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 Abstract : In this paper, we study certain subclasses   ,,,, BAU nm  and   ,,,*
, BAU nm of analytic functions 

in the unit disk. The results presented include coefficient estimates and several subordination properties for 

functions belonging to these subclasses. Our results extend some earlier works. 
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I. Introduction 
 

Let A denote the class of functions of the form 
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that are analytic and univalent in the open unit disk  1;  zzU C  . Let   Azg be given by 
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Furthermore, let 

 

   3.10,

0,

2

2




















k

k
k

k

k
k

zzz

zzz

 

Which are analytic and normalized by the conditions that     0100  ff  

For   Azf , Salagean [1] introduced the following differential operator, 
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We note that  
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Definition 1 (Hardamard Product or Convolution) 

Given two functions f and g in the class A, where  zf  and  zg  are given by  1.1 and  2.1  respectively, 

the Hardamard product (or Convolution) of f and g is defined (as usual) by 
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Definition 2 (Subordination Principle) 

For two functions f and ,g  analytic in U ,we say that the function  zf  is subordinate to  zg  in U , and 

write    zgzf   if there exists a Schwarz function  z  which (by definition) is analytic in U  with 

  00   and   1z  such that       Uzzgzf   . Indeed it is known that  

            ugufandgfzgzf  00  

Furthermore, if the function g is univalent inU , then we have the following equivalence [8, p. 4]: 
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Definition 3 [3] 

Let  BAU nm ,,,  denote the subclasses of A consisting of functions  zf  of the form  1.1  and satisfy the 

following subordination: 
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Remark 1 

By specializing the parameters mBA ,,,  and ,n certain subclasses studied by various authors are obtained. 

For instance, 

(i)     ,1,21, ,, nmnm NU  (see Eker and Owa [4]) 

(ii)     ,,1,21,,1 nSU nm  (see Rosy and Mumgundaramorthy [5],  Asurf [6]) 

(iii)     ,1,21,0,1 SUU  (see Shaw et al [7]) 

(iv)     ,1,21,1,2 UKU  (see Shaw and Kulkarni[8]) 

(v )        BAKBAUBASBAU ,,,0,,,,0 1,2

*

0,1   (see Jarowski [9] and Padmanashon and  [10]) 

 

Therefore, in the view of  3.1 , definitions 1 and 3, we now give the following definitions: 

 

Definition 4 

Let   ,,,, BAU nm  denote the subclasses of A consisting of functions  zf  of the form (1.1) and satisfying the 

following condition; 
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Also, we note that for ,0 kk   when 1 kk   then,     K
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1
  such that our 

Definition 4 will be equivalent to Definition 3. This is because  

      fzfzf  **  

Definition 5 (Subordinating Factor Sequence) 

A sequence  
0kkc of complex numbers is said to be a subordinating factor sequence if, whenever  zf  of the 

form (1.1) is analytic, univalent and convex inU , we have the subordination given by; 
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II. Main Results 
 

Unless otherwise stated, we shall in the sequence assume that 

,11  AB ,0 ,,,, 0 nmnm  NN     ;0)(,0,0   kkka  where       kkka ,,  are 

coefficients of kkka  ,,  all depending on  and Uz . 

We now prove the following theorem which gives a sufficient condition for functions belonging to the 

class   ,,,, BAU nm . 
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Theorem 1 

A function  zf  of the form (1.1) is in the class   ,,,, BAU nm  

if;                            mnmn
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      (2.1) 

Proof 

It suffices to show that 

  
 

 
1

1






zBpA

zP
 

Where  

 
   

   

   

   
1

*

*

*

*








zfD

zfD
B

zfD

zfD
zP

n

m

n

m










 

             We have  
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This last expression is bounded above by 1 if 
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i.e. that 
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and hence, the proof of Theorem 1 is obtained. 

By taking 1 in theorem 1 when     1  kk and  ka  is the coefficient ka depending on  , we obtain 

the following 

Corollary 1 

A function  zf  of the form (1.1) is in the class of   ,,,, BAU nm  if 
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This means that  
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Remark 2 

(i) The result in corollary 1 which is the correct result obtained by Li and Tang [3, theorem 1], is due to M.K. 

Aouf et al [11] 

(ii)Putting 21A ,    01,1,10 N nnmB  and 1 we obtain  the result due to 

Rosy and Murugusudaramworthy [3, theorem 2] 

 

Let   ,,,*

, BAU nm  denote the class of  Azf whose coefficients satisfy the condition (2.1).  

 

We note that     ,,,,,, ,
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 By employing the technique used earlier by [12] and Srivastava  [13], we now state and prove our next result; 

which is a subordination result for the class   ,,,*

, BAU nm . However, we first give the following lemma 

which is required for the proof of our next theorem. 

 
Lemma 1 [14] 

The sequence  
0kkc is a subordinating factor sequence if and only if 
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Theorem 2 

Let     ,,,*

, BAUzf nm . Then  

 

        
       3.2*

2112

2
Uzzhhf

BBA nmmn








 

for every function kh  and  
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The constant factor 
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in subordination result (2.3) cannot be replaced 

by a larger one. 

 

Proof 

Let     ,,,*

, BAUzf nm and let   
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Thus by definition 5, the subordination result (2.3) will hold if the sequence 
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Is a subordinating factor sequence with 11 a . In the view of lemma 1, this is equivalent to the following 

inequality; 
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Now, since 
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is an increasing function of  2, kk , we have 
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where we have also made use of the assertion (2.1) of theorem 1. Thus (2.6) holds    this proves the inequality 

(2.3). The inequality (2.4) follows from (2.3) by taking the convex function 
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To prove the constant 

 
       21(12

2




nmmn BBA 

 

We consider the function 
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,0 BAUzf nm  given by 
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Thus from (2.3) 
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Moreover, it can easily be verified for functions  zf0  given by (2.7) that 
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This show that the constant 
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 is the best possible.  

This completes the proof of theorem 2. 

Remark 3: When         0122   kk  

(i)Taking   11,1021   andBA  in theorem 2, we correct the result obtained by       

Srivastava and Eker [15, Theorem 1] 

(ii) Taking   11,1,1021   andnmBA  in theorem 3, we obtain the result 

obtained by Aouf et al. [16, Corollary 4] 

 



Characterization For New Classes Of Analytic Functions Defined By Using Salagean Operator 

www.iosrjournals.org                                                    42 | Page 

 

(iii) Taking   10,1,1,1021   andnmBA  in theorem 2, we obtain the 

result obtained by Frasin [17, Corollary 2.2] 

(iv) Taking   1,2,1,1021   nandmBA in theorem 3 we obtain the result 

obtained by Frasin [17, Corollary 2.5] 

(v) Taking     11,1,0 22   andB  in theorem 3, we obtain the result obtained by Oyekan 

and Opoola [18, Theorem 2.1] 
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