Dual Results of Opial's Inequality

Y.O. Anthonio ${ }^{1}$, S.O. Salawu ${ }^{2}$ and S.O. Sogunro ${ }^{3}$
${ }^{1}$ Department of Mathematics, Lagos State University, Ojo, Nigeria.
${ }^{2}$ Department of Mathematics, University of Ilorin, Ilorin, Nigeria.
${ }^{3}$ Department of Mathematics, Lagos State Polytechnic, Ikorodu, Nigeria.

Abstract

In this paper, we used Jensen's inequality for the case of convex functions, firstly to obtain a Calvert's generalization and second, to obtain a Maron's generalization of Opial's inequality. The main tool was adaptation of Jensen's inequality for convex functions.

Keywords: Integral inequalities, Maron's inequality and Calvert's generalization of Opial's inequality Jensen's inequality, convex functions.

I. Introduction:

Opial [5] established the following interesting integral inequality:
Let $(x, y) \in C^{\prime}[0, b]$ be such $x(0)=x(b)=0$ and $x(t) \succ 0$ in $(0, b)$, then
$\int_{a}^{b}\left|x(t) x^{\prime}(t)\right| d t \leq \frac{b}{4} \int_{a}^{b}\left(x^{\prime}(t)\right)^{2} d t(1)$
Where $\frac{b}{4}$ in the best possible constant.
In 1967 Maroni [5] obtained a generalized Opial's inequality by using Holder inequality with indices μ and v. The result obtained is the following:
Theorem 1:
Let $p(t)$ be positive and continuous on $[\tau, \alpha]$ with $\int_{\alpha}^{\tau} p^{1-\mu}(t) d t \prec \infty$, where $\mu \succ 1, x(t)$ be absolutely function on $[\tau, \alpha]$ and $x(0)=0$. The following inequality holds.
$\int_{\alpha}^{\tau}\left|x(t) x^{\prime}(t)\right| d t \leq \frac{1}{2}\left(\int_{\alpha}^{\tau} p^{1-\mu}(t) d t\right)^{\frac{2}{\mu}}\left(\int_{\alpha}^{\tau} p(t)\left|x^{\prime}(t)\right|^{\nu} d t\right)^{\frac{2}{v}}$
Where $\frac{1}{\mu}+\frac{1}{v}=1$. equality holds in (2) in and only if $\int_{\alpha}^{\tau} p^{1-\mu}(s) d s$
Calvert [2] also established the following result:
Theorem 2: [2] assume that
(i) $\quad x(t)$ is absolutely continuous in $[\alpha, \tau]$ and $x(\alpha)=0$
(ii) $\quad f(t)$ is continuous, complex-valued, defined in the range of $x(t)$ and for all real for t of the form
$t(s)=\int_{\alpha}^{s}\left|x^{\prime}(u)\right| d u: f(|t|)$ for all t and $f(t)$ is real $t \succ 0$ and is increasing there,
(iii) $\quad p(t)$ is positive, continuous and $\int_{\alpha}^{\tau} p^{1-\mu}(t) d t \prec \infty$, where $\frac{1}{\mu}+\frac{1}{v}=1$. then the following inequality holds.

$$
\begin{equation*}
\int_{\alpha}^{\tau}\left|f(t) x^{\prime}(t)\right| d t \leq F\left(\int_{\alpha}^{\tau} p^{1-\mu}(t) d t\right)^{\frac{2}{\mu}}\left(\int_{\alpha}^{\tau} p(t)\left|x^{\prime}(t)\right|^{v} d t\right)^{\frac{2}{v}} \tag{3}
\end{equation*}
$$

Where $F(t)=\int_{0}^{t} f(t) d s, t \succ 0$. Equality holds in (3) if and only if $x(t)=\int_{\alpha}^{t} p^{1-\mu}(s) d s$.
The aim of this paper is to generalize Maroni and Calvert results using Jensen's inequality.

II. Some Adaptation of Jensen's inequalities:

Let φ be continuous and convex function and let $h(s, t)$ be a non negative function and λ be non decreasing function. Let $-\infty \leq \xi(t) \leq \eta(t) \prec \infty$ and suppose φ has a continuous inverse φ^{-1} (which is necessarily concave). Then,

$$
\begin{equation*}
\varphi^{-1}\left(\left|\frac{\int_{\xi(t)}^{\eta(t)} h(s, t) d \lambda(s)}{\int_{\xi(t)}^{\eta(t)} d \lambda(s)}\right|\right) \leq\left(\frac{\int_{\xi(t)}^{\eta(t)}(\varphi)^{-1}(|h(s, t)|) d \lambda(s)}{\int_{\xi(t)}^{\eta(t)} d \lambda(s)}\right) \tag{4}
\end{equation*}
$$

With the inequality reserved if φ is concave. The inequality (4) above is known as Jensen's inequality for convex function. Setting $\varphi(u)=u^{\prime}, \xi(t)=t$ and $\eta(t)=0$ in (4), then we obtain.

$$
(f(t))^{\zeta}=f\left(\left|\frac{\int_{0}^{t} h(s, t) d \lambda(s)}{\int_{0}^{t} d \lambda(s)}\right|\right)^{\frac{1}{\zeta}} \leq\left(\frac{\int_{0}^{t}(|h(s, t)|)^{\frac{1}{l}} d \lambda(s)}{\int_{0}^{t} d \lambda(s)}\right)
$$

III. Main Result:

Before stating our main result in this section, we shall need the following useful Lemma:

Lemma 1:

Let $x(t), \lambda(t)$ and $f(u)$ be absolutely continuous and non decreasing functions on $[a, b]$ for $0 \leq a \leq b \leq \infty$ with $f(t) \succ 0$. Let l, k, o, ρ and ζ be real numbers such that $\zeta \geq 0, o \geq 0$ and also let $\mathrm{R}(\mathrm{t})$ be non negative and measurable function on $[a, b]$ such that
$\left|x^{\prime}(t)\right| \times f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq \lambda(t)^{l-\zeta} y(t)^{\zeta} \times R(t)^{-1} \lambda^{\prime}(t)^{-1} y^{\prime}(t)$.
Then the following inequality holds:
$\int_{a}^{b}\left|x^{\prime}(t) f(t)\right| d t \leq \int_{a}^{b} f(y(t)) y^{\prime}(t) d t(7)$
Proof:
Setting $h(s, t)=x^{\prime}(t) R(t)$ in (5), we have
$(f(t))^{\zeta}=f\left(\left|\frac{\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)}{\int_{0}^{t} d \lambda(t)}\right|\right) \leq\left(\frac{\int_{0}^{t}\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{l}} d \lambda(t)}{\int_{0}^{t} d \lambda(t)}\right)$
By setting $f(\lambda(t))=\lambda(t)^{l}$ in (8) yields

Hence,
$f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq \lambda(t)^{l-\zeta}\left(\int_{0}^{t} f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{l}} d \lambda(t)\right)^{\zeta}=\lambda(t)^{l-\zeta} y(t)^{\zeta}$
Now let
$y(t)=\int_{0}^{t} f\left(\left.\left|x^{\prime}(t) R(t)\right|\right|^{\frac{1}{l}} \lambda^{\prime}(t)\right.$
then $y^{\prime}(t)=f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{l}} \lambda^{\prime}(t)$ (12)
that is $\quad y^{\prime}(t)^{l}=f\left(\left|x^{\prime}(t) R(t)\right|\right) \lambda^{\prime}(t)^{l}(13)$
using the fact that $f(u)=u^{\prime}$ to have
$y^{\prime}(t)^{l}=\left|x^{\prime}(t)\right| R(t)^{l} \lambda^{\prime}(t)^{l}(14)$
$\left|x^{\prime}(t)\right|=R(t)^{-1} \lambda^{\prime}(t)^{-1} y^{\prime}(t)(15)$
Combining both (10) and (15) yields, inequality (6) and the proof is complete.

Remarks 1:

By setting $f(u)=u^{\prime}, R(t)=P(t)^{-\frac{1}{k-1}}, \lambda^{\prime}(t)=P(t)^{\frac{1}{k-1}}, \zeta=l$ in lemma 1 yields
$\left|x^{\prime}(t)\right| \times f\left(\left|\int_{0}^{t} x^{\prime}(t) P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}}\right| d t\right) \leq \lambda(t)^{l-1} y(t)^{l} \times P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}} y^{\prime}(t)$.
Integrating both sides of inequality (16) over $[a, b]$ with the respect to t, to get
$\int_{a}^{b}\left|x^{\prime}(t)\right| \times f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq \int_{a}^{b} y(t)^{\prime} y^{\prime}(t) d t(17)$
That is
$\int_{a}^{b}\left|x^{\prime}(t)\right| \times\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right)^{l} \leq \int_{a}^{b} y(t)^{l} y^{\prime}(t) d t=F(y(b))-F(y(a))$.
If $y(a)=0$, then inequality (18) becomes
$\int_{a}^{b}\left|x^{\prime}(t)\right| \times\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right)^{l} \leq \int_{a}^{b} y(t)^{l} y^{\prime}(t) d t=F(y(b))$.
By using Holders inequality with o and ρ we obtain

$$
\begin{equation*}
y(b)=\int_{a}^{b}\left|x^{\prime}(t)\right| d t=\int_{a}^{b} R^{-\frac{1}{o}}(t) R^{\frac{1}{\rho}}\left|x^{\prime}(t)\right|(t) d t \leq\left(\int_{a}^{b} R^{1-o}(t) d t\right)^{\frac{1}{o}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\rho} d t\right)^{\frac{1}{\rho}} \tag{20}
\end{equation*}
$$

Combing inequality (19) and (20) to obtain inequality (3) if in inequality (20) $\mu=o$ and $v=\rho$ which is our desired result.
Furthermore, we need the following Lemma to obtain a generalization of Maroni.

Lemma 2:

Let $x(t), \lambda(t), f(u), R(t), l, k, o$ and ρ be as in Lemma 1 such that

$$
\begin{equation*}
\left|x^{\prime}(t)\right| \times f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t)\right| d \lambda(t)\right) \leq \lambda(t)^{\frac{1-\zeta}{l}} y(t)^{\frac{\zeta}{l}} \times R(t)^{-1} \lambda^{\prime}(t)^{-1} y^{\prime}(t) \tag{21}
\end{equation*}
$$

Then, the following inequality holds:

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t) f(t)\right| d t \leq \int_{a}^{b} y(t) y^{\prime}(t) d t=\frac{1}{2}\left(\int_{a}^{b}|y(t)| d t\right)^{2} \tag{22}
\end{equation*}
$$

Proof:

The proof is similar to the proof of lemma 1.
Since $f(u)=u^{l}$, inequality (10) becomes

$$
\begin{align*}
& \left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right)^{l} \leq \lambda(t)^{l-\zeta} y(t)^{\zeta} \tag{23}\\
& \left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq \lambda(t)^{\frac{l-\zeta}{l}} y(t)^{-} \tag{24}
\end{align*}
$$

Combining (15) and (24) to obtain the inequality (21)
This completes the proof of the Lemma.
Consider all conditions of remark 1

$$
\begin{gather*}
\left|x^{\prime}(t)\right| \times\left(\left|\int_{0}^{t} x^{\prime}(t) P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}}\right| d t\right) \leq \lambda(t)^{\frac{l-l}{l}} y(t)^{\frac{l}{l}} \times P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}} y^{\prime}(t) \\
\mid x^{\prime}(t)\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq y(t) y^{\prime}(t) \tag{26}
\end{gather*}
$$

Putting $\int_{0}^{t}\left|x^{\prime}(t)\right| d t=x(t)$ and integrate both side of inequality (26) over $[a, b]$ with the respect to t obtain

$$
\begin{align*}
& \int_{a}^{b}\left|x^{\prime}(t) x(t)\right| d t \leq \int_{a}^{b} y(t) y^{\prime}(t) d t=\frac{1}{2}\left(\int_{a}^{b}|x(t)| d t\right)^{2} \tag{27}\\
& =\frac{1}{2}\left(\int_{0}^{t}\left|x^{\prime}(t)\right| P(t)^{-\frac{1}{o}} P(t)^{\frac{1}{o}} d t\right)^{2} \\
& =\frac{1}{2}\left(\int_{a}^{b} P(t)^{1-\rho} d t\right)^{\frac{2}{\rho}}\left(\int_{a}^{b}\left|x^{\prime}(t)\right| P(t)^{\frac{1}{\sigma}} d t\right)^{\frac{2}{o}} \tag{29}
\end{align*}
$$

This is the generalization of inequality (2).
Acknowledgements: The authors gratefully acknowledged with thanks, Professor J.A Oguntuase for his contributions which have improved the final version of this paper.

References

[1]. Adeagbo-Shelkh A.G and Imoru C.O: An integral inequality of the Hardy's-Type. KragujevacJMath. 29(2006), 57-61.
[2]. Calvert J.: Some generalization of Opial's Inequality, Pron. Amer. Math. Soc. 18(1967) 72-75
[3]. Maroni P.M,:Surl'ingelited'Opial-Bessack, C.R Aca. Sci. Paris A264 (1967), 62-64.
[4]. O.O Fabulurin, A.G Adeagbo-Shelkh and Y.O Anthonio,: On an inequality relates to Opial, OctogonMathematics Magazine, 18(2010), No 1, 32-41.
[5]. Obial Z.: Suruneintegalite. Ann. Polon. Math. 8(1960), 29-32.

