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Abstract: In this paper, we obtain a new version of the proof of    1n n    and the Legendre duplicating 

formulas for positive integer n, by using a simple analytical technique 
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I. Introduction 

If n is such that nZ , then    1
sin

n n
n
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Several authors have proved this result as follows 
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This formed integral cannot be solved easily by the elementary integral calculus, therefore it will be evaluated 

by the calculus of residue (by using contour integration) method, for the case of a multi-valued function. The 

function in the integral has a real singular point; the integral is then evaluated along an indented circle. Hence, 

the solution becomes 

   1
sin

n n n
n




     

 
This method of proof is tedious to apply. 

Our aim here is to give a simple analytical method of proof of (1.1), which will be easier and faster than the 

previous way of the proof.  

Before we proof this result (1.1), the proofs of the Legendre duplicating formulas are necessary. 

 

II. Legendre Duplicating Formulas 
If m is a positive integer, then 
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Proof of 2.1 and 2.2 
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We now proceed to prove (1.1) using these two results. 

 

III. The New Version Of The Proof Of (1.1) 
Multiplying (2.1) and (2.2) together, we obtain 
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Now, let
1 1 1

1 and
2 2 2

n m n m m n         , then (3.1) becomes 
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This completes the proof. 

 

IV. Conclusion 
Most of the ways several authors proved this result are tedious; by first transforming it to a beta 

function and later applying the calculus of residue to evaluate the formed integral. We conclude that our new 

version of the proof is better and easier than the previous ways of proving it, and this proof is entering the 

literature for the first time. 
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