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Abstract: This study aims to find the risk factors of Diabetes Mellitus (DM) and to find the best model among 

Poisson, Negative Binomial (NB) and Zero-Inflated Negative Binomial (ZINB) regression models. In the count 

data, the existence of overdispersed data is a common situation for modeling approach. Overdispersion occurs 

when the data has greater value of variance compared to its mean. The Poisson regression model is a good 

starting step to model the data but does not account for overdispersion. Hence, NB regression model provide a 

better way to handle this case. Although it works well, but its inclusion of dispersion parameter seems to 

increase the probability of zero counts. As a result, we suggest applying ZINB regression model as it capable to 

handle both overdispersion and excess zeroes. Under the test of Akaike Information Criterion (AIC), Likelihood 

Ratio (LR), Vuong and Clarke, the ZINB regression model was chosen as the best model. From this analysis, we 

found that 11 of the parameters were the risk factors that significantly associated with DM at p<0.05 but sex 

was not as it had the value of p>0.05. Meanwhile, the respiratory system is the major contributor to the problem 

of DM. 

Keywords: Diabetes Mellitus (DM), count data, Poisson regression model, Negative Binomial (NB) regression 

model and Zero-Inflated Negative Binomial (ZINB) regression model,  

 

I. Introduction 
 Count data is referred to the number of events that occur over a fixed period of time. It consist only 

nonnegative integers and discrete values. The examples for events count that recently had been used are the 

number of road accident deaths, the number of doctor visit patients and the number of dengue fever cases [1]. In 

the case where the variable of count outcome has small value of variance, the application of Ordinary Least 

Square (OLS) may lead to bias results for the predictor and the value of standard error will be large [2]. Hence, 

Poisson regression model provide a better way for modeling the distribution of the count data compared to other 

linear models [3], [4] as it was developed to satisfy the nature properties of count data. This regression assumes 

the mean and variance of the count variable are equal. However, it suffers one potential problem where the 

assumption is violated because the existence of overdispersed data where the variance of count data is larger 

than the mean. In this case, the single parameter   is unable to describe event counts in Poisson distribution. 

There are two possibilities to the occurrence of overdispersion whether from the heterogeneity in the population 

or due to excess zeroes. Failure to overcome overdispersed data will tend to bias of standard error, inflated test 

statistics and inconsistent of population estimation.  

 As an alternative approach, NB regression model was applied. NB regression model is the 

generalization and extension of Poisson-gamma regression model [1] to handle overdispersed data by including 

dispersion parameter to allow variance of the observed count exceeds the mean and also accounts for 

unobserved heterogeneity. But sometimes, count data may contain a greater proportion of zero counts and it 

cannot be well modeled by using NB regression model. Thus, we use ZINB regression model as proposed by 

Lambert [5] to fit with overdispersed data and excess zeroes [6]. The ZINB regression model composed of two 

mixtures of processes that generate an “always zero group” and a “not always zero group”. According to 

Yesilova, Kaydan and Kaya [7], different ways are used to observe these two groups. To model whether the 

outcome is from “always zero group” or “not always zero group”, we used logit model with binomial 

assumption. Then, to determine the outcome in the “not always zero group”, we used NB model for count data.  

 The aims of this study are to select the right statistical model for handling overdispersion and excess 

zeroes in count data and to identify the risk factors of DM. In this section, we used three statistical methods: 

Poisson, NB and ZINB regression models for analyzing the data and it was done with SAS 9.3 statistical 

software program by using PROC GENMOD. The respondents are a total of 1000 patients diagnosed clinically 

with DM since 2002 until 2009. The data were collected at the Medical Record Unit in Hospital Universiti Sains 

Malaysia (HUSM), Kubang Kerian, Kelantan, Malaysia. The disease of DM is a chronic disease resulting from 

disability of insulin production, insulin action, or both and it is characterized by having high levels of blood 
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glucose [8]. The prevalence of DM increased over the world as well as in Malaysia due to various factors such 

as growth, population, urbanization, aging and increasing prevalence of physical inactivity and obesity [9]. The 

dependent variable Y  is the number of complication effects among DM disease. Meanwhile, 12 independent 

variables are age, sex, gastritis and duodenitis (gnd), primary hypertension (hyper), hypertensive heart disease 

(hyperheart), disease of the urinary system (urinary), chronic obstructive pulmonary disease (obs), renal failure 

(renal), cellulitis, disease of the respiratory system (respiratory), pneumonia (pneu) and anemia. All the 

parameters are estimated by using Maximum Likelihood Estimator (MLE). An AIC selection criterion is used to 

evaluate the goodness of fit of the model. This test indicates that the smallest value of AIC is accepted as the 

best model [10]. Meanwhile, to find the best regression model, we test the non-nested models (NB and ZINB 

regression models) by using Vuong test [11] and Clarke test [12]. The significance test statistics and positive 

value of the tests indicate one of the models is chosen as the best model. 

 

II. Methodology 
2.1 Poisson Model 

 Poisson regression model is suitable for modeling the count data as it fulfills the nature properties of 

count data. The dependent variable iy  is distributed as Poisson distribution with conditional mean of i  on a 

linear function of independent variables, iX  for case i. Thus, the density function of iy  can be written as 
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where   are unknown parameters and parameter estimation for   is estimated by using maximum log-

likelihood function [13].  

 

2.2 Negative Binomial Model 

 NB regression model is an alternative of Poisson regression model that was generalized by Poisson 

regression model. This model could account the overdispersion by the inclusion dispersion parameter. It uses 

log link function to model between dependent and independent variables. Its conditional mean, i  for iy  is 

determined by iX  and heterogeneity component of i  unrelated to iX . The formulation can be written as 

 

 

 

       (3) 

 

where    1,1~exp   Gammai . The density function of Y  can be expressed as 
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0  shows the level of overdispersion. If 0 , NB regression model will reduce to Poisson regression 
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Then, the log-likelihood function of NB regression model is [1] 
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2.3 Zero-Inflated Negative Binomial Model 

 To model the count data with excess zeroes, the ZINB regression model was used as proposed by 

Lambert [5]. It has a mixture of two processes to identify count outcome from always zero group and not always 

zero group. For not always zero group, NB model will be used to model the outcome of zero counts and other 

than zero. For process 1 that generates always zero counts having i  
probability and process 2 (generates 

counts from NB model) having i1  probability. Thus,  
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Then, the probability of iY  can be written as 
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where  iyg  follows NB distribution. Meanwhile, the log-likelihood function for ZINB is [14] 
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where  .I  is the indicator function in the specified event. The description that has been proposed is given as 
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III. Results 
Table 1: Diagnosis count of DM patients 

Diagnosis Frequency Percent (%) 

0 818 81.8 

1 82 8.2 
2 29 2.9 

3 32 3.2 

4 24 2.4 
5 15 1.5 

Total 1000 100.0 

 

 Based on Table 1, a total 81.8% of the patients did not suffer from any complication effects to their 

health. This situation indicating the existence of high proportion of zero counts in the data. A part from that, 

8.2% only had one complication effect to their health. The remaining 2.9% only had two complication effects 

and 3.2% had three complication effects. The rest 2.4% had four complication effects and the lowest percentage 

with 1.5% who was got five complication effects. 

 As the starting point, we had analyzed the Poisson regression model as the baseline model for the count 

data. The result showed the possibility of overdispersion due to larger value of variance (1.080) compared to its 

mean (0.41). Hence, the equality assumption of Poisson distribution had been violated. Other than that, the 

result from Pearson Chi-square was higher than one (1.2898) proved the existence of overdispersion. As an 

alternative approach to handle this case, we used NB regression model. From this analysis, the dispersion 

parameter was 0.0030. This model could collapse into Poisson regression model if the dispersion parameter 

equal to 0. Due to overdispersion and excess zeroes come together in the data, ZINB regression model provides 

a way to solve this situation.  

 

Table 2: Model selection criteria for Poisson, NB and ZINB 
Models Log-likelihood AIC Vuong Test Clarke Test 

Poisson -283.8228 1044.6920   

NB -283.7052 1046.4560 Not preferred model Not preferred model 

ZINB -507.2194 1046.4389 Preferred model Preferred model 

 

 From the Table 2, it was seen that Poisson regression model had the smallest value of AIC compared to 

NB and ZINB regression models. Since Poisson regression model and NB regression model are nested models, 

the Likelihood Ratio (LR) test was done to make a comparison. The LR is given as 

     2352.07052.2838228.28322  NBLLPoissonLL , which showed that NB regression model 

most preferred as it significantly higher than Poisson regression model. Whereas, to compare non-nested model 

between NB and ZINB regression models, the Vuong statistics test as well as Clarke test had been computed by 

using SAS macro. The result showed that ZINB regression model was preferred as it had positive value and 

being significant at 0001.0p . Next, the ML parameter estimations and standard error for the Poisson 

regression model were obtained in Table 3. 

 

Table 3: Parameter estimations and standard error for Poisson regression model 
Parameters estimate Standard Error 95% Confidence Limits p-value 

Intercept -2.4649 0.2191 -2.8943 -2.0355 <.0001 
Age 0.4310 0.2090 0.0215 0.8406 0.0391* 

Sex 0.1243 0.1140 -0.0991 0.3477 0.2755 

Gnd 0.4290 0.1315 0.1714 0.6867 0.0011* 

Hyper 1.1734 0.1155 0.9471 1.3997 <.0001* 

Hyperheart 0.8893 0.1479 0.5994 1.1793 <.0001* 

Urinary 0.5493 0.1507 0.2539 0.8446 0.0003* 
Obs 0.5440 0.1609 0.2285 0.8594 0.0007* 

Renal 0.8759 0.1626 0.5572 1.1947 <.0001* 

Cellulitis 1.0745 0.1705 0.7404 1.4086 <.0001* 
Respiratory 1.4049 0.1479 1.1150 1.6949 <.0001* 

Pneu 0.8807 0.1571 0.5728 1.1886 <.0001* 

Anemia 0.7331 0.1389 0.4609 1.0052 <.0001* 

     *significant at p<0.05 

 

 Then, the ML parameter estimations and standard error for the NB regression model were obtained in 

Table 4. 
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Table 4: Parameter estimations and standard error for NB regression model 
Parameters estimate Standard Error 95% Confidence Limits p-value 

Intercept 

Age 

-2.4713 

0.4344 

0.2383 

0.2752 

-2.9382 

0.0123 

-2.0043 

0.8566 

<.0001 

0.0437* 

Sex 0.1250 0.1147 -0.0999 0.3499 0.2760 
Gnd 0.4294 0.1323 0.1700 0.6888 0.0012* 

Hyper 1.1785 0.1376 0.9088 1.4482 <.0001* 

Hyperheart 0.8936 0.1614 0.5772 1.2101 <.0001* 
Urinary 0.5494 0.1515 0.2525 0.8463 0.0003* 

Obs 0.5457 0.1637 0.2249 0.8665 0.0009* 

Renal 0.8762 0.1632 0.5564 1.1960 <.0001* 
Cellulitis 1.0761 0.1726 0.7378 1.4143 <.0001* 

Respiratory 1.4072 0.1523 1.1087 1.7058 <.0001* 
Pneu 0.8827 0.1603 0.5685 1.1969 <.0001* 

Anemia 0.7344 0.1409 0.4582 1.0106 <.0001* 

  *significant at p<0.05 

 

 Lastly, the ML parameter estimations and standard error for the ZINB regression model were obtained 

in Table 5. 

 

Table 5: Parameter estimations and standard error for ZINB regression model 
Parameters estimate Standard Error 95% Confidence Limits p-value 

Intercept -2.6576  0.2605 -3.1683 -2.1469 <.0001 
Age 0.5234 0.2379 0.0572 0.9897 0.0278* 

Sex 0.1361 0.1264 -0.1117 0.3839 0.2818 

Gnd 0.4391 0.1634 0.1189 0.7593 0.0072* 
Hyper 1.3727 0.1667 1.0460 1.6993 <.0001* 

Hyperheart 1.0298 0.1949 0.6478 1.4118 <.0001* 

Urinary 0.5805 0.1847 0.2184 0.9425 0.0017* 
Obs 0.6561 0.1971 0.2343 1.0070 0.0016* 

Renal 0.6207 0.1848 0.5178 1.2420 <.0001* 

Cellulitis 1.1145 0.1947 0.7328 1.4961 <.0001* 
Respiratory 1.4520 0.1757 1.1077 1.7964 <.0001* 

Pneu 0.9555 0.1852 0.5924 1.3185 <.0001* 

Anemia 0.7858 0.1714 0.4499 1.1217 <.0001* 

    *significant at p<0.05 

 

 To summarize, the ML parameter estimations and standard error for all the regression models were 

obtained in Table 6. 

Table 6: Parameter estimations and standard error for all models 

Parameters Poisson NB ZINB 

Intercept 
-2.4649  

(0.2191) 

-2.4713 

 (0.2383) 

-2.6576 

(0.2605) 

Age 
0.4310* 
(0.2090) 

0.4344* 
 (0.2752) 

0.5234* 
(0.2379) 

Sex 
0.1243 

(0.1140) 

0.1250  

(0.1147) 

0.1361 

(0.1264) 

Gnd 
0.4290* 
(0.1315) 

0.4294* 
 (0.1323) 

0.4391* 
(0.1634) 

Hyper 
1.1734* 

(0.1155) 

1.1785* 

(0.1376) 

1.3727* 

(0.1667) 

Hyperheart 
0.8893* 

(0.1479) 

0.8936* 

(0.1614) 

1.0298* 

(0.1949) 

Urinary 
0.5493* 

(0.1507) 

0.5494* 

(0.1515) 

0.5805* 

(0.1847) 

Obs  
0.5440* 
(0.1609) 

0.5457* 
(0.1637) 

0.6561* 
(0.1971) 

Renal  
0.8759* 

(0.1626) 

0.8762* 

(0.1632) 

0.6207* 

(0.1848) 

Cellulitis  
1.0745* 
(0.1705) 

1.0761* 
(0.1726) 

1.1145* 
(0.1947) 

Respiratory 
1.4049* 

(0.1479) 

1.4072* 

(0.1523) 

1.4520* 

(0.1757) 

Pneu 
0.8807* 

(0.1571) 

0.8827* 

(0.1603) 

0.9555* 

(0.1852) 

Anemia 
0.7331* 

(0.1389) 

0.7344* 

(0.1409) 

0.7858* 

(0.1714) 

     *significant at p<0.05
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 In short, according to Table 6, as Poisson, NB and ZINB regression models had different 

specifications, but they shared the same significant value of p such as age, gnd, hyper, hyperheart, urinary, obs, 

renal, cellulitis, respiratory, pneu and anemia but sex was not. Hence, sex was not categorized as the risk factor 

of DM. Meanwhile, the disease of the respiratory system gave the major contributor to the problem of DM as it 

had highest value of parameter estimation. 

 

IV.  Conclusion 
 In this paper, we use the DM data to examine the risk factors of DM by using three modeling approach 

such as Poisson, NB and ZINB regression models. We also have compared these three regression models to find 

the best applicable model. Poisson regression model may act as a good starting step to model the data but due to 

its restrictive assumption (the equality of mean and variance), this model is not suitable for handling 

overdispersion. Ignoring overdispersion can cause underestimation of standard error and affects the significance 

level of hypothesis testing [15]. Hence, NB regression model provide a better way to account overdispersion by 

including its dispersion parameter but because of that, the probabilities of zero counts may increase. So, we 

suggest applying the ZINB regression model as it capable to handle both excess zeroes and overdispersion in the 

data set. 

 From the analysis, we found that the ZINB regression model is the best model among Poisson and NB 

regression models under the test of AIC, LR, Vuong and Clarke. According to Jansakul [6], this model could 

account for overdispersion and excess zeroes at the same time. It can be concluded that ZINB regression model 

is very suitable to find the risk factors of DM. Thus, the result showed that the risk factors of DM that positively 

were age, gnd, hyper, hyperheart, urinary, obs, renal, cellulitis, respiratory, pneu and anemia. Meanwhile, sex 

was not the risk factor of DM as it insignificant associated with DM. Among these significant factors, we should 

pay more attention to the disease of the respiratory system as it had major contributor to the problem of DM. 

More awareness program should be done by the parties concerned to reduce the rate of DM disease.  
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