# Characterizations for New Classes of Analytic Functions Defined By Using Salagean Operator 

Oyekan Ezekiel Abiodun ${ }^{1}$, Adelodun Olabode Paul ${ }^{2}$ and Ajai, Philip Terwase

${ }^{1,2}$ (Department of Mathematics \& Statistics/Bowen University Iwo, Nigeria)
${ }^{3}$ (Department of Mathematics /Plateau State University Bokkos, Nigeria)

```
Abstract: In this paper, we study certain subclasses \(U_{m, n}(\beta, A, B, \rho)\) and \(U_{m, n}^{*}(\beta, A, B, \rho)\) of analytic functions in the unit disk. The results presented include coefficient estimates and several subordination properties for functions belonging to these subclasses. Our results extend some earlier works.
```

Keywords: subordinating factor sequence, univalent, convex, analytic, convolution (or Hadamard product)

## I. Introduction

Let $\mathbf{A}$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

that are analytic and univalent in the open unit disk $U=\{z \in \mathbf{C} ;|z|<1\}$. Let $g(z) \in \mathbf{A}$ be given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \tag{1.2}
\end{equation*}
$$

Furthermore, let

$$
\begin{align*}
& \Phi(z)=z+\sum_{k=2}^{\infty} \lambda_{k} z^{k}, \lambda \geq 0 \\
& \Phi(z)=z+\sum_{k=2}^{\infty} \mu_{k} z^{k}, \mu \geq 0 \tag{1.3}
\end{align*}
$$

Which are analytic and normalized by the conditions that $f(0)=f^{\prime}(0)-1=0$
For $f(z) \in \mathbf{A}$, Salagean [1] introduced the following differential operator,

$$
D^{0} f(z)=f(z), D^{\prime} f(z)=z f^{\prime}(z), \ldots, D^{n} f(z)=D\left(D^{n-1} f(z)\right)(n \in \mathbf{N}=\{1,2, \ldots\})
$$

We note that

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}\left(n \in \mathbf{N}_{0}=\mathbf{N} \cup\{0\}\right)
$$

Definition 1 (Hardamard Product or Convolution)
Given two functions $f$ and $g$ in the class $\mathbf{A}$, where $f(z)$ and $g(z)$ are given by $(1.1)$ and (1.2) respectively, the Hardamard product (or Convolution) of $f$ and $g$ is defined (as usual) by
$(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z)$
Definition 2 (Subordination Principle)
For two functions $f$ and $g$, analytic in $U$, we say that the function $f(z)$ is subordinate to $g(z)$ in $U$, and write $f(z) \prec g(z)$ if there exists a Schwarz function $\omega(z)$ which (by definition) is analytic in $U$ with $\omega(0)=0$ and $|\omega(z)|<1$ such that $f(z)=g(\omega(z))(z \in U)$. Indeed it is known that $f(z) \prec g(z) \Rightarrow f(0)=g(0)$ and $f(u) \subset(g(u))$
Furthermore, if the function $g$ is univalent in $U$, then we have the following equivalence [8, p. 4]:

## Definition 3 [3]

Let $U_{m, n}(\beta, A, B)$ denote the subclasses of $\mathbf{A}$ consisting of functions $f(z)$ of the form (1.1) and satisfy the following subordination:
$\frac{D^{m} f(z)}{D^{n} f(z)}-B\left|\frac{D^{m} f(z)}{D^{m} f(z)}-1\right| \prec \frac{1+A z}{1+B z}$
$\left(-1 \leq B<A \leq 1 ; \beta \geq 0 ; m \in \mathbf{N}_{0}, m>n ; z \in u\right)$

## Remark 1

By specializing the parameters $A, B, \beta, m$ and $n$, certain subclasses studied by various authors are obtained. For instance,
(i) $U_{m, n}(\beta, 1-2 \alpha,-1)=N_{m, n}(\alpha, \beta)$ (see Eker and Owa [4])
(ii) $U_{m+1, n}(\beta, 1-2 \alpha,-1)=S(n, \alpha, \beta)$ (see Rosy and Mumgundaramorthy [5], Asurf [6])
(iii) $U_{1,0}(\beta, 1-2 \alpha,-1)=U S(\alpha, \beta)$ (see Shaw et al [7])
(iv) $U_{2,1}(\beta, 1-2 \alpha,-1)=U K(\alpha, \beta)$ (see Shaw and Kulkarni[8])
(v) $U_{1,0}(0, A, B)=S^{*}(A, B), U_{2,1}(0, A, B)=K(A, B)$ (see Jarowski [9] and Padmanashon and [10])

Therefore, in the view of (1.3), definitions 1 and 3, we now give the following definitions:

## Definition 4

Let $U_{m, n}(\beta, A, B, \rho)$ denote the subclasses of A consisting of functions $f(z)$ of the form (1.1) and satisfying the following condition;
$\left|\frac{D^{m}(f * \Phi)^{\rho}(z)}{D^{n}(f * \psi)^{\rho}(z)}\right|-B\left|\frac{D^{m}(f * \Phi)^{\rho}(z)}{D^{n}\left(f^{*} \psi\right)^{\rho}(z)}-1\right| \prec \frac{1+A z}{1+B z}$
$\left(-1 \leq B<A \leq 1 ; \beta \geq 0 ; m, \rho \in \mathbf{N} ; n \in \mathbf{N}_{0}=\mathbf{N} \cup\{0\}\right), m>n ; z \in U$
Also, we note that for $\lambda_{k} \geq \mu_{k} \geq 0$, when $\lambda_{k}=\mu_{k}=1$ then, $\Phi(z)=\psi(z)=\frac{z}{1-z} \in K$ such that our
Definition 4 will be equivalent to Definition 3. This is because
$(f * \Phi)(z)=(f * \psi)(z)=f$
Definition 5 (Subordinating Factor Sequence)
A sequence $\left\{c_{k}\right\}_{k=0}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if, whenever $f(z)$ of the form (1.1) is analytic, univalent and convex in $U$, we have the subordination given by;

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k} c_{k} z^{k} \prec f(z) \quad\left(a_{1}=1, z \in U\right) \tag{1.7}
\end{equation*}
$$

## II. Main Results

Unless otherwise stated, we shall in the sequence assume that
$-1 \leq B<A \leq 1, \beta \geq 0, m, \rho \in \mathbf{N}, n \in \mathbf{N}_{0}, m>n, a_{k}(\rho) \geq 0, \lambda_{k}(\rho) \geq 0, \mu_{k}(\rho) \geq 0 ;$ where $a_{k}(\rho), \lambda_{k}(\rho), \mu_{k}(\rho)$ are coefficients of $a_{k}, \lambda_{k}, \mu_{k}$ all depending on $\rho$ and $z \in U$.
We now prove the following theorem which gives a sufficient condition for functions belonging to the class $U_{m, n}(\beta, A, B, \rho)$.

## Theorem 1

A function $f(z)$ of the form (1.1) is in the class $U_{m, n}(\beta, A, B, \rho)$
if; $\sum_{k=2}^{\infty}\left\{1+\beta(1+|B|)\left|\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right]+\left|B(\rho+k-1)^{m} \lambda_{k}(\rho)-A(\rho+k-1)^{n} \mu_{k}(\rho)\right|\right\} a_{k}(\rho) \mid \leq\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|) \mid\left(\rho^{n}-\rho^{m}\right)\right.\right.$

## Proof

It suffices to show that

$$
\left|\frac{P(z)-1}{A-B p(z)}\right|<1
$$

Where
$P(z)=\frac{D^{m}(f * \Phi)^{\rho}(z)}{D^{n}\left(f^{*} \psi\right)^{\rho}(z)}-B\left|\frac{D^{m}(f * \Phi)^{\rho}(z)}{D^{n}(f * \psi)^{\rho}(z)}-1\right|$
We have
$\left.\left|\frac{P(z)-1}{A-B p(z)}\right|=\left|\frac{D^{m}(f * \Phi)^{\rho}(z)-\beta e^{i \theta}\left|D^{m}(f * \Phi)^{\rho}(z)-D^{n}(f * \psi)^{\rho}(z)\right|-D^{n}(f * \psi)^{\rho}(z)}{A D^{m}\left(f^{*} \Phi\right)^{\rho}(z)-B\left[D^{m}(f * \Phi)^{\rho}(z)-\beta e^{i \theta} \mid D^{m}(f * \Phi)^{\rho}(z)-D^{n}(f * \psi)^{\rho}(z)\right]}\right|\right]$
$\left.=\left|\frac{\left(\rho^{n}-\rho^{m}\right) z^{\rho}+\sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right) a_{k}(\rho) z^{\rho+k-1}+B e^{i \theta}\left|\left(\rho^{n}-\rho^{m}\right) z^{\rho}+\sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho) z^{\rho+k-1}\right|}{\left(A \rho^{n}-B \rho^{m}\right) z^{\rho}-\sum_{k=2}^{\infty}\left[B(\rho+k-1)^{m} \lambda_{k}(\rho)-A(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho) z^{\rho+k-1}-B B e^{i \theta} \mid\left(\rho^{n}-\rho^{m} z^{\rho}+\sum_{k=2}^{\infty}\left[(\rho+k-1)^{n} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right]_{k}(\rho) z^{\rho+k-1}\right.}\right| \right\rvert\,$
$\left|\frac{\left.\left(\rho^{n}-\rho^{m}\right) z\right|^{\rho}+\sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho)\left\|\left.z\right|^{\rho+k-1}+\beta e^{i \theta}\left|\left(\rho^{n}-\rho^{m}\right) z\right|^{\rho}+\sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho)\right\|\left|\rho^{\rho+k-1}\right|}{\left|\left(A \rho^{n}-B \rho^{m}\right) z\right|^{\rho}+\sum_{k=2}^{\infty} B\left((\rho+k-1)^{m} \lambda_{k}(\rho)-A(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho) \| z z^{\rho+k-1}-|B| \beta e^{i \theta} \mid\left(\rho^{n}-\rho^{m}|z|^{\rho}-|B| \beta \sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho)|z|^{\rho+k-1} \mid\right.}\right|$
$\left.\leq\left|\frac{\left(\rho^{n}-\rho^{m}\right)+\sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho)+\beta\left(\rho^{n}-\rho^{m}\right)+\sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho) \mid}{\left(A \rho^{n}-B \rho^{m}\right) z^{\rho}+\sum_{k=2}^{\infty} B\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-A(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho)|-|B| \beta| \rho\left(\rho^{n}-\rho^{m}|z|^{\rho}-|B| \beta \sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho) \mid\right.}\right| \right\rvert\,$
This last expression is bounded above by 1 if
$\left|\frac{\left(\rho^{n}-\rho^{m}\right)+\sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho)+\beta\left(\rho^{n}-\rho^{m}\right)+\sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho) \mid}{\left.\left(A \rho^{n}-B \rho^{m}\right) z\right|^{\rho}+\sum_{k=2}^{\infty} B\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-A(\rho+k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho)-|B| \beta\left(\left.\left(\rho^{n}-\rho^{m}\right) z\right|^{\rho}-|B| \beta \sum_{k=2}^{\infty}\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho k-1)^{n} \mu_{k}(\rho)\right] a_{k}(\rho)| | \leq 1\right.}\right| \leq 1$
i.e. that
$\left.\left.\sum_{k=2}^{\infty}\left\{\left(1+\beta(1+|B|)\left|\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right]+\right| B(\rho+k-1)^{m} \lambda_{k}(\rho)-A(\rho+k-1)^{n} \mu_{k}(\rho)\right)\right\} a_{k}(\rho)\right) \leq\left(A \rho^{n}-B \rho^{m}\right)-[1+\beta(1+|B|)] \rho^{n}-\rho^{m}\right)$
and hence, the proof of Theorem 1 is obtained.
By taking $\rho=1$ in theorem 1 when $\lambda_{k}(\rho)=\mu_{k}(\rho)=1$ and $a_{k}(\rho)$ is the coefficient $a_{k}$ depending on $\rho$, we obtain the following

## Corollary 1

A function $f(z)$ of the form (1.1) is in the class of $U_{m, n}(\beta, A, B, \rho)$ if
$\sum_{k=2}^{\infty}\left[(1+(1+|B|))\left(k^{m}-k^{n}\right)+\left|B k^{m}-A k^{n}\right|\right] a_{k} \mid \leq A-B$

This means that

$$
U_{m, n}(\beta, A, B, 1)=U_{m, n}(\beta, A, B)=\left\{f \in A: \frac{D^{m} f(z)}{D^{n} f(z)}-B\left|\frac{D^{m} f(z)}{D^{n} f(z)}-1\right| \prec \frac{1+A z}{1+B z}\right\}
$$

## Remark 2

(i) The result in corollary 1 which is the correct result obtained by Li and Tang [3, theorem 1], is due to M.K. Aouf et al [11]
(ii)Putting $A=1-2 \alpha,(0 \leq \alpha<1), B=-1, m=n+1\left(n \in \mathbf{N}_{0}\right)$ and $\rho=1$ we obtain the result due to Rosy and Murugusudaramworthy [3, theorem 2]

Let $U_{m, n}^{*}(\beta, A, B, \rho)$ denote the class of $f(z \in \mathbf{A})$ whose coefficients satisfy the condition (2.1).

We note that $U_{m, n}^{*}(\beta, A, B, \rho) \subseteq U_{m, n}(\beta, A, B, \rho)$.
By employing the technique used earlier by [12] and Srivastava [13], we now state and prove our next result; which is a subordination result for the class $U_{m, n}^{*}(\beta, A, B, \rho)$. However, we first give the following lemma which is required for the proof of our next theorem.

## Lemma 1 [14]

The sequence $\left\{c_{k}\right\}_{k=0}^{\infty}$ is a subordinating factor sequence if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} c_{k} z^{k}\right\}>0 \quad(z \in U) \tag{2.2}
\end{equation*}
$$

## Theorem 2

Let $f(z) \in U_{m, n}^{*}(\beta, A, B, \rho)$. Then
$\frac{\Omega(2)}{2\left\{\left(A \rho^{n}-B \rho^{m}\right)-[1+\beta(1+|B|)]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right\}}(f * h) \prec h(z) \quad(z \in U)$
for every function $h \in k$ and
$\operatorname{Re}\{f(z)\}>-\frac{\left(A \rho^{n}-B \rho^{m}\right)-[1+\beta(1+|B|)]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)}{\Omega(2)}$
The constant factor $\frac{\Omega(2)}{2\left\{\left(A \rho^{n}-B \rho^{m}\right)-[1+\beta(1+|B|)]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right\}}$ in subordination result (2.3) cannot be replaced by a larger one.

## Proof

Let $f(z) \in U_{m, n}^{*}(\beta, A, B, \rho)$ and let $h(z)=z+\sum_{k=2}^{\infty} c_{k} z^{k} \in$. Then we have

$$
\frac{\Omega(2)}{2\left(\left(A \rho^{n}-B \rho^{m}\right)-[1+\beta(1+|B|)]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right\}}(f * h)(z)
$$

Thus by definition 5 , the subordination result (2.3) will hold if the sequence
$\left\{\frac{\Omega(2)}{2\left(\left(A \rho^{n}-B \rho^{m}\right)-[1+\beta(1+|\beta|)]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right\}}\right\}_{k=1}^{\infty}$
Is a subordinating factor sequence with $a_{1}=1$. In the view of lemma 1 , this is equivalent to the following inequality;
$\operatorname{Re}\left\{1+\sum_{k=1}^{\infty} \frac{\Omega(2)}{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta\left(1+|B| \mid\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right.\right.} a_{k} z^{k}\right\}>0(z \in \mathbf{U})$
Now, since
$\Omega(k)=\left\{[1+\beta(1+|B|)]\left[(\rho+k-1)^{m} \lambda_{k}(\rho)-(\rho+k-1)^{n} \mu_{k}(\rho)\right]+\left|B(\rho+k-1)^{m} \lambda_{k}(\rho)-A(\rho+k-1)^{n} \mu_{k}(\rho)\right|\right\}$
is an increasing function of $k,(k \geq 2)$, we have
$\left.\left.\operatorname{Re}\left\{\left(1+\sum_{k=1}^{\infty} \frac{\Omega\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|] \mid \rho^{m}-\rho^{n}\right)+\Omega(2)}{} a_{k^{k}}\right\}\right\}=\operatorname{Re}\left\{1+\frac{\Omega(2)}{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+\mid B] \mid \rho^{m}-\rho^{n}\right)+\Omega(2)}\right)^{z+} \frac{1}{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|] \rho^{m}-\rho^{n}\right)+\Omega(2)} \sum_{k=2}^{\infty} \Omega(2) a_{k^{k}}\right\}\right\}$
$\geq 1-\frac{\Omega(2)}{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta\left(1+|B|| | \rho^{m}-\rho^{n}\right)+\Omega(2)\right.} r-\frac{1}{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta\left(1+|B|| | \rho^{m}-\rho^{n}\right)+\Omega(2)\right.} \sum_{k=2}^{\infty} \Omega(k)\left|a_{k}\right| r^{k}$
$>1-\frac{\Omega(2)}{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right.} r-\frac{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|]\left(\rho^{m}-\rho^{n}\right)\right.}{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right.} r$
$=1-r>0 \quad(|z|=r<1)$
where we have also made use of the assertion (2.1) of theorem 1 . Thus (2.6) holds this proves the inequality
(2.3). The inequality (2.4) follows from (2.3) by taking the convex function
$h(z)=\frac{z}{1-z}=z+\sum_{k=2}^{\infty} z^{k}$
To prove the constant

$$
\Omega(2)
$$

$2\left\{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right\}\right.$
We consider the function
$f_{0}(z) \in U_{m, n}^{*}(\beta, A, B, \rho)$ given by
$f_{0}(z)=z-\frac{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|]\left(\rho^{m}-\rho^{n}\right)\right.}{\left\{\left[1+\beta(1+|B|]\left[(\rho+1)^{n} \lambda_{2}(\rho)-(\rho+1)^{n} \mu_{2}(\rho)+\right]+\left[B(\rho+1)^{m} \lambda_{2}(\rho)-A(\rho+1)^{n} \mu_{2}(\rho)\right]\right\}^{z^{2}}\right.}$
Thus from (2.3)
$\frac{\Omega(2)}{2\left\{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right\}\right.} f_{0}(z) \prec \frac{z}{1-z} \quad(z \in \mathbf{U})$
Moreover, it can easily be verified for functions $f_{0}(z)$ given by (2.7) that
$\min _{|z| \leq r}\left\{\operatorname{Re} \frac{\Omega(2)}{2\left\{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta\left(1+|B|\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right\}\right.\right.} f_{0}(z)\right\}=-\frac{1}{2}$
This show that the constant
$\overline{2\left\{\left(A \rho^{n}-B \rho^{m}\right)-\left[1+\beta(1+|B|]\left(\rho^{m}-\rho^{n}\right)+\Omega(2)\right\}\right.}$ is the best possible.
This completes the proof of theorem 2.

## Remark 3:

$$
\text { When } \lambda_{2}(\rho)=\mu_{2}(\rho)=1 \quad\left(\lambda_{k}(\rho) \geq \mu_{k}(\rho) \geq 0\right)
$$

(i)Taking $A=1-2 \alpha \quad(0 \leq \alpha<1), B=-1$ and $\rho=1$ in theorem 2 , we correct the result obtained by Srivastava and Eker [15, Theorem 1]
(ii) Taking $A=1-2 \alpha \quad(0 \leq \alpha<1), B=-1, m=n+1$ and $\rho=1$ in theorem 3, we obtain the result obtained by Aouf et al. [16, Corollary 4]
(iii) Taking $A=1-2 \alpha \quad(0 \leq \alpha<1), B=-1, m=1, n=0$ and $\rho=1$ in theorem 2 , we obtain the result obtained by Frasin [17, Corollary 2.2]
(iv) Taking $A=1-2 \alpha \quad(0 \leq \alpha<1), B=-1, m=2$, and $n=\rho=1$ in theorem 3 we obtain the result obtained by Frasin [17, Corollary 2.5]
(v) Taking $\beta=\alpha \geq 0, B=-1, \rho=1$ and $\lambda_{2}(\rho)=\mu_{2}(\rho)=1$ in theorem 3, we obtain the result obtained by Oyekan and Opoola [18, Theorem 2.1]

## References

[1]. G.S. Salagean, Subclasses of Univalent Functions, Lecture Notes in Math (Springer-verlag), (1983) 362-372
[2]. S.S Miller and P.T Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and textbooks in pure and applied maths, No. 225 Marcel Dekker Inc., New York 2000.
[3]. S.H Li and H. Tang, Certain new Classes of Analytic functions defined by using Salagean operator, Bull. Math. Anal. Appl., 2 (4), 2010, 62-75
[4]. S.S Eker and S. Owa, Certain classes of analytic functions involving Salagean operator, J Inequal. Pure \& Appl Math. 10(1), 2009, 12-22
[5]. T. Rosy and G. Murugusundaramoorthy, Fractional calculus and their applications to certain subclasses of uniformly convex functions, Far East J. math sci., 15 (2), 2004, 231-242
[6]. M.K Aouf, A subclass of uniformly convex functions with negative coefficients, Math (cluj), 52(3), 2010, 99-11
[7]. S. Shams, S.R Kulkarni and J. M Jahangiri, Classes of uniformly starlike and functions, Internat. J. math Math sci., 55, 2004, 29592961
[8]. S. Shams and S.R Kulkarni, On a class of univalent functions defined by Ruscheweyh derivatives, Kyungpook Math J. 43, 2009, 579-585
[9]. W. Janowski, Some extreme problem for certain families of analytic functions, Ann. Polon. Math. 28, 1973, 648-658
[10]. K.S. Padmanabhan and M.S Ganesan, Convolution of certain classes of univalent function with negative coefficients, Indian J. Pure Appl math., 19(9), 1988, 880-889
[11]. M.K Aouf, R.M El-Ashwah, A.A.M Hassan and A.H Hassan, On subordination results for certain new classes of analytic functions defined by using Salagean operator, Bull. Of Math. Anal. and Appl., 4(1), 2012, 239-246.
[12]. A.A Attiya, On some application of subordination theorems, J math Anal. Appl 311, 2005, 489-494
[13]. H.M Srivastava and A.A Attiya, Some subordination results associated with certain subclasses of analytic functions, J. Inequal Pure Math Sci., 5 4, 2004, 1-6
[14]. H.S Wilf, Subordinating factor sequence for convex maps of unit circle, Proc. Amer. Math. Soc. 12, 1961, 689-693
[15]. H.M Srivastava and S.S Eker, Some applications of a subordination theorem for a class of analytic functions, Appl. Math. Letters 21, 2008, 394-399
[16]. M.K Aouf, R.M El-Ashwah and S.M el-Deeb, Subordination results for some subclasses of uniformly starlike and convex function defined by convolution, European J Pure Appl Math 3(5), 2010, 903-917
[17]. B.A Frasin, Subordination results for a class of analytic functions defined by a linear operator, J. Inequal pure Appl math. 7(4), 2006, 1-7
[18]. E.A Oyekan and T.O Opoola, Some subordination results for certain analytic functions defined by using salagean operator, Amer. J. Mathematics and Statistics, $\mathbf{4 ( 6 ) ,} 2013$

