Coupled Coincidence Fixed Point Theorems in S-Metric Spaces

Hans Raj ${ }^{1}$, Nawneet Hooda ${ }^{2}$
${ }^{1}$ (Department of Mathematics, DCRUST, Murthal, Sonepat, India)
${ }^{2}$ (Department of Mathematics, DCRUST, Murthal, Sonepat, India)

Abstract : In this paper we prove some coupled fixed point theorems in S-metric spaces. MSC: 47H10, 54H25
 Keywords: Coupled coincidence point, coupled fixed pont, mixed g-monotone property, S-metric space

I. Introduction

Metric spaces have very wide applications in mathematics and applied sciences. Therefore, many authors have tried to introduce the generalizations of metric spaces in many ways. In 1989, Gahler [2-3], introduced the notion of 2-metric spaces and Dhage [1] introduced the notion of D-metric spaces. They proved some results related to 2 -metric and D-metric spaces. After this Mustafa and Sims [4] proved that most of the results of Dhage's D-metric spaces are not valid. So, they introduced the new concept of generalized metric space called G-metric space. Now, recently Sedghi et al. [5] have introduced the notion of S-metric spaces as the generalization of G-metric and D^{*}-metric spaces. They proved some fixed point results in S-metric spaces. Some results have been obtained in [5-7] by Sedghi et al. In the present paper, we prove some coupled coincidence point results in S-metric space which are the generalizations of some fixed point theorems in metric spaces [8-12].

Preliminaries

Here we give some definitions which are throughout used in this paper
Definition 2.1 ([5]). Let X be a nonempty set. An S-metric on X is a function $S: X^{3} \rightarrow[0, \infty)$ that satisfies the following conditions, for each $x, y, z, a \in X$.
(i) $\quad S(x, y, z) \geq 0$
(ii) $\quad S(x, y, z)=0$ if and only if $x=y=z$
(iii) $\quad S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$

Then the pair (X, S) is called an S-metric space.
Definition $2.2([14])$. Let (X, \leq) be a partially ordered set equipped with a metric S such that (X, S) is a metric space. Further, equip the product space $X \times X$ with the following partial ordering:
for $(x, y),(u, v) \in X \times X$,
define $(u, v) \leq(x, y) \Leftrightarrow x \geq u, y \leq v$.
Definition 2.3 ([14]). Let (X, \leq) be a partially ordered set and $F: X \times X \rightarrow X$. One says that F enjoys the mixed monotone property if (x, y) is monotonically nondecreasing in x and monotonically nonincreasing in y; that is, for any $x, y \in X$,

$$
\begin{aligned}
& x^{1}, x^{2} \in X, x^{1} \leq x^{2} \Rightarrow F\left(x^{1}, y\right) \leq F\left(x^{2}, y\right) \\
& y^{1}, y^{2} \in X, y^{1} \leq y^{2} \Rightarrow F\left(x, y^{1}\right) \geq F\left(x, y^{2}\right)
\end{aligned}
$$

Definition 2.4 ([14]). An element $(x, y) \in X \times X$ is said to be a coupled fixed point of the mapping $F: X \times X \rightarrow X$ if
$F(x, y)=x \quad$ and $\quad F(y, x)=y$.
Lemma 2.5 ([7]). In an S-metric space, we have $S(x, x, y)=S(y, y, x)$.
Definition 2.6 ([13]). Let (X, \leq) be a partially ordered set and $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ two mappings. The mapping F is said to have the mixed g-monotone property if F is monotone g nondecreasing in its first argument and is monotone g-nonincreasing in its second argument, that is,

$$
\text { if, for all } x^{1}, x^{2} \in X, g\left(x^{1}\right) \leq g\left(x^{2}\right) \text { implies } F\left(x^{1}, y\right) \leq F\left(x^{2}, y\right) \text {, for any } y \in X \text {, and, }
$$

for all $y^{1}, y^{2} \in X, \quad g\left(y^{1}\right) \leq g\left(y^{2}\right)$ implies $F\left(x, y^{1}\right) \leq F\left(x, y^{2}\right)$, for any $x \in X$.

Definition 2.7 ([13]). An element $(x, y): X \rightarrow X$ is called a coupled coincidence point of mappings $F: X \rightarrow X$ and $g: X \rightarrow X$ if

$$
F(x, y)=g(x), F(y, x)=g(y) .
$$

Theorem 2.8 ([13]). Let (X, \leq) be a partially ordered set equipped with a metric d such that (X, d) is a complete metric space. Assume that there is a function : $[0, \infty) \rightarrow[0, \infty)$ with $(t)<t$ and $\lim _{r \rightarrow t^{+}} \phi(r)<t$ for each $t>0$. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be maps such that F has the mixed g-monotone property and

$$
d(F(x, y), F(u, v)) \leq \phi \frac{(d(g(x), g(u)+d(g(y), g(v)))}{2}
$$

for all $x, y, u, v \in X$ for which $g(x) \leq g(u)$ and $g(y) \geq g(v)$.
Suppose that $F(X \times X) \subseteq g(X), g$ is continuous and commutes with F besides
(a) $\quad F$ is continuous,
(b) $\quad X$ has the following properties:
(i) if a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \leq x$ for all n,
(ii) if a nonincreasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y \leq y_{n}$ for all n.
(iii) if a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \leq x$ for all $n \geq 0$,
(iv) if a nonincreasing sequence $\left\{y_{n}\right\} \rightarrow x$, then $y_{n} \geq x$ for all $n \geq 0$.

If there exist $x^{0}, y^{0} \in X$ such that

$$
g\left(x^{0}\right) \leq\left(x^{0}, y^{0}\right),\left(y^{0}\right) \geq\left(y^{0}, x^{0}\right),
$$

then there exist $x, y \in X$ such that

$$
g(x)=F(x, y), g(y)=F(y, x),
$$

That is, F and g have a coupled coincidence point.
Theorem 2.9. Let (X, \leq) be a complete S-metric space. Suppose that there is a function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(t)<t$ and $\lim _{r \rightarrow t^{+}} \phi(r)<t$ for each $t>0$. Further, assume that $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are two maps such that F has the mixed g-monotone property satisfying the following condition:
(i) $\quad F(X \times X) \subseteq g(X)$,
(ii) g is continuous and monotonically increasing.
(iii) (g, F) is commutating pair.
(iv) $S(F(x, y), F(u, v), F(u, v)) \leq \phi\left[\frac{1}{2}(S(g(x), g(u), g(u)+S(g(\mathrm{y}), g(v), g(\mathrm{v}))]\right.$
for all $x, y, u, v \in X$, with $g(x) \leq g(u)$ and $g(y) \geq g(v)$. Also suppose that either
(a) $\quad F$ is continuous or
(b) $\quad X$ has the following properties:

1. if a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then

$$
\begin{equation*}
x_{n} \leq x, \text { for all } n \geq 0 \tag{2}
\end{equation*}
$$

2. If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \geq x$, for all $n \geq 0$.
If there exist $x_{0}, y_{0} \in X$ such that

$$
\begin{equation*}
g\left(x_{0}\right) \leq F\left(x_{0}, y_{0}\right) \quad \text { and } \quad g\left(y_{0}\right) \geq F\left(y_{0}, x_{0}\right) \tag{3}
\end{equation*}
$$

Then F and g have a coupled coincidence point that is there exist $x, y \in X$ such that $g(x)=F(x, y) \quad$ and $\quad g(y)=F(y, x)$

Proof. Let us suppose that $x, y \in X$, we construct the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
g\left(x_{n+1}\right)=F\left(x_{n}, y_{n}\right) \quad \text { and } \quad g\left(y_{n+1}\right)=F\left(y_{n}, x_{n}\right) \tag{5}
\end{equation*}
$$

Now, we shall show that for $n \geq 0$

$$
\begin{equation*}
g\left(x_{n}\right) \leq g\left(x_{n+1}\right) \quad \text { and } \quad g\left(y_{n}\right) \geq\left(y_{n+1}\right) \tag{6}
\end{equation*}
$$

So (6) holds for $n=0$. Assume (6) holds for some $n>0$.
Suppose

$$
\begin{aligned}
g\left(x_{n+1}\right) & =F\left(x_{n}, y_{n}\right) \\
& \leq F\left(x_{n+1}, y_{n}\right) \\
& \leq F\left(x_{n+1}, y_{n+1}\right) \\
& =g\left(x_{n+2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(y_{n+1}\right) & =F\left(y_{n}, x_{n}\right) \\
& \geq F\left(y_{n+1}, x_{n}\right) \\
& \geq F\left(y_{n+1}, x_{n+1}\right) \\
& =g\left(y_{n+2}\right)
\end{aligned}
$$

Then by induction (6) holds for all $n \geq 0$.
Using (5) and (6), we get

$$
\begin{aligned}
S\left(g\left(x_{m}\right), g\left(x_{m+1}\right), g\left(x_{m+1}\right)\right) & =S\left(F\left(x_{m-1}, y_{m-1}\right), F\left(x_{m}, y_{m}\right), F\left(x_{m}, y_{m}\right)\right) \\
& \leq \phi\left[\frac { 1 } { 2 } \left(S\left(g\left(x_{m-1}\right), g\left(x_{m}\right), g\left(x_{m}\right)+S\left(g\left(y_{m-1}\right), g\left(y_{m}\right), g\left(y_{m}\right)\right)\right]\right.\right.
\end{aligned}
$$

Similarly, we can write by induction

$$
S\left(g\left(y_{m}\right), g\left(y_{m+1}\right), g\left(y_{m+1}\right)\right) \leq \phi\left[\frac { 1 } { 2 } \left(S\left(g\left(x_{m-1}\right), g\left(x_{m}\right), g\left(x_{m}\right)+S\left(g\left(y_{m-1}\right), g\left(y_{m}\right), g\left(y_{m}\right)\right)\right]\right.\right.
$$

So, by putting

$$
\delta_{m}=S\left(g\left(x_{m}\right), g\left(x_{m+1}\right), g\left(x_{m+1}\right)+S\left(g\left(y_{m}\right), g\left(y_{m+1}\right), g\left(y_{m+1}\right)\right)\right.
$$

We get

$$
\begin{align*}
\delta_{m} & =S\left(g\left(x_{m}\right), g\left(x_{m+1}\right), g\left(x_{m+1}\right)+S\left(g\left(y_{m}\right), g\left(y_{m+1}\right), g\left(y_{m+1}\right)\right)\right. \\
& \leq \phi\left[\frac { 1 } { 2 } \left(S\left(g\left(x_{m-1}\right), g\left(x_{m}\right), g\left(x_{m}\right)+S\left(g\left(y_{m-1}\right), g\left(y_{m}\right), g\left(y_{m}\right)\right)\right]\right.\right. \\
& =2 \phi\left(\frac{1}{2} \delta_{m-1}\right) \tag{7}
\end{align*}
$$

Since $\phi(t)<t$ for $t>0$. So, $\delta_{m} \leq \delta_{m-1}$ for all m so that $\left\{\delta_{m}\right\}$ is a nonincreasing sequence, since it is bounded below sequence, there exist some $\delta>0$ such that

$$
\lim _{m \rightarrow \infty} \delta_{m}=+\delta .
$$

We have prove that $\delta=0$. On the other hand suppose that $\delta>0$. Putting limit as $m \rightarrow+\infty$ on both sides of (7) and having $\lim _{r \rightarrow t^{+}} \phi(r)<t$ for all $t>0$ in mind, we have,

$$
\begin{aligned}
\delta & =\lim _{m \rightarrow \infty} \delta_{m} \leq \lim _{m \rightarrow \infty} 2 \phi\left(\frac{1}{2} \delta_{m-1}\right) \\
& =2 \phi\left(\frac{1}{2} \delta\right)<2 \cdot \frac{\delta}{2}=\delta
\end{aligned}
$$

Which gives us a contradiction so $\delta=0$.
Therefore,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} S\left(g\left(x_{m}\right), g\left(x_{m+1}\right), g\left(x_{m+1}\right)+S\left(g\left(y_{m}\right), g\left(y_{m+1}\right), g\left(y_{m+1}\right)\right)=0\right. \tag{8}
\end{equation*}
$$

Now, we will show that the sequences $\left\{g\left(x_{m}\right)\right\}$ and $\left\{g\left(y_{m}\right)\right\}$ are Cauchy sequence. If possible, assume that atleast one of $\left\{g\left(x_{m}\right)\right\}$ and $\left\{g\left(y_{m}\right)\right\}$ is not a Cauchy sequence. Then there exist $\varepsilon>0$ and sequence of positive integers $\{1(K)\}$ and $\{m(K)\}$ such that for all positive integers K,

$$
m(K)>1(K)>K .
$$

$$
S\left(g\left(x_{1(K)}\right), g\left(x_{m(K)-1}\right), g\left(x_{m(K)-1}\right)\right)+S\left(g\left(y_{1(K)}\right), g\left(y_{m(K)-1}\right), g\left(y_{m(K)-1}\right)\right) \geq \varepsilon
$$

Now,

$$
\begin{aligned}
\varepsilon \leq & S\left(g\left(x_{1(K)}\right), g\left(x_{m(K)}\right), g\left(x_{m(K)}\right)\right)+S\left(g\left(y_{1(K)}\right), g\left(y_{m(K)}\right), g\left(y_{m(K)}\right)\right) \\
\leq & S\left(g\left(x_{1(K)}\right), g\left(x_{m(K)-1}\right), g\left(x_{m(K)-1}\right)\right)+S\left(g\left(y_{1(K)}\right), g\left(y_{m(K)-1}\right), g\left(y_{m(K)-1}\right)\right) \\
& +S\left(g\left(x_{m(K)-1}\right), g\left(x_{m(K)}\right), g\left(x_{m(K)}\right)\right)+S\left(g\left(y_{m(K)-1}\right), g\left(y_{m(K)}\right), g\left(y_{m(K)}\right)\right)
\end{aligned}
$$

That is

$$
\begin{aligned}
\varepsilon & \leq S\left(g\left(x_{1(K)}\right), g\left(x_{m(K)}\right), g\left(x_{m(K)}\right)\right)+S\left(g\left(y_{1(K)}\right), g\left(y_{m(K)}\right), g\left(y_{m(K)}\right)\right) \\
& \leq \varepsilon+S\left(g\left(x_{m(K)-1}\right), g\left(x_{m(K)}\right), g\left(x_{m(K)}\right)\right)+S\left(g\left(y_{m(K)-1}\right), g\left(y_{m(K)}\right), g\left(y_{m(K)}\right)\right)
\end{aligned}
$$

Taking $k \rightarrow \infty$ in the above inequality and using (8), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left[S\left(g\left(x_{1(K)}\right), g\left(x_{m(K)}\right), g\left(x_{m(K)}\right)+S\left(g\left(y_{1(K)}\right), g\left(y_{m(K)}\right), g\left(y_{m(K)}\right)\right)\right]=\varepsilon\right. \tag{9}
\end{equation*}
$$

Again, we have

$$
\begin{aligned}
& S\left(g\left(x_{1(K)+1}\right), g\left(x_{m(K)+1}\right), g\left(x_{m(K)+1}\right)\right)+S\left(g\left(y_{1(K)+1}\right), g\left(y_{m(K)+1}\right), g\left(y_{m(K)+1}\right)\right) \\
& \leq S\left(g\left(x_{1(K)+1}\right), g\left(x_{1(K)}\right), g\left(x_{1(K)}\right)\right)+S\left(g\left(y_{1(K)+1}\right), g\left(y_{1(K)}\right), g\left(y_{1(K)}\right)\right) \\
& +S\left(g\left(x_{1(K)}\right), g\left(x_{m(K)}\right), g\left(x_{m(K)}\right)\right)+S\left(g\left(y_{1(K)}\right), g\left(y_{1(K)}\right), g\left(y_{1(K)}\right)\right) \\
& +S\left(g\left(x_{m(K)}\right), g\left(x_{m(K)+1}\right), g\left(x_{m(K)+1}\right)\right)+S\left(g\left(y_{m(K)}\right), g\left(y_{m(K)+1}\right), g\left(y_{m(K)+1}\right)\right) \\
& S\left(g\left(x_{1(K)}\right), g\left(x_{m(K)}\right), g\left(x_{m(K)}\right)\right)+S\left(g\left(y_{1(K)}\right), g\left(y_{m(K)}\right), g\left(y_{m(K)}\right)\right) \\
& \leq S\left(g\left(x_{1(K)+1}\right), g\left(x_{1(K)}\right), g\left(x_{1(K)}\right)\right)+S\left(g\left(y_{1(K)+1}\right), g\left(y_{1(K)}\right), g\left(y_{1(K)}\right)\right) \\
& +S\left(g\left(x_{1(K)+1}\right), g\left(x_{m(K)+1}\right), g\left(x_{m(K)+1}\right)\right)+S\left(g\left(y_{1(K)+1}\right), g\left(y_{1(K)+1}\right), g\left(y_{1(K)+1}\right)\right) \\
& +S\left(g\left(x_{m(K)}\right), g\left(x_{m(K)+1}\right), g\left(x_{m(K)+1}\right)\right)+S\left(g\left(y_{m(K)}\right), g\left(y_{m(K)+1}\right), g\left(y_{m(K)+1}\right)\right)
\end{aligned}
$$

Taking $K \rightarrow \infty$ in above inequalities and using (8) and (9), we obtain,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left[S\left(g\left(x_{1(K)+1}\right), g\left(x_{m(K)+1}\right), g\left(x_{m(K)+1}\right)+S\left(g\left(y_{1(K)+1}\right), g\left(y_{m(K)+1}\right), g\left(y_{m(K)+1}\right)\right)\right]=\varepsilon\right. \tag{10}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& S\left(g\left(x_{1(K)+1}\right), g\left(x_{m(K)+1}\right), g\left(x_{m(K)+1}\right)\right)+S\left(g\left(y_{1(K)+1}\right), g\left(y_{m(K)+1}\right), g\left(y_{m(K)+1}\right)\right) \\
& \quad \leq S\left(F\left(x_{1(K)}, y_{1(K)}\right), F\left(x_{m(K)}, y_{m(K)}\right), F\left(x_{m(K)}, y_{m(K)}\right)\right) \\
& \quad+S\left(F\left(y_{1(K)}, x_{1(K)}\right), F\left(y_{m(K)}, x_{m(K)}\right), F\left(x_{m(K)}, y_{m(K)}\right)\right) \\
& \leq \phi\left[\frac { 1 } { 2 } \left(S\left(g\left(x_{1(K)}\right), g\left(x_{m(K)}\right), g\left(x_{m(K)}\right)+S\left(g\left(y_{1(K)}\right), g\left(y_{m(K)}\right), g\left(y_{m(K)}\right)\right)\right] .\right.\right.
\end{aligned}
$$

Assuming $K \rightarrow \infty$ in the above inequality and using (9) and (10) and the property of ϕ, we get

$$
\varepsilon \leq 2 \phi\left(\frac{\varepsilon}{2}\right)<2 \cdot \frac{\varepsilon}{2}=\varepsilon
$$

Which leads to a contradiction. Therefore $\left\{g\left(x_{m}\right)\right\}$ and $\left\{g\left(y_{m}\right)\right\}$ are Cauchy sequences in (X, S). Since the metric space (X, S) is complete, therefore there exist $x, y \in X$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} g\left(x_{m}\right)=x \quad \text { and } \quad \lim _{m \rightarrow \infty} g\left(y_{m}\right)=y . \tag{11}
\end{equation*}
$$

Now, g is continuation. So, by the continuity of g and (11), we can get

$$
\begin{equation*}
\lim _{m \rightarrow \infty} g\left(g\left(x_{m}\right)\right)=g(x) \quad \text { and } \quad \lim _{m \rightarrow \infty} g\left(g\left(y_{m}\right)\right)=g(y) . \tag{12}
\end{equation*}
$$

Using (5) and the commutativity of F and g, we have

$$
\begin{aligned}
g\left(g\left(x_{m+1}\right)\right) & =g\left(F\left(x_{m}, y_{m}\right)\right) \\
& =F\left(g\left(x_{m}\right), g\left(y_{m}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(g\left(y_{m+1}\right)\right) & =g\left(F\left(y_{m}, x_{m}\right)\right) \\
& =F\left(g\left(y_{m}\right), g\left(x_{m}\right)\right)
\end{aligned}
$$

Now, we will show that F and g have a coupled coincidence point. To, prove this, suppose (a) holds, then by (5) and (12) and the continuous of F and g, we get

$$
\begin{aligned}
g(x) & =\lim _{m \rightarrow \infty} g\left(g\left(x_{m+1}\right)\right) \\
& =\lim _{m \rightarrow \infty} g\left(F\left(x_{m}, y_{m}\right)\right) \\
& =F\left(\lim _{m \rightarrow \infty} g\left(x_{m}\right), \lim _{m \rightarrow \infty} g\left(y_{m}\right)\right) \\
& =F(x, y)
\end{aligned}
$$

Similarly, we can show that

$$
g(y)=F(y, x) .
$$

Hence, the element $(x, y) \in X \times X$ is a coupled coincidence point of the mappings F and g. Now, suppose that (6) holds. Since $\left\{g\left(x_{m}\right)\right\}$ and $\left\{g\left(y_{m}\right)\right\}$ is nondecreasing and nonincreasing respectively, and

$$
\begin{aligned}
& g\left(x_{m}\right) \rightarrow x \text { as } m \rightarrow \infty, \\
& g\left(y_{m}\right) \rightarrow y \text { as } m \rightarrow \infty,
\end{aligned}
$$

we have

$$
g\left(x_{m}\right) \leq x \text { and } g\left(y_{m}\right) \geq y .
$$

Since g is monotonically increasing. So,

$$
g\left(g\left(x_{m}\right)\right) \leq g(x) \text { and } g\left(g\left(y_{m}\right)\right) \geq g(y) .
$$

Using triangle inequality together with (5), we have

$$
\begin{aligned}
S(g(x), F(x, y), F(x, y)) \leq & S\left(g\left(g\left(x_{m+1}\right)\right), F(x, y), F(x, y)\right)+S\left(g\left(g\left(x_{m+1}\right)\right), g(x), g(x)\right) \\
\leq & S\left(g\left(g\left(x_{m+1}\right)\right), g(x), g(x)\right) \\
& +\phi\left[\frac { 1 } { 2 } \left(S \left(g\left(g\left(x_{m+1}\right), g(x), g(x)\right)+\left(S\left(g\left(g\left(y_{m+1}\right), g(y), g(y)\right)\right]\right.\right.\right.\right.
\end{aligned}
$$

Letting $m \rightarrow \infty$ in this inequality and using (12), we get $g(x)=F(x, y)$. Similarly, we can show that $g(y)=F(y, x)$.
Which shows that F and g have a coupled coincidence point.

Corollary 2.10. Let (X, S) is a complete S-metric space. Suppose that three is a function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(t)<t$ and $\lim _{r \rightarrow t^{+}} \phi(r)<t$ for each $t>0$. Further, assume that $F: X \times X \rightarrow X$ is a mapping such that F has the mixed monotone property satisfying the following conditions:

$$
S(F(x, y), F(u, v), F(u, v)) \leq \phi\left[\frac{1}{2}(S(x, u, u), g(\mathrm{y}, \mathrm{v}, \mathrm{v})]\right.
$$

for all $x, y, u, v \in X$ with $x \leq u$ and $y \geq v$.
Also, suppose that either
(a) $\quad F$ is continuous or
(b) $\quad X$ has the following properties:
(i) If a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \leq x$ for all $n \geq 0$
(ii)

If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then

$$
x_{n} \geq x \text { for all } n \geq 0
$$

If there exist $x_{0}, y_{0} \in X$ such that

$$
x_{0} \leq F\left(x_{0}, y_{0}\right) \quad \text { and } \quad y_{0} \leq F\left(y_{0}, x_{0}\right)
$$

Then F has a coupled fixed point in X, that is there exist $x, y \in X$ such that

$$
x=F(x, y) \quad \text { and } \quad y=F(y, x)
$$

Proof. Assuming $g=I$, the identity mapping, in Theorem 2.9, we get the above Corollary 2.10.

Corollary 2.11. Let (X, S) be a complete S-metric space. Suppose that $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are two maps such that F has the mixed g-monotone property satisfying the following conditions:
(i) $\quad F(X \times X) \subseteq g(X)$
(ii) g is continuous and monotonically increasing,
(iii) (g, F) is a commutating pair,
(iv) $\quad S(F(x, y), F(u, v), F(u, v)) \leq \frac{k}{r}[S(g(x), g(u), g(u))+S(g(y), g(v), g(v))], k \in[0,1)$
for all $x, y, u, v \in X$ with $g(x) \leq g(u)$ and $g(y) \geq g(v)$. Also, assume that either
(a) $\quad F$ is continuous or
(b) $\quad X$ has the following properties:
(i) If a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then
$x_{n} \leq x$ for all $n \geq 0$
(ii) If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then
$x_{n} \geq x$ for all $n \geq 0$
If there exist $x_{0}, y_{0} \in X$ such that

$$
g\left(x_{0}\right) \leq F\left(x_{0}, y_{0}\right) \quad \text { and } \quad g\left(y_{0}\right) \leq F\left(y_{0}, x_{0}\right)
$$

Then F and g have a coupled fixed point in X, i.e. there exist $x, y \in X$ such that

$$
g(x)=F(x, y) \quad \text { and } \quad g(y)=F(y, x)
$$

Proof. Taking $\phi(t)=k \cdot t$ with $k \in[0,1)$ in Theorem 2.9, we obtain the above Corollary 2.11.

References

[1] B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc. 84, 1992, 329-336.
[2] S. Gahlers, 2-metrische Raume and ihre topologische structure, Math.Nachr, 26, 1963, 115-148
[3] S. Gahlers, Zur geometric 2-metrische raume, Revue Roumaine Math. Pures Appl., 11, 1966, 665-667
[4] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7 (2), 2006, 289297.
[5] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (3) (2012), 258266.
[6] S. Sedghi and N.V. Dzung, Fixed point theorems on S-metric spaces, accepted for publication in Mat. Vesnik (2012)
[7] T.V. An and N.V. Dung, Two fixed point theorems in S-metric spaces, preprint (2012).
[8] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 2009, 10 (2009). Article ID 917175
[9] T.G. Bhaskar and V. Lakshmikantham, Fixed point theory in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393.
[10] D.W. Boyd and S.W. Wong, On nonlinear contractions, Proc. Am. Math. Soc., 20, 1969, 458-464, doi:10.1090/S0002-9939-1969-0239559-9.
[11] M. Imdad et al, On n-tupled coincidence point results in metric spaces, Journal of Operators, 2013, 8 pages.
[12] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete metric spaces, Fixed Point Theory Appl., 2008, 12 (2008). Article ID 189870.
[13] V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods \& Applications A, 70 (12), 2009, 4341-4349.
[14] T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods \& Applications A, 65 (7), 2006, 1379-1393.

