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Abstract:A model for the interaction of HIV with the TCD 4 cells was examined in which an optimal 

treatment parameter was introduced to control the infectivity termin the HIV dynamic model. The control class 

was chosen to be a measurable function defined with an objective functional which maximizes the T cell count 

and minimizes the systemic cost based on the percentage effect of the antiretroviral therapy drug. Optimal 

control was characterized by applying pontryagin’s maximum principle. The values of the objective function at 

the optimal control shows that the greatest effect do occur when treatment is initiated earliest. Also, results of 

the numerical simulations indicate that the rate of uninfected TCD 4  increased and virus population 

decreased due to treatment parameter. 
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I. Introduction 
HIV is a lentivirus that causes Acquired Immunodeficiency Syndrome (AIDS), a condition in humans 

in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers 

to thrive. Infection with HIV occurs by the transfer of blood, semen, vaginal fluidor breast milk. Within these 

bodily fluids, HIV is present as both free virus particles and virus within infected immune cells. 

Many mathematical models have been derived in order to describe the dynamics of HIV infection in 

the bloodstream where cell-free-viral spread is the predominant route of viral spread. To model the influence of  

HIV on T-cell growth, some consideration were made by AlanPerelsonet al. [1] which take into account a 

number of features of the life history of the virus. However when HIV infects a cell the enzyme reverse 

transcriptase which it carries, makes a DNA copy of its RNA genome. The viral DNA called the provirus is then 

duplicated with the cell’s DNA every time the cell divides. Thus, once a cell is infected it remains infected for 

life [1,2,3,4,5].  

The use of drugs to suppress replication of the HIV has transformed the face of AIDS in the developed 
world. Pronounced reductions in illness and death have been achieved and healthcare utilization has diminished. 

HIV therapy has also provided many new insights into the pathogenesis and cellular dynamics of HIV 

infection.In HIV antiretroviral therapy, drugs act by either blocking the integration of viral RNA into the host 

cells, or by inhibiting the proper cleavage of viral proteins inside an infected cell. Drugs such as AZT, DDC, 

DDI and D4T all work as reverse transcriptase inhibitor. 

Optimal control of drug for HIV systems requires two components. The first is an understanding of the 

system in the absence of treatment and the second is a description of the effects of treatment u(t). A number of 

work has been done on drug treatment in different settings.Kirshneret al. [3] studied a mathematical model 

whereby the chemotherapy reduces viral production rather than viral infectivity which is more applicable to 

drugs such as protease inhibitors[4,5]. 

Rosenberget al.[7] used a mathematical modeling with control to develop structured treatment 

interruption strategies for HIV infection. The goal of the article suggested that mathematical models describing 
biological processes taking place within a patient over time can be used to design adaptive treatment strategies. 

Although there has been considerable progressing management of HIV infection using highly active 

antiretroviral therapies, continuous treatment with these agents involves significant cost and burden, toxicities, 

development of drug resistance, and problems with adherence; these latter complications are of particular 

concern in substance abusing individuals.  

Nejadet al. [2] presented a fast solution for solving HIV-infection dynamics and chemotherapy 

optimization based on fuzzy. Two ordinary differential equations systems which models interaction between 

HIV viruses and human body immune system were used. In addition, Kamyad (AVK) discretization method was 

introduced and used to solve the mathematical models. The results are then extended to the other domain points 

of the mathematical model by a fuzzy inference estimator. 

Olarteet al. [8] worked on a robust control-based HIV-treatment for infected patients. The dynamics of 
the immune system’s response to infection was modeled using system of nonlinear model with separate efficacy 

coefficients for protease inhibitor (PIs) and reverse transcriptase inhibitors (RTIs).  Numerical simulation results 

showed that the control law could lead to long-term stable conditions, even in extreme cases. 

http://en.wikipedia.org/wiki/Lentivirus
http://en.wikipedia.org/wiki/AIDS
http://en.wikipedia.org/wiki/Immune_system
http://en.wikipedia.org/wiki/Opportunistic_infection
http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Blood
http://en.wikipedia.org/wiki/Semen
http://en.wikipedia.org/wiki/Vaginal_lubrication
http://en.wikipedia.org/wiki/Breast_milk
http://en.wikipedia.org/wiki/White_blood_cell
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In this paper, we deal specifically with when and how treatment should be initiated assuming that 

treatment can only be continued for a finite time interval until drug resistance is developed. We presented an 

HIV dynamic immunological in which the optimal control term is the coefficient of the viral infectivity term. 

The benefit of the treatment is to increase the uninfected TCD 4  cell counts and to decrease the infected 

cells. We define our objective function to maximize the benefit based on T cell count and minimize the weight 

factor based on the amount of drug.Pontryagin’s maximum principle is used to derive conditions on the optimal 
control. The optimality system is then solved numerically using a fourth orderRunge-kutta scheme. Graphical 

representation of numerical simulations is presented with the discussion of the result. 

 

II. Model Formulation 

To model these event, the population density of uninfected TCD 4  cells, latently infected cells, 

actively infected cells and free virus[1,2,6] are denoted by T,L,A,Vrespectively. where 
dt

dT
,

dt

dL
,

dt

dA
,

dt

dV
  

represent the rate of change in population densities uninfected, latently infected ,actively infected T cells 

respectively at time t. 
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In the first compartment, 
V

s

1
 is a source term from the thymus and represent the rate of generation of new 

TCD 4 cells. The T cells have a finite life span with a death rate 
1 per cell, in the second compartment 

latently infected T cells are assumed to have anatural death rate 2 and the actively infected T cells, virus cells 

die at the rate 3 , 4  respectively.Small letter ‘r’ in the first compartment represent the coefficient of the 

growth rate of T cells, which is a logistic type growth which ensures that the T cells never grow larger than 

maxT . 

The term VTK1 models the rate that free virus infects TCD 4 cells which implies that after an 
uninfected T cell becomes infected, it becomes latently infected T cell. Then the latently infected T 

cellsbecomes actively infected at the rate 2K  in the third compartment. Also, the last compartment models the 

free virus population in which an assumption is made that when an actively infected TCD 4 cells becomes 

stimulated by antigen exposure, replication of virus begins [9]. Further N viruses are formed before the host cell 

dies, the term V4  takes into account loss of infectively or natural viral loss [3]. 

 Let 0T  denote the normal steady state T cell population value (in the absence of virus), 
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Thus, an adequate initial condition for equation(1) are 0)0( TT  , 0)0( L , 0)0( A , 0)0( V  and for 

infection by free virus 0)0( TT  , 0)0( LL  , 0)0( AA  , 0)0( VV  .  Similarly, immunological models 

describing the interaction of HIV infection with the immune system was studied by Denise[3] and Shelly [9]. 
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TABLE 1 

Parameter and Constants 

1 =death rate of uninfected TCD 4  cell population         
102.0 d  

2 =death rate of latently infected  TCD 4  cell population    
102.0 d  

3 =death rate of actively infected  TCD 4  cell population    
124.0 d  

4 =death rate of free virus       
14.2 d  

1k =rate )(tT  becomes infected by free virus     
135104.2  dmm  

2k =rate )(tL cells convert to actively infected cells    
133103  dmm  

r =rate of growth for the TCD 4  cell population     
103.0 d  

N= number of free virus produced by  )(tA cells     1200  

maxT = Maximum  TCD 4  cell population level     
33105.1  mm  

s = source term for uninfected TCD 4 cells   
3110  mmd  

 

 

2.1  MODEL ANALYSIS 

The HIV model can be considered as being immunological and mathematically well posed if the model is 

reasonable in the sense that no cell population goes negative and no population grows unbounded. 

Theorem 1: If )0(T , )0(L , )0(A , )0(V  are non-negative , then )(tT , )(tL , )(tA , )(tV are positively 

invariant for all 0t . The non-negative orthant  0|44  tRtR   is called a positively invariant region 

if a trajectory that starts in the non-negative orthant remains there forever. 

From equation (1), we have 
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Hence the proof. 

From the above theorem we conclude that the model can be considered well posed and bounded. 

 

III. Optimal Control Formulation 

The basic idea of control term [5,9,10,11] in this work is to reduce the rate at which virus infect the 

uninfected  TCD 4  cells and our control represents the percentage effect the antiretroviral drugs has on the 

interaction of T cells with the virus. The chemotherapy treatment term u(t) multiplies the parameter VTk1 in 

equation (1) to give equation (3) below. 

)3(

)(

)(

1)(
1

413

32

221

max

11

































 





VVTktuAN
dt

dV

ALk
dt

dA

LkLVTktu
dt

dL

T

ALT
rTTVktuT

V

s

dt

dT









 

withgiven initial condition for T(t),L(t),A(t),V(t) at 0tt   where 1)(0  tu  

Considering the problem that often arises in the use of drugs such as harmful side effect, as well as the 

ineffectiveness of treatment after a certain time due to the capability of the virus to mutate and become resistant 
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to the drug. A finite time interval [tstart,tfinal] was impose since it was assumed that therapeutic period only has 

a limited treatment window. In clinical practice antiretroviral therapy is initiated at 0t , the time at which 

treatment begins and treatment last for a given period which must be less than 2 years. 

finalstart ttt  implies yearstt startfinal 2  

Defining the objective functional, a quadratic cost was chosen since we have reason to believe that the cost 

function is a non-linear function of 
*u . This is based on the fact that there no linear relationship between the 

effect of treatment on T cells or virus. 

If the control 0)( tu represents maximal use of drug, then the maximal cost is represented as 
2))(1( tu . 

The objective functional is defined as 
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The parameter 0B represents the desired ‘weight’ on the benefit and cost. 

The goal is to characterize the optimal control 
*u satisfying  
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Where the set of controls K given by 
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For  )(),(),(),( tVtAtLtT  subject to [2,5,6] the state equation (3) and the conditions  

0000 )0(,)0(,)0(,)0( VVAALLTT  , where )(),(),(),( ffff tVtAtLtT  are free. 

  

3.1 CHARACTERISATION OF AN OPTIMAL CONTROL 

Pontryagin’s maximum principle  

If )(* tu  and )(* tx  are optimal then there exists an adjoint variable )(t  such that  
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at each time for all u where the Hamiltonian is defined by 
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Using Pontryagrin’s Maximum principle to find the optimal control we first define the Hamitonian [10,11,12] 

.i.e. the integrand of the objective function coupled with right hand side of the state equation through the adjoint 
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Where 0)(,0)( 21  tt  are penalty multipliers satisfying 0))(1)((,0)()( 21  tuttut   

at the optimal 
*u . Therefore the adjoint system is 
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Using the optimality condition, the langrangian is maximized w.r.t. to u  at the optimal  
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Then, differentiating the expression for H with respect to u , we have  
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where 
*u denote the optimal control value. 

To determine an expression for the optimal control (without 21, ) a standard optimality[12,13]technique is 

utilized. We consider three cases in examining the expression of 
*u : 
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hence,  
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The state and adjoint differential equation together with the optimal control characterization 

[12,13,14,15] are solved numerically to illustrate and control the result. Since our state and adjoint equations 

have conditions at finalt  , an iterative program can be created to numerically simulate solutions. 

 

IV. Numerical Results and Discussion 
The optimal control is obtained by solving theoptimality system consisting of the state system and 

adjoint variable using an iterative method. We start to solve the state equation with a guess controls over the 

simulated time using Runge-Kutta scheme of order four. Because of the transversality conditions, the adjoint 

equation are solved by a backward fourth-order Runge-Kutta scheme using current iterations solution of the 

state equation and the iteration continues until convergence. This process is repeated and iterations stopped if 
the values of the unknowns at the previous iterations are very close to the ones at the present iterations. 

In order to find the optimal solution, we need initial values for uninfected T cells, latently infected T 

cells, actively infected cells and the virus population. Equation (1) is then solved with initial condition

0,0,0 000  VAL . With this parameters, the number of uninfected TCD 4 cells 0T  is stabilized 

around 
31000 mm  which is less than maxT and this number correspond with the natural average number of T 

cells in a millimiter cube of blood. 

In this section, we investigate numerically the immunological [9] model without optimal control term 

and also the effect of the optimal control term with varying weight factor ‘B’ in equation (3). Using the 

parameter and constant in Table1 with initial conditions 1,0,0,1000 0000  VALT which is an 

interpretation of early infection by the virus in a system, we determine the effect on the TCD 4 cell count in 

each compartment of the system. 
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Figure 1.The graph shows the behavior of each compartment after the onset of infection without any 

medical treatment:  

In actual sense the chemotherapy for an infected patient must be less than 2 years, we assume that the 

HIV antiretroviral therapy period is 360 days.To illustrate the effect of optimal control parameter [2] in the 

immunological model, we consider an infected patient with 1,42.02,99.400 0000  hVALT

and iterate the numerical scheme for 360 days. 

 

 
 

 
 

Figure 2. The graph shows the immune system dynamics in contact with HIV during the treatment 

period. 

Fig. 2(a-d) shows that increase in weight factor B=30 to B=100 which is inversely related to the 

percentage of drug given. For the higher weight factor the optimal drug given produces a lower T cell 

concentration and a higher virus concentration compared to a lower weight factor. 
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Also, considering B=30 as a case study it wasobserved in fig. 2(a)that due to the optimal control term 

the uninfected T cells population increasesfrom 400
3mm  T cell to 681

3mm  T cells at time t=200 but later 

decreased to 674
3mm  T cells. The decrease is due to the fact that the immunological virus developed strains 

resistance to the drug after 200 days of treatment which is a signal for treatment to stop. Fig. 2(b)Show that 

latently infected cells population for the treated system decreases and later increases with time due to virus 

mutation. Similarly, Fig.2(c)& 2(d) show that actively infected cells and the viral load both decreases which 

implies the viral load can be control to a very low level. 

 

Table 2:The Valueof the Objective function at theOptimal Control u*. 
Days after onset of infection To cell count Objective function value J 

300 
941.99

3mm  
383,175 

500 
814.88

3mm  
357,346 

1000 
659.60 

3mm  
337,408 

 

In table 2 above, it was observed that the objective functional when treatment is initiated 300 days after 

the onset of the infection is greater than when initiated at 500 days after the onset of the infection. This revealed 

that early treatment of the infection is optimal. 
 

V. Conclusion 
In this work, antiretroviral therapy was optimally controlled considering a four compartmental HIV 

model. We use the pontryagin’s maximum to determine optimal dynamic control and then solved numerically to 

get the optimal control value. It was discovered that for higher weight factor, the optimal treatment parameter 

produces a lower T cell concentration and a higher virus concentration compared to a lower weight factor.

 Also, comparing the value of the objective function )(uJ  at the optimal control 
*u , it was observe 

that the greatest effect of treatment thus occur when treatment is initiated earliest when T cell counts are highest, 

after the onset of infection. 

The result of the numerical simulation indicates that the rate of uninfected TCD 4  increased and 

virus population decreased due to treatment parameter u(t). 
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