Some Characterization of Normal Multi-fuzzy and Normal Multi-anti fuzzy Subgroup

R.Muthuraj¹, S.Balamurugan²

¹(PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai, Tamilnadu, India. ²(Department of Mathematics, Velammal College of Engineering and Technology, Madurai, Tamilnadu, India.

Abstract : This paper is mainly concerned with a generalization of the concept of a normal multi-fuzzy subgroup and a normal multi-anti fuzzy subgroup. We introduce the concept of a normal multi-fuzzy subgroup of a multi-fuzzy subgroup and examine its basic properties. Also we introduce the concept of a normal multi-anti fuzzy subgroup of a multi-anti fuzzy subgroup and examine its basic properties. We use them to develop results concerning multi-fuzzy subgroups of a multi-fuzzy subgroups of a multi-fuzzy subgroups of a multi-fuzzy subgroup.

Mathematics Subject Classification: MSC: 20N25; 03E72; 08A72

Keywords: Fuzzy set, multi-fuzzy set, fuzzy subgroup, multi-fuzzy subgroup, anti fuzzy subgroup, multi-anti fuzzy subgroup, normal multi-fuzzy subgroup, normal multi-anti fuzzy subgroup, multi-fuzzy coset.

I. INTRODUCTION

S.Sabu and T.V.Ramakrishnan [9] proposed the theory of multi-fuzzy sets in terms of multidimensional membership functions and investigated some properties of multi-level fuzziness. L.A.Zadeh [11] introduced the theory of multi-fuzzy set is an extension of theories of fuzzy sets. N.Palaniappan and R.Muthuraj [7] introduced the inter-relationship between the Anti fuzzy group and its Lower level subgroups. P.S.Das [1] studied the inter-relationship between the fuzzy subgroup and its level subsets. Liu, Mukharjee and Bhattacharya [2,3] proposed the concept of normal fuzzy sets. R.Muthuraj and S.Balamurugan [6] proposed the inter-relationship between the multi-fuzzy group and its level subgroups. R.Muthuraj and S.Balamurugan [4] also proposed the inter-relationship between the multi-anti fuzzy group and its lower level subgroups. In this paper we define a new algebraic structures of a normal multi-fuzzy subgroup and a normal multi-anti fuzzy subgroup.

II. PRELIMINARIES

In this section, we site the fundamental definitions that will be used in the sequel.

2.1 Definition Let X be any non-empty set. A fuzzy subset μ of X is $\mu : X \rightarrow [0,1]$.

2.2 Definition Let X be a non-empty set. A multi-fuzzy set A in X is defined as a set of ordered sequences: $A = \{ (x, \mu_1(x), \mu_2(x), \dots, \mu_i(x), \dots) : x \in X \}, \text{ where } \mu_i : X \to [0,1] \text{ for all } i.$

Remark

iv.

i. If the sequences of the membership functions have only k-terms (finite number of terms), then k is called the dimension of A.

ii. The set of all multi-fuzzy sets in X of dimension k is denoted by $M^k FS(X)$.

iii. The multi-fuzzy membership function μ_A is a function from X to $[0, 1]^k$ such that for all x in X,

$$\mu_A(x) = (\ \mu_1(x), \ \mu_2(x), \ \dots, \ \mu_k(x) \).$$

For the sake of simplicity, we denote the multi-fuzzy set

 $A = \{ \ (\ x, \ \mu_1(x), \ \mu_2(x), \ \dots, \ \mu_k(x) \) : x \in X \ \} \ \text{as} \ A = (\mu_1, \ \mu_2, \ \dots, \ \mu_k).$

2.3 Definition Let k be a positive integer and let A and B in M^k FS(X), where A=($\mu_1, \mu_2, ..., \mu_k$) and B=($\nu_1, \nu_2, ..., \mu_k$)

 $\ldots, \nu_k),$ then we have the following relations and operations:

- i. $A \subseteq B$ if and only if $\mu_i \leq \nu_i$, for all i = 1, 2, ..., k;
- ii. A = B if and only if $\mu_i = \nu_i$, for all i = 1, 2, ..., k;

iii. $A \cup B = (\mu_1 \cup \nu_1, \dots, \mu_k \cup \nu_k) = \{(x, \max(\mu_1(x), \nu_1(x)), \dots, \max(\mu_k(x), \nu_k(x))) : x \in X\};$

iv. $A \cap B = (\mu_1 \cap \nu_1, ..., \mu_k \cap \nu_k) = \{(x, \min(\mu_1(x), \nu_1(x)), ..., \min(\mu_k(x), \nu_k(x))) : x \in X\};$

 $v. \qquad A+B = (\mu_1 + \nu_1, \dots, \mu_k + \nu_k) = \{(x, \mu_1(x) + \nu_1(x) - \mu_1(x)\nu_1(x), \dots, \mu_k(x) + \nu_k(x) - \mu_k(x)\nu_k(x)) : x \in X\}.$

2.4 Definition Let $A=(\mu_1, \mu_2, ..., \mu_k)$ be a multi-fuzzy set of dimension k and let μ_i' be the fuzzy complement of the ordinary fuzzy set μ_i for i=1, 2, ..., k. The Multi-fuzzy Complement of the multi-fuzzy set A is a multi-fuzzy set ($\mu_1', ..., \mu_k'$) and it is denoted by C(A) or A' or A^C.

That is, $C(A) = \{(x, c(\mu_1(x)), ..., c(\mu_k(x))) : x \in X\} = \{(x, 1-\mu_1(x), ..., 1-\mu_k(x)) : x \in X\}$, where c is the fuzzy complement operation.

2.5 Definition Let μ be a fuzzy set on a group G. Then μ is said to be a fuzzy subgroup of G if for all $x,y \in G$,

i. $\mu(xy) \geq \min \{\mu(x), \mu(y)\}$

ii. $\mu(x^{-1}) = \mu(x)$

2.6 Definition A multi-fuzzy set A of a group G is called a multi-fuzzy subgroup of G if for all $x, y \in G$,

i. $A(xy) \ge \min\{A(x), A(y)\}$

ii. $A(x^{-1}) = A(x)$

2.7 Definition Let μ be a fuzzy set on a group G. Then μ is called an anti fuzzy subgroup of G if for all $x,y \in G$,

 $\begin{array}{ll} i. & \mu(xy) \leq max\{\mu(x),\,\mu(y)\} \\ ii. & \mu(x^{-1}) \,=\, \mu(x) \end{array}$

2.8 Definition A multi-fuzzy set A of a group G is called a multi-anti fuzzy subgroup of G if for all $x,y \in G$,

i. $\begin{array}{ll} A(xy) \leq \max\{A(x), A(y)\}\\ \text{ii.} & A(x^{-1}) = A(x) \end{array}$

2.9 Definition Let A and B be any two multi-fuzzy sets of a non-empty set X. Then for all $x \in X$,

i. $A \subseteq B$ iff $A(x) \leq B(x)$

ii. A = B iff A(x) = B(x)

iii. $(A \cup B)(x) = \max\{A(x), B(x)\}$

iv. $(A \cap B)(x) = \min\{A(x), B(x)\}$

2.10 Definition Let A and B be any two multi-fuzzy sets of a non-empty set X. Then

i. $A \cup A = A, A \cap A = A$

ii. $A \subseteq A \cup B, B \subseteq A \cup B, A \cap B \subseteq A$ and $A \cap B \subseteq B$

iii. $A \subseteq B$ iff $A \cup B = B$

iv. $A \subseteq B$ iff $A \cap B = A$

2.11 Definition We define the binary operation ' \circ ' on MFP(G), the multi-fuzzy power set of a group G and the unary operation ⁻¹ on MFP(G) as follows:

 $\forall A, B \in MFP(G) \text{ and } \forall x \in G, (A \circ B)(x) = \max \{ \min\{A(y), B(z) / y, z \in G, yz = x\} \}$ and $A^{-1}(x) = A(x^{-1})$. We call $A \circ B$ as the product of A and B and A^{-1} as the inverse of A. The binary operation ' \circ ' is associative.

III. Normal multi-fuzzy subgroup of the multi-fuzzy subgroup

In this section, we introduce the concept of normal multi-fuzzy subgroup of a multi-fuzzy subgroup and examine its basic properties.

3.1 Definition A multi-fuzzy subgroup A of a group G is called normal if for each $x \in G$,

 $A(x) \leq \min \{ A(gxg^{-1}) \}$ geG

3.2 Definition Let $A, B \in MF(G)$ and $A \subseteq B$. Then A is called a normal multi-fuzzy subgroup of the multi-fuzzy subgroup B, written as $A \angle B$, if $A(xyx^{-1}) \ge \min\{A(y), B(x)\}, \forall x, y \in G$.

Remarks: The following statements are immediate from the above definition 3.2:1. Every multi-fuzzy subgroup is a normal multi-fuzzy subgroup of itself.

2. $A \in MFP(G)$ is a normal multi-fuzzy subgroup of $G \Leftrightarrow A$ is a normal multi-fuzzy subgroup of the multi-fuzzy subgroup 1_G

Notations: The following notations to be used in this paper with the following meaning:

1. MF(G) is the set of all multi-fuzzy subgroups of a group G.

2. NMF(G) is the set of all normal multi-fuzzy subgroups of a group G.

3.3 Definition Let μ be a fuzzy subgroup of a group G and $x \in G$. The fuzzy subsets $\mu(e)_{\{x\}}\circ\mu$ and $\mu\circ\mu(e)_{\{x\}}$ are referred to as the left fuzzy coset and right fuzzy coset of μ with respect to x and written as $x\mu$ and μx , respectively.

3.4 Definition Let $A \in MF(G)$ be a multi-fuzzy subgroup of a group G and $x \in G$. The multi-fuzzy sets $A(e)_{\{x\}} \circ A$ and $A \circ A(e)_{\{x\}}$ are referred to as the left multi-fuzzy coset and right multi-fuzzy coset of A with respect to x and written as xA and Ax respectively.

Remark: If $A \in NMF(G)$ is a normal multi-fuzzy subgroup of a group G, then the left multi-fuzzy coset xA is just the right multi-fuzzy coset Ax. Thus, in this case, we call xA as a multi-fuzzy coset for short.

3.1 Theorem: Let $A, B \in MF(G)$ and $A \subseteq B$. Then the following assertions are equivalent:

A is a normal multi-fuzzy subgroup of B 1. 2. $A(yx) \ge \min\{A(xy), B(y)\}, \forall x, y \in G$ 3. $A(e)_{\{x\}} \circ A \supseteq (A \circ A(e)_{\{x\}}) \cap B, \forall x \in G$ **Proof:** (1) \Rightarrow (2) Since A is a normal multi-fuzzy subgroup of B, $A(yx) = A(yxyy^{-1})$ $= A(y(xy)y^{-1})$ $\geq \min\{A(xy), B(y)\}, \forall x, y \in G$, since by the definition 3.2. Proof: (2) \Rightarrow (1) $A(xyx^{-1}) = A(x(yx^{-1}))$ $\geq \min\{A((yx^{-1})x), B(x)\}, \text{ since by the hypothesis}(2).$ $= \min\{A(y), B(x)\}$ That is, A is normal multi-fuzzy subgroup of B. That is, $A \angle B$. Proof: (2) \Rightarrow (3) $\forall z \in G$, $(A(e)_{\{x\}} \circ A)(z) = \max\{ \min\{A(e)_{\{x\}}(p), A(q)\} / pq = z \text{ where } p, q \in G \}$, since by the definition 2.11. $= \max\{\min\{A(e)_{\{x\}}(x), A(q)\} / xq = z\}, \text{ since take } p = x.$ = max{ min{A(e), A(x⁻¹z)} }, since A(xq) = A(z) \Rightarrow A(q) = A(x⁻¹z). $= \max\{ A(x^{-1}z) \}$ $= \max\{ A((x^{-1}z)^{-1}) \}$ $= \max\{A(z^{-1}x)\}$ $\geq \max\{ \min\{ A(xz^{-1}), B(z^{-1}) \} \}, \text{ since by the hypothesis (2)} \\ = \max\{ \min\{A((xz^{-1})^{-1}), B(z^{-1}) \} \}$ $= \max \{ \min \{ A(zx^{-1}), B(z^{-1}) \} \}$ = min{($A \circ A(e)_{\{x\}}$)(z), B(z)}, since ($A \circ A(e)_{\{x\}}$)(z)=A(zx⁻¹) = $[(A \circ A(e)_{\{x\}}) \cap B](z)$, since by the definition of ' \cap ' Hence the proof $(2) \Rightarrow (3)$. Proof: $(3) \Rightarrow (2)$ $\begin{array}{l} A(yx) \ = A(\ (yx)^{-1} \) \\ = A(x^{-1}y^{-1}) \end{array}$ $\forall x, y \in G$, $= (A(e)_{\{x\}} \circ A)(y^{-1})$ \geq ((A°A(e)_{x}) \cap B)(y⁻¹), since by the hypothesis(3) = min{ ($A \circ A(e)_{\{x\}}$)(y^{-1}), B(y^{-1}) }, since by the definition of ' \cap ' = min{ A($y^{-1}x^{-1}$), B(y^{-1}) }, since by the definition 2.11 $= \min\{ A((xy)^{-1}), B(y) \}$ $= \min\{ A(xy), B(y) \}$

Hence the proof $(3) \Rightarrow (2)$ and hence the Theorem also.

3.2 Theorem: Let $A, B \in MF(G)$. Then A is a normal multi-fuzzy subgroup of $B \Leftrightarrow A_t$ is a normal subgroup of B_t, ∀t∈ { b / b = (b₁, b₂, ..., b_i, ...), b_i∈[0,1], ∀i such that b≤A(e) }. **Proof:** (\Rightarrow part) Suppose A is a normal multi-fuzzy subgroup of B. Let $t \in \{ b / b = (b_1, b_2, \dots, b_i, \dots), b_i \in [0, 1], \forall i \text{ such that } b \le A(e) \}.$ Then A_t is a subgroup of B_t . Let $y \in A_t$ and $x \in B_t$. Then $A(y) \ge t$ and $B(x) \ge t$ (1) By the hypothesis, $A(xyx^{-1}) \ge \min\{A(y), B(x)\}$ $\geq \min\{t, t\}$, since by (1) = tThat is, $A(xyx^{-1}) \ge t$ Hence $xyx^{-1} \in A_t$ That is, A_t is a normal subgroup of B_t Conversely, Suppose A_t is a normal subgroup of B_t, $\forall t \in \{b \mid b = (b_1, b_2, \dots, b_i, \dots), b_i \in [0, 1], \forall i \text{ such that}$ $b \le A(e)$ Let A(y) = t; B(x) = b and suppose that $b \ge t$ (2) Then this implies that $B(x) \ge t$ $\Rightarrow x \in B_t$ \Rightarrow xyx⁻¹ \in A_t since by the hypothesis. Thus, $\Rightarrow A(xyx^{-1}) \ge t = \min\{t, b\}$, since by (2) $\Rightarrow A(xyx^{-1}) \ge \min\{A(y), B(x)\}$, since by (2) \Rightarrow A is a normal multi-fuzzy subgroup of B, since by the definition 3.2(I) Suppose $b < t \implies b < A(y)$, since by (2) $\Rightarrow A(y) > b$ $\Rightarrow y \in A_h$ \Rightarrow xyx⁻¹ \in A_b , A_b is a normal subgroup of B_b, by the hypothesis. $\Rightarrow A(xyx^{-1}) \ge b = \min\{b,t\}$ $\Rightarrow A(xyx^{-1}) \ge \min\{B(x), A(y)\}, \text{ since by } (2)$ \Rightarrow A is a normal multi-fuzzy subgroup of B(II), since by the definition 3.2. Therefore, from I and II, we get the proof and hence the Theorem.

3.3 Theorem: Let $A, B \in MF(G)$ and A be a normal multi-fuzzy subgroup of B. Then A_* is a normal subgroup of B_* and A^* is a normal subgroup of B^* .

Proof: If $x \in A_*$, $y \in B_*$ and A be a normal multi-fuzzy subgroup of B, then this implies that $A(y^{-1}xy) \ge \min\{A(x), B(y)\}$

 $\Rightarrow A(y^{-1}xy) = \min\{A(e), B(e)\}$ $\Rightarrow A(y^{-1}xy) = A(e)$ $\Rightarrow A_* is a normal subgroup of B_*$ $Similarly, If <math>x \in A^*$, $y \in B^*$ and A be a normal multi-fuzzy subgroup of B, then this implies that $A(y^{-1}xy) \ge \min\{A(x), B(y)\}$ $\Rightarrow A(y^{-1}xy) > 0$, since A(x), B(y) > 0 $\Rightarrow A^*$ is a normal subgroup of B^{*} and hence the Theorem.

3.4 Theorem: If $A \in NMF(G)$ and $B \in MF(G)$, then $(A \cap B)$ is a normal multi-fuzzy subgroup of B. **Proof:** Clearly, $A \cap B \in MF(G)$ and $A \cap B \subseteq B$. Now, $\forall x, y \in G$, $(A \cap B)(xyx^{-1}) = \min\{A(xyx^{-1}), B(xyx^{-1})\}$ $= \min\{A(y), B(xyx^{-1})\}$, since $A \in NMF(G)$ $\geq \min\{A(y), \min\{B(x), B(y), B(x^{-1})\}\}$ $= \min\{A(y), \min\{B(x), B(y)\}\}$ $= \min\{A(y), \min\{B(x), B(y)\}\}$ $= \min\{(A \cap B)(y), B(x)\}$

This implies that $(A \cap B)$ is a normal multi-fuzzy subgroup of B, since by the definition of 3.2. and hence the Theorem.

3.5 Theorem: Let $A,B,C \in MF(G)$ be such that A and B are normal multi-fuzzy subgroups of C. Then $(A \cap B)$ is a normal multi-fuzzy subgroup of C.

Proof: Observe that $(A \cap B) \in MF(G)$ and $(A \cap B) \subseteq C$. Now,

 $(A \cap B)(xyx^{-1}) = \min\{ A(xyx^{-1}), B(xyx^{-1}) \}$

 $\geq \min{\min{A(y),C(x)}, \min{B(y),C(x)}}$, since A and B are normal multi-fuzzy subgroups of C. $\geq \min{\min{A(y), B(y)}, C(x)}$

 $= \min\{ (A \cap B)(y), C(x) \}$

Therefore, $(A \cap B)$ is a normal multi-fuzzy subgroup of C ,since by the definition 3.2 and hence the Theorem.

IV. Normal multi-anti fuzzy subgroup of the multi-anti fuzzy subgroup

In this section, we introduce the concept of normal multi-anti fuzzy subgroup of a multi-anti fuzzy subgroup and examine its basic properties.

4.1 Definition A multi-anti fuzzy subgroup A of a group G is called normal if for each $x \in G$, $A(x) \ge \max \{ A(gxg^{-1}) \}$ $g \in G$

4.2 Definition Let $A, B \in MAF(G)$ and $A \subseteq B$. Then A is called a normal multi-anti fuzzy subgroup of the multianti fuzzy subgroup B, written as $A \triangleleft B$, if $A(xyx^{-1}) \le \max\{A(y), B(x)\}, \forall x, y \in G$.

Remarks: The following statements are immediate from the above definition :

1. Every multi-anti fuzzy subgroup is a normal multi-anti fuzzy subgroup of itself.

2. $A \in MAFP(G)$ is a normal multi-anti fuzzy subgroup of $G \Leftrightarrow A$ is a normal multi-anti fuzzy subgroup of the multi-anti fuzzy subgroup 1_G

Notations: The following notations to be used in this paper with the following meaning:

1. MAF(G) is the set of all multi-anti fuzzy subgroups of a group G

2. NMAF(G) is the set of all normal multi-anti fuzzy subgroups of a group G

4.3 Definition Let μ be any anti-fuzzy subgroup of a group G and $x \in G$. The fuzzy subsets $\mu(e)_{\{x\}}\circ\mu$ and $\mu\circ\mu(e)_{\{x\}}$ are referred to as the left fuzzy coset and right fuzzy coset of μ with respect to x and written as $x\mu$ and μx , respectively.

4.4 Definition Let A be a multi-anti fuzzy subgroup of a group G and $x \in G$. The multi-fuzzy sets $A(e)_{\{x\}} \circ A$ and $A \circ A(e)_{\{x\}}$ are referred to as the left multi-fuzzy coset and right multi-fuzzy coset of A with respect to x and written as xA and Ax respectively.

Remark: If $A \in NMAF(G)$ is a normal multi-anti fuzzy subgroup of a group G, then the left multi-fuzzy coset xA is just the right multi-fuzzy coset Ax. Thus, in this case, we call xA as a multi-fuzzy coset for short.

4.1 Theorem: Let $A, B \in MAF(G)$ and $A \subseteq B$. Then the following assertions are equivalent: 1. A is a normal multi-anti fuzzy subgroup of B

2. $A(yx) \le \max{A(xy), B(y)}, \forall x, y \in G$ 3. $A(e)_{\{x\}} \circ A \subseteq (A \circ A(e)_{\{x\}}) \cup B, \forall x \in G.$ **Proof:** (1) \Rightarrow (2) Since A is a normal multi-anti fuzzy subgroup of B, $A(yx) = A(yxyy^{-1})$ $= A(y(xy)y^{-1})$ $\leq \max{A(xy), B(y)}, \forall x, y \in G$, since by the definition 4.2. Proof: (2) \Rightarrow (1) $A(xyx^{-1}) = A(x(yx^{-1}))$ $\leq \max{A((yx^{-1})x), B(x)}$, since by the hypothesis(2). $= \max{A(y), B(x)}$ That is, A is normal multi-anti fuzzy subgroup of B That is, $A \angle B$. Proof: (2) \Rightarrow (3) $\forall z \in G$, $(A(e)_{\{x\}} \circ A)(z) = \max\{ \min\{A(e)_{\{x\}}(p), A(q)\} / pq = z \text{ where } p,q \in G \}, \text{ since by the definition 2.11.}$ = max{min{ $A(e)_{x}}(x), A(q)$ } / xq = z}, since take p = x

= max{ min{A(e), A(x⁻¹z)} }, since A(xq) = A(z) \Rightarrow A(q) = A(x⁻¹z) $= \min\{ \max\{A(e), A(x^{-1}z)\} \}$ $= \min\{A(x^{-1}z)\}$ $= \min\{A((x^{-1}z)^{-1})\}$ $= \min\{A(z^{-1}x)\}$ $\leq \min\{ \max\{ A(xz^{-1}), B(z^{-1}) \} \}, \text{ since by the hypothesis (2)} \\ = \min\{ \max\{A((xz^{-1})^{-1}), B(z^{-1}) \} \}$ $= \min \{ \max\{A(zx^{-1}), B(z^{-1})\} \}$ $= \max \{ \min \{ A(zx^{-1}), B(z^{-1}) \} \}$ $= \max\{(A \circ A(e)_{\{x\}})(z), B(z)\}, \text{ since } (A \circ A(e)_{\{x\}})(z) = A(zx^{-1})$ = $[(A \circ A(e)_{\{x\}}) \cup B](z)$, since by the definition of ' \cup ' Hence the proof $(2) \Rightarrow (3)$. Proof: $(3) \Rightarrow (2)$ $\forall x, y \in G, A(yx) = A((yx)^{-1})$ $= A(x^{-1}y^{-1})$ $= (A(e)_{\{x\}} \circ A)(y^{-1})$ \leq ((A \circ A(e)_{x}) \cup B)(y⁻¹), since by the hypothesis (3) = max{ $(A \circ A(e)_{\{x\}})(y^{-1}), B(y^{-1})$ }, since by the definition of ' \cup ' $= \max{A(y^{-1}x^{-1}), B(y^{-1})}$, since by the definition 2.11 $= \max{A((xy)^{-1}), B(y)}$ $= \max{A(xy), B(y)}$

Hence the proof $(3) \Rightarrow (2)$ and hence the Theorem also.

```
4.2 Theorem: Let A, B \in MAF(G). Then A is a normal multi-anti fuzzy subgroup of B \Leftrightarrow A_t is a normal
subgroup of B_t, \forall t \in \{b \mid b = (b_1, b_2, \dots, b_i, \dots), b_i \in [0, 1], \forall i \text{ such that } b \ge A(e) \}
Proof: (\Rightarrow part)
Suppose A is a normal multi-anti fuzzy subgroup of B.
Let t \in \{ b / b = (b_1, b_2, \dots, b_i, \dots), b_i \in [0,1], \forall i \text{ such that } b \ge A(e) \}.
Then A_t is a subgroup of B_t.
Let y \in A_t and x \in B_t
Then A(y) \le t and B(x) \le t .....(1)
By the hypothesis, A(xyx^{-1}) \le max\{A(y), B(x)\}\
                                    \leq \max\{t, t\}, since by (1)
                                    = t
That is, A(xyx^{-1}) \le t
Hence xyx^{-1} \in A_t
That is, A_t is a normal subgroup of B_t
Conversely, Suppose A<sub>t</sub> is a normal subgroup of B<sub>t</sub>, \forall t \in \{b \mid b = (b_1, b_2, ..., b_i, ...), b_i \in [0, 1], \forall i \text{ such that}
b \ge A(e)
Let A(y) = t; B(x) = b and suppose that b \le t .....(2)
Then this implies that B(x) \le t
                                  \Rightarrow x \in B_t
                                  \Rightarrow xyx<sup>-1</sup>\inA<sub>t</sub> since by the hypothesis.
Thus, \Rightarrow A(xyx^{-1}) \le t = \max\{t, b\}, since by (2)
        \Rightarrow A(xyx^{-1}) \le max\{A(y), B(x)\}, since by (2)
        \Rightarrow A is a normal multi-anti fuzzy subgroup of B, since by the definition 4.2 .....(I)
Suppose b > t \implies b > A(y), since by (2)
                   \Rightarrow A(y) < b
                   \Rightarrow y \in A<sub>b</sub>
                   \Rightarrow xyx<sup>-1</sup>\in A<sub>b</sub>, since A<sub>b</sub> is a normal subgroup of B<sub>b</sub>, by the hypothesis.
                   \Rightarrow A(xyx^{-1}) \le b = max\{b,t\}
                   \Rightarrow A(xyx^{-1}) \le \max\{B(x), A(y)\}, since by (2)
                   \Rightarrow A is a normal multi-anti fuzzy subgroup of B ,since by the definition 4.2....(II)
Therefore, from I and II, we get the proof and hence the Theorem .
```

4.3 Theorem: Let $A,B \in MAF(G)$ and A be a normal multi-anti fuzzy subgroup of B. Then A_* is a normal subgroup of B_* and A^* is a normal subgroup of B^* .

Proof: If $x \in A_*$, $y \in B_*$ and A be a normal multi-anti fuzzy subgroup of B, then this implies that A($y^{-1}xy$) $\leq \max{A(x), B(y)}$ $\Rightarrow A(y^{-1}xy) = \max{A(e), B(e)}$ $\Rightarrow A(y^{-1}xy) = B(e)$ $\Rightarrow A_*$ is a normal subgroup of B_{*} Similarly, If $x \in A^*$, $y \in B^*$ and A be a normal multi-anti fuzzy subgroup of B, then this implies that $A(y^{-1}xy) \leq \max{A(x), B(y)}$ $\Rightarrow A(y^{-1}xy) > 0$, since A(x), B(y) > 0 $\Rightarrow A^*$ is a normal subgroup of B^{*} and hence the Theorem.

4.4 Theorem: If $A \in NMAF(G)$ and $B \in MAF(G)$, then $(A \cup B)$ is a normal multi-anti fuzzy subgroup of B. **Proof:** Clearly, $A \cup B \in MAF(G)$ and $B \subseteq A \cup B$.

Now, $\forall x, y \in G$, $(A \cup B)(xyx^{-1}) = \max\{A(xyx^{-1}), B(xyx^{-1})\}\$ = $\max\{A(y), B(xyx^{-1})\}$, since $A \in NMAF(G)$ $\leq \max\{A(y), \max\{B(x), B(y), B(x^{-1})\}\}\$ = $\max\{A(y), \max\{B(x), B(y)\}\}\$ = $\max\{A(y), \max\{B(x), B(y)\}, B(x)\}\$ = $\max\{(A \cup B)(y), B(x)\}\$

This implies that $(A \cup B)$ is a normal multi-anti fuzzy subgroup of B ,since by the definition 4.2 and hence the Theorem.

4.5 Theorem: Let $A,B,C \in MAF(G)$ be such that A and B are normal multi-anti fuzzy subgroups of C. Then $(A \cup B)$ is a normal multi-anti fuzzy subgroup of C.

Proof: Observe that $(A \cup B) \in MAF(G)$ and $(A \cup B) \subseteq C$. Now,

 $(A \cup B)(xyx^{-1}) = \max\{A(xyx^{-1}), B(xyx^{-1})\}$

 $\leq max\{\ max\{A(y),C(x)\},\ max\{B(y),C(x)\}\ \}$, since A and B are normal multi-anti fuzzy subgroups of C.

 $\leq \max\{ \max\{A(y), B(y)\}, C(x) \}$

 $= \max\{(A \cup B)(y), C(x)\}$

Therefore, $(A \cup B)$ is a normal multi-anti fuzzy subgroup of C, since by the definition 4.2 and hence the Theorem.

V. Conclusion

In this paper we discussed normal multi-fuzzy subgroup of multi-fuzzy subgroup and normal multianti fuzzy subgroup of multi-anti fuzzy subgroup. Multi-fuzzy cosets are very useful for the theory of multifuzzy set, multi-fuzzy subgroup and multi-anti fuzzy subgroups.

REFERENCES

Journal Papers:

- [1] Das. P.S., Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84 (1981), 264-269.
- [2] Liu W.J., Fuzzy invariant subgroup and fuzzy ideal, Fuzzy Sets and Systems, 8(1981),133-139.
- [3] Mukharjee N.P. and Bhattacharya P., Fuzzy normal subgroups and fuzzy cosets, Information Sciences, 34 (1984), 225-239.
- [4] Muthuraj.R and Balamurugan.S, Multi-anti fuzzy group and its Lower level subgroups, Int. Journal of Engineering Research and Applications, Vol. 3, Issue 6, Nov-Dec 2013, pp.1498-1501.
- [5] Muthuraj.R, Sitharselvam.P.M and Muthuraman.M.S, Anti Q-fuzzy group and its Lower level subgroups, International Journal of Computer Applications(0975-8887), Volume 3-No. 3, June2010,16-20.
- [6] Muthuraj.R and Balamurugan.S, Multi-fuzzy group and its level subgroups, Gen. Math. Notes, Vol. 17, No. 1, July, 2013, pp. 74-81.
- [7] Palaniappan N, Muthuraj R, Anti fuzzy group and its Lower level subgroups, Antartica J.Math., 1 (1)(2004), 71-76.
- [8] Rosenfeld.A, fuzzy groups, J. math. Anal.Appl. 35 (1971), 512-517.
- [9] Sabu.S and Ramakrishnan.T.V, Multi-fuzzy sets, International Mathematical Forum, 50 (2010), 2471-2476.
- [10] Sabu.S and Ramakrishnan.T.V, Multi-fuzzy subgroups, Int. J. Contemp. Math. Sciences, Vol.6, 8 (2011), 365-372.
- [11] Zadeh.L.A, Fuzzy sets, Information and Control, 8 (1965), 338-353.