \frac{\left|\lambda_{v+1}\right|}{v}\right]^{k-1} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}} a_{n n}\right)^{k-1} \sum_{v=1}^{n-1} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k}\left|\hat{a}_{n, v+1}\right| \\
& \left.=\mathrm{O}(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v} v^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}} a_{n n}\right)^{k-1}\right| \hat{a}_{n, v+1} \right\rvert\, \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right| \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|t_{v}\right|^{k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left(\left|\lambda_{v+1}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|t_{v}\right|^{k}\right. \\
& =\mathrm{O}(1) \sum_{v=1}^{m-1}\left(\left|\Delta \lambda_{v+1}\right|\right) X_{v}+\mathrm{O}(1)\left|\lambda_{m+1}\right| X_{m} \\
& =\mathrm{O}(1)
\end{aligned}
$$

Finally

$$
\begin{aligned}
I_{4}= & \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 4}\right|^{k} \\
& =\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\frac{(n+1) a_{n n} \lambda_{n} t_{n}}{n}\right|^{k} \\
& =\mathrm{O}(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|a_{n n}\right|^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =\mathrm{O}(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\frac{P_{n}}{p_{n}} a_{n n}\right)^{k-1} a_{n n}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n} \| t_{n}\right|^{k} \\
& =\mathrm{O}(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} a_{n n}\left|\lambda_{n} \| t_{n}\right|^{k} \\
& =\mathrm{O}(1), \text { as in the proof of } I_{1} .
\end{aligned}
$$

This completes the proof of theorem.

VI. COROLLARY:

This theorem have the following results as a corollary.

Corollary 6.1

Taking $\left(\frac{P_{n}}{p_{n}}\right)=n$ the theorem (3.1) reduces to theorem (2.1).

Corollary 6.2

Taking $\frac{P_{n}}{p_{n}}=n$, and $\delta=0$ the theorem (3.1) is $|A|_{k}$-summable.

Corollary 6.3

Taking $a_{n v}=\frac{p_{v}}{P_{n}}$, and $\delta=0$ then theorem (3.1) is $\left|\bar{N}, p_{n}\right|_{k}$-summable.

References:

[1] BOR, H; On local property of $\left|\bar{N}, p_{n}, \delta\right|_{k}$-summability of factored Fourier series, J. Math. Anal. Appl. 179 (1993).
[2] OZARSLAN, H.S.; On absolute matrix summability methods, Mathematical Commun. 12, (2007).
[3] RHOADES, B,E. and SAVAS, E.; On $|A|_{k}$-summability factors, Alco, Math. Hung, (2006).
[4] SAVAS, E.; A summability factor theorem for absolute summability involving δ-quasi -monotone and almost increasing sequence, Math. Comput. Model, 48, (2008).
[5] SAVAS, E.; A note on absolute summability factor theorem and almost increasing sequences, academic, Journal, Vol. 8 (2013).

