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Abstract: In this paper, we define the notion of  intuitionistic fuzzy sub HX ring of a HX ring and some of their 

related properties are investigated. We define the necessity and possibility operators of an intuitionistic fuzzy 
subset of an intuitionistic fuzzy HX ring and discuss some of its properties. We introduce the concept of an 

image, pre-image of an intuitionistic fuzzy subset and discuss in detail a series of homomorphic and anti 

homomorphic properties of an intuitionistic fuzzy set are discussed.  
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I. Introduction 
In 1965, Zadeh [12] introduced the concept of fuzzy subset µ of a set X as a function from X into the 

closed unit interval [0, 1] and studied their properties. Fuzzy set theory is a useful tool to describe situations in 
which the data or imprecise or vague and it is applied to logic , set theory, group theory, ring theory, real 

analysis, measure theory etc. In 1967, Rosenfeld [11] defined the idea of fuzzy subgroups and gave some of its 

properties. Li Hong Xing [5] introduced the concept of HX group. In 1982 Wang-jin Liu[7] introduced the 

concept of fuzzy ring and fuzzy ideal. With the successful upgrade of algebraic structure of group many 

researchers considered the algebraic structure of some other algebraic systems in which ring was considered as 

first. In 1988, Professor Li Hong Xing [6] proposed the concept of HX ring and derived some of its properties, 

then Professor Zhong [2,3] gave the structures of HX ring on a class of ring. R.Muthuraj et.al[10]  introduced 

the concept of fuzzy HX ring. In this paper we define a new algebraic structure of an intuitionistic fuzzy sub HX 

ring  of a HX ring and investigate some related properties. We define the necessity and possibility operators of an 

intuitionistic fuzzy subset of an intuitionistic fuzzy HX ring and discuss some of its properties. Also we 

introduce the image and pre-image of an intuitionistic fuzzy set in an intuitionistic fuzzy HX ring and discuss 

some of its properties.  
 

II. Preliminaries 
In this section, we site the fundamental definitions that will be used in the sequel. Throughout this 

paper, R = (R ,+, ·)  is  a  Ring,  e is the additive identity element of R and xy,  we mean x.y 

 

2.1 Definition [1] 

Let R be a ring. In 2R - {}, a non-empty set    2R - {} with two binary operation „ + ‟ and „.‟ is said to be a 

HX ring on R if  is a ring with respect to the algebraic operation defined by 

i. A + B = {a + b / a  A and b  B} , which its null element is denoted by   Q , and the      
                             negative element of A is denoted by – A. 

ii. AB = {ab / a  A and b  B},  
iii. A ( B + C ) = AB + AC and  (B + C) A = BA + CA. 

 

2.2 Definition 

 Let R be a ring. Let μ be a fuzzy ring defined on R. Let   2R - {}  be a HX ring. A fuzzy subset  

of   is called a fuzzy HX ring on  or a fuzzy ring induced by μ if the following conditions are satisfied. For all 

A,B , 

i.    ( A - B)  ≥  min {  (A),   (B) } , 

ii.    ( AB)     ≥  min {  (A),   (B) }  

where   (A) = max{ μ(x) /  for all xA  R }. 
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III. Properties of an intuitionistic fuzzy HX subring 

3.1 Definition 

Let R be a ring. Let  be a fuzzy ring on R and a nonempty set    2
R
 {} is a HX ring. An 

intuitionistic fuzzy subset ψ =  A , λµ(A) , λγ(A)   of a HX ring  is said to be an intuitionistic fuzzy HX 

(IFHX) subring of  if the following conditions are satisfied. For all A , B , 

(i) λµ(AB)       min{ λµ(A) , λµ(B) },  

(ii)   λµ(AB)         min{ λµ(A) , λµ(B) }, 

(iii) λγ(AB)     ≤  max{ λγ(A) , λγ(B) }, 
(iv) λγ(AB)       ≤  max { λγ(A) , λγ(B) }  

          Where  λµ(A) = max{ µ(x) / xAR}    , λγ(A)  = min{γ(x) / xAR}. 

 

3.2 Definition 

Let R be a ring. Let  be a fuzzy ring on R and a nonempty set    2R {} is a HX ring. An 

intuitionistic fuzzy subset ψ =  A , λµ(A) , λγ(A)   of a HX ring  is said to be an intuitionistic anti fuzzy HX 

(IAFHX) subring of  if the following conditions are satisfied. For all A , B , 
 

(i) λµ(AB)    ≤  max { λµ(A) , λµ(B) },  
(ii)   λµ(AB)      ≤  max { λµ(A) , λµ(B) }, 

(iii) λγ(AB)       min { λγ(A) , λγ(B) }, 

(iv) λγ(AB)         min { λγ(A) , λγ(B) }  

          Where  λµ(A) = min{ µ(x) / xAR } , λγ(A)  = max{γ(x) / xAR}.  

 

3.3 Theorem 

If ψ1 and ψ2 be two intuitionistic fuzzy HX subrings  of a HX ring , then  ψ1  ψ2  is also intuitionistic 

fuzzy HX subrings  of a HX ring . 
 

Proof 

Let   ψ1 = { A , λµ(A) , λγ(A)    / A } and     ψ2  = { A , ϴµ(A) , ϴγ(A)   / A } be two intuitionistic fuzzy 

HX subrings  of a HX ring . 

To Prove that ψ1  ψ2  is also an intuitionistic fuzzy HX subring  of a HX ring . 

For any A,B  ,we have       

(i)         (λµ  ϴµ)( AB)    =   min{ λµ(AB), ϴµ( AB)} 
                                ≥   min{ min { λµ(A) , λµ(B)},min{ ϴµ(A), ϴµ(B)} 

                                =   min{ min { λµ(A) , ϴµ(A) },min{ λµ(B), ϴµ(B)} 

                                =   min{(λµ   ϴµ)(A), (λµ   ϴµ)(B)}     

Hence,           (λµ  ϴµ)( AB)    ≥  min{(λµ   ϴµ)(A), (λµ   ϴµ)(B)} . 
 

(ii)            (λµ  ϴµ)(AB)    =   min{ λµ(AB), ϴµ(AB)} 
                                ≥   min{ min { λµ(A) , λµ(B)},min{ ϴµ(A), ϴµ(B)} 

                                =   min{ min { λµ(A) , ϴµ(A) },min{ λµ(B), ϴµ(B)} 

                                =   min{(λµ   ϴµ)(A), (λµ   ϴµ)(B)}     

Hence,             (λµ   ϴµ)( AB)    ≥  min{(λµ   ϴµ)(A), (λµ   ϴµ)(B)} . 

     

(iii)          (λγ  ϴγ)( AB)    =   max{ λγ(AB), ϴγ( AB)} 
                                ≤  max{ max{ λγ(A) , λγ(B)},max{ ϴγ(A), ϴγ(B)} 

                                =   max{ max{ λγ(A) , ϴγ(A) },max{ λγ(B), ϴγ(B)} 

                                =   max{(λγ ϴγ)(A), (λγ ϴγ)(B)}     

 Hence,          (λγ  ϴγ)( AB)     ≤   max{(λγ ϴγ)(A), (λγ ϴγ)(B)}. 
 

(iv)            (λγ  ϴγ)( AB)    =   max{ λγ(AB), ϴγ( AB)} 
                                ≤  max{ max{ λγ(A) , λγ(B)},max{ ϴγ(A), ϴγ(B)} 

                                =   max{ max{ λγ(A) , ϴγ(A) },max{ λγ(B), ϴγ(B)} 

                                =   max{(λγ ϴγ)(A), (λγ ϴγ)(B)}     

Hence ,             (λγ  ϴγ)( AB)    ≤   max{(λγ ϴγ)(A), (λγ ϴγ)(B)}. 

Therefore the intersection of any two IFHX subrings is also an  IFHX subring of . 
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3.4 Theorem  

Let ψ be an intuitionistic fuzzy HX subring  of a HX ring  if and only if  ψc  is an intuitionistic anti 

fuzzy HX subring  of a HX ring . 

Proof 

Let   ψ = { A , λµ(A) , λγ(A)  / A} be a intuitionistic fuzzy HX subring  of  . 

To prove that ψc is an intuitionistic anti fuzzy HX subring of . 

For any A,B  ,we have       

     (i)                   λµ(AB)       min{ λµ(A) , λµ(B) } 

              1 (λµ )c(AB)       min{ 1(λµ)c (A) , 1(λµ)c (B)} 

                  (λµ )c (AB)     ≤ 1 min{ 1(λµ)c (A) , 1(λµ)c (B)} 

                  (λµ )c (AB)     ≤  max{ (λµ)c (A) , (λµ)c (B)} 
 

    (ii)                     λµ(AB)        min{ λµ(A) , λµ(B) } 

                1 (λµ )c(AB)       min{ 1(λµ)c (A) , 1(λµ)c (B)} 

                    (λµ )c (AB)     ≤ 1 min{ 1(λµ)c (A) , 1(λµ)c (B)} 

                    (λµ )c (AB)     ≤  max{ (λµ)c (A) , (λµ)c (B)} 
 

   (iii)                   λγ(AB)     ≤  max{ λγ(A) , λγ(B) } 

                1 (λγ )c(AB)   ≤  max{ 1(λγ)c (A) , 1(λγ)c (B)} 

                    (λγ )c (AB)    ≥ 1 max{ 1(λγ)c (A) , 1(λγ)c (B)} 

                    (λγ )c (AB)      min{ (λγ)c (A) , (λγ)c (B) }. 
 

  (iv)                        λγ(AB)     ≤  max{ λγ(A) , λγ(B) } 

                 1 (λγ )c(AB)     ≤  max{ 1(λγ)c (A) , 1(λγ)c (B)} 

                     (λγ )c (AB)     ≥ 1 max{ 1(λγ)c (A) , 1(λγ)c (B)} 

                     (λγ )c (AB)       min{ (λγ)c (A) , (λγ)c (B) }. 

      Hence ψc = { A , (λµ)c(A) , (λγ)c(A)  / A}  is an intuitionistic anti fuzzy HX subring of . 
 

3.5 Definition 

Let ψ = { A , λµ(A) , λγ(A)   / for all A} be an  intuitionistic fuzzy subset of a  HX ring  . We 
define the following “necessity” and “possibility” operations : 

        ψ = {   A, λµ(A), 1– λµ(A)   /  A}. 

 ψ = {   A, 1– λγ(A), λγ(A)  / A} 
 

3.6 Theorem 

If  ψ  is an intuitionistic fuzzy HX subring  of a HX ring  then ψ is an intuitionistic fuzzy HX 

subring  of a HX ring . 

Proof 

            Let  ψ  = { A , λµ(A) , (λµ)c (A)  / A} 

To prove that  ψ is an intuitionistic fuzzy HX subring of . 

 Let   ψ = { A , λµ(A) , λγ(A)  / A} be a intuitionistic fuzzy HX subring  of .  We have  

(i)            λµ(AB)   min{ λµ(A) , λµ(B)},  

(ii)  λµ(AB)     min{ λµ(A) , λµ(B)}, 

(iii)  λγ(AB) ≤  max{ λγ(A) , λγ(B)}, 
(iv)  λγ(AB)   ≤  max { λγ(A) , λγ(B)}. 

Now   

(i)     (λµ )c (AB)   =   1 (λµ )(AB) 

                               ≤   1 min{ λµ(A) , λµ(B) } 

                               =   1 min{ 1(λµ)c (A) , 1(λµ)c (B)} 
                               =   max{ (λµ)c (A) , (λµ)c (B)} 

 

(ii)  (λµ )c (AB)       =   1 (λµ )(AB) 

                               ≤   1 min{ λµ(A) , λµ(B) } 

                               =   1 min{ 1(λµ)c (A) , 1(λµ)c (B)} 
                               =   max{ (λµ)c (A) , (λµ)c (B)} 

Hence , 

                λµ(AB)     min{ λµ(A) , λµ(B)},                       λµ(AB)     min{ λµ(A) , λµ(B)}, 
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           (λµ )c (AB)  ≤  max{ (λµ)c (A) , (λµ)c (B)} and   (λµ )c (AB) ≤  max{ (λµ)c (A) , (λµ)c (B)}.  

Therefore ψ  = { A , λµ(A) , (λµ)c (A)  / A} is a intuitionistic fuzzy HX subring of . 
 

3.7 Theorem 

If  ψ  is an intuitionistic fuzzy HX subring  of a HX ring  then ψ is an intuitionistic fuzzy HX subring  

of a HX ring . 

Proof 

           Let  ψ  = { A , (λγ)c (A), λγ(A)   / A} 

To prove that  ψ is an intuitionistic fuzzy HX subring of . 

Let   ψ = { A , λµ(A) , λγ(A)  / A} be a intuitionistic fuzzy HX subring  of . We have  

 (i)           λµ(AB)    min{ λµ(A) , λµ(B)},  

(ii)  λµ(AB)      min{ λµ(A) , λµ(B)}, 

(iii)  λγ(AB)  ≤  max{ λγ(A) , λγ(B)}, 
(iv)  λγ(AB)    ≤  max { λγ(A) , λγ(B)}. 

 

Now  

(i)    (λγ )c (AB)     =   1 (λγ )(AB) 

                    ≥   1 max{ λγ(A) , λγ(B)} 

                    =   1 max{ 1(λγ)c (A) , 1(λγ)c (B)} 
                                          =   min{ (λγ)c (A) , (λγ)c (B)} 

 

(ii)      (λγ )c (AB)     =   1 (λγ )(AB) 

                    ≥   1 max{ λγ(A) , λγ(B)} 

                    =   1 max{ 1(λγ)c (A) , 1(λγ)c (B)} 
                                          =   min{ (λγ)c (A) , (λγ)c (B)} 

 

               Hence ,     λγ(AB)   ≤  max{ λγ(A) , λγ(B)},                   λγ(AB)     ≤  max { λγ(A) , λγ(B)}. 

                          (λγ )c (AB)   ≥  min{ (λγ)c (A) , (λγ)c (B)} and   (λγ )c (AB) ≥  min{ (λγ)c (A) , (λγ)c (B)}. 

Therefore,   ψ  = { A , (λγ)c (A), λγ(A)   / A} is a intuitionistic fuzzy HX subring of . 
 

3.8 Theorem 

An  IFS ψ = { A , λµ(A) , λγ(A)  / A} is an intuitionistic fuzzy HX subring  of a HX ring  if and 

only if the fuzzy subsets  λµ(A) , (λγ)c (A)  are fuzzy HX subring  of a HX ring . 

Proof 

Let   ψ = { A , λµ(A) , λγ(A)  / A} be a intuitionistic fuzzy HX subring  of . We have  

 (i)           λµ(AB)    min{ λµ(A) , λµ(B)},  

(ii)  λµ(AB)      min{ λµ(A) , λµ(B)}, 

(iii)  λγ(AB)  ≤  max{ λγ(A) , λγ(B)}, 
(iv)  λγ(AB)    ≤  max { λγ(A) , λγ(B)}. 

  Clearly,  λµ(A) is a fuzzy HX subring of  by  (i)  and  (ii) . 

Now we have to show (λγ)c is a fuzzy HX subring of . 

                 (i)   (λγ )c (AB)   =  1 (λγ )(AB) 

                         ≥ 1 max{ λγ(A) , λγ(B)} 

                         = 1 max{ 1(λγ)c (A) , 1(λγ)c (B)} 
                                               =   min { (λγ)c (A) , (λγ)c (B)} 

                        (λγ )c (AB)    ≥  min{ (λγ)c (A) , (λγ)c (B)} 
  

                  (ii)     (λγ )c (AB)  =  1 (λγ )(AB) 

                          ≥ 1 max{ λγ(A) , λγ(B)} 

                          = 1 max{ 1(λγ)c (A) , 1(λγ)c (B)} 
                                                = min{ (λγ)c (A) , (λγ)c (B)} 

                          (λγ )c (AB)     ≥   min{ (λγ)c (A) , (λγ)c (B)}. 

                    Thus   (λγ )c  is a fuzzy HX subring of . 
     Conversely, 

          λµ(A) and (λγ)c (A)  are fuzzy HX subring  of a HX ring  

         To prove that ψ = { A , λµ(A) , λγ(A)  / A} be a intuitionistic fuzzy HX subring  of . 
         Now we know that  
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                       (λγ )c (A B)    ≥  min{ (λγ)c (A) , (λγ)c (B)} 

                      1 (λγ )(AB)   ≥  min{ 1 (λγ) (A) , 1 (λγ) (B)}. 

                      1 (λγ )(AB)   = 1 max{ λγ(A) , λγ(B)}   implies 

                           (λγ )(AB)   ≤ max{ λγ(A) , λγ(B)} 
Also   

                           (λγ )c (AB)   ≥  min{ (λγ)c (A) , (λγ)c (B)} 

                        1 (λγ )(AB)   ≥  min{ 1 (λγ) (A) , 1 (λγ) (B)}. 

                        1 (λγ )(AB)   = 1 max{ λγ(A) , λγ(B)}   implies 
                             (λγ )(AB)   ≤  max{ λγ(A) , λγ(B)} 

 Already  we have  

                       λµ(AB)     min{ λµ(A) , λµ(B)},     λµ(AB)     min{ λµ(A) , λµ(B)}. 

   Hence     ψ = { A , λµ(A) , λγ(A)  / A} be a intuitionistic fuzzy HX subring  of . 
 

3.9 Theorem 

An  IFS ψ = { A , λµ(A) , λγ(A)  / A} is an intuitionistic fuzzy HX subring  of a HX ring  if and 

only if the fuzzy subsets (λµ)c  and   (λγ) are anti-fuzzy HX subring  of a HX ring . 

Proof 

Let   ψ = { A , λ
µ
(A) , λ

γ
(A)  / A} be a intuitionistic fuzzy HX subring  of . We have  

 (i)          λµ(AB)      min{ λµ(A) , λµ(B)},  

(ii)  λµ(AB)      min{ λµ(A) , λµ(B)}, 

(iii)  λγ(AB)  ≤   max{ λγ(A) , λγ(B)}, 
(iv)  λγ(AB)    ≤   max { λγ(A) , λγ(B)}. 

   From (iii) and (iv) it is clear that (λγ) is an anti-fuzzy HX subring  of . 
Now ,   

         (λµ )c (AB)   =   1 (λµ )(AB) 

                                ≤   1 min{ λµ(A) , λµ(B) } 

                                =   1 min{ 1(λµ)c (A) , 1(λµ)c (B)} 
                                =   max{ (λµ)c (A) , (λµ)c (B)} 

          (λµ )c (AB)  ≤   max{ (λµ)c (A) , (λµ)c (B)}.   
  Also 

           (λµ )c (AB)    =   1 (λµ )(AB) 

                                ≤    1 min{ λµ(A) , λµ(B) } 

                                =    1 min{ 1(λµ)c (A) , 1(λµ)c (B)} 
                                =    max{ (λµ)c (A) , (λµ)c (B)} 

            (λµ)c (AB)    ≤     max{ (λµ)c (A) , (λµ)c (B)}.  

    Hence,  (λµ)c  and   (λγ) are anti-fuzzy HX subring  of a HX ring . 
 

    Conversely, 

         (λµ )c and (λγ)  are anti-fuzzy HX subring  of a HX ring  

         To prove that ψ = { A , λµ(A) , λγ(A)  / A} be a intuitionistic fuzzy HX subring  of . 

         It is clear that   λγ(AB)  ≤  max{ λγ(A) , λγ(B)}     and 
                                  λγ(AB)    ≤  max{ λγ(A) , λγ(B)}. 

        Now  

                              (λµ )c (AB)  ≤  max{ (λµ)c (A) , (λµ)c (B)} 

                           1 (λµ )(AB)  =  max{ 1 (λµ) (A) , 1 (λµ) (B)}. 

                           1 (λµ )(AB)  =  1 min{ λµ(A) , λµ(B)}   implies 

                                (λµ )(AB)  ≥   min{ λµ(A) , λµ(B)}. 
Also                

                                (λµ )c (AB)  ≤   max{ (λµ)c (A) , (λµ)c (B)} 

                             1 (λµ )(AB)  =   max{ 1 (λµ) (A) , 1 (λµ) (B)}. 

                             1 (λµ )(AB)  =   1 min{ λµ(A) , λµ(B)}   implies 
                                  (λµ )(AB)   ≥   min{ λµ(A) , λµ(B)}. 

Thus         λµ(AB)   min{ λµ(A) , λµ(B)},         λµ(AB)     min{ λµ(A) , λµ(B)}, 

 λγ(AB) ≤   max{ λγ(A) , λγ(B)} and  λγ(AB)   ≤  max { λγ(A) , λγ(B)}. 

Hence   ψ = { A , λµ(A) , λγ(A)  / A} be a intuitionistic fuzzy HX subring  of . 
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3.10 Definition 

Let 1 and 2 be any two HX rings. Then the function f : 1  2 is said to be a homomorphism if it 
satisfies the following axioms: 

  i) f(A+B) = f(A) + f(B) and 

  ii) f(AB) = f(A) f(B), for all A,B  1. 

 

3.11 Definition 

Let 1 and 2 be any two HX rings. Then the function f : 1  2 is said to be an anti homomorphism 
if it satisfies the following axioms: 

  i) f(A+B) = f(B) + f(A) and 

  ii) f(AB) = f(B) f(A), for all A,B  1. 

 

3.12 Definition 

Let R1 and R2 be any two rings. Let 1  2 R1-{} and 2  2 R2 -{} be any two HX rings. Let A =      

{ ( x, A(x), A(x) ) / x R1 } and B = { ( y, B(y), B(y) ) / y R2 } be any two intuitionistic fuzzy sets  on R1 

and R2 respectively. Let C = { ( U, (C U ), ( )C U  ) / U 1 } and  D = { ( V, ( )D V  , ( )D V  ) / V 2 } 

any two intuitionistic fuzzy sets  in 1 and 2 resp. Let  f  be a function from  1 into 2 then the image of C  on 

1 under f is defined as  

   

 


 




otherwise

VfVfUU
V C

D
,0

)(,)(:)(max
)(

11 





         and            

 


 




otherwise

VfVfUU
V C

D
,1

)(,)(:)(min
)(

11 





 

  Where ( )D Cf    also Pre-image of D on 2 under f is defined as  1( ) ( ) ( ( ))D Df U f U     ,   

 1( ) ( ) ( ( ))D Df U f U    . 

 

3.13 Theorem 

Let R1 and R2 be any two rings. Let A = { ( x, A(x), A(x) ) / x R1 } and  

B = { ( y, B(y), B(y) ) / y R2 } be any two intuitionistic fuzzy sets  on R1 and R2 respectively. 

Let C = { ( U, (C U ), ( )C U  ) / U 1 } and D = { ( V, ( )D V  , ( )D V  ) / V 2 }  be any two intuitionistic 

fuzzy sets  in 1 and 2 resp. Let  f  be a onto homomorphism from  1 to 2. If C be the intuitionistic fuzzy HX 

subring of  1  then f(C) is a intuitionistic fuzzy HX subring of  2. 

Proof. 

 Let C be the intuitionistic fuzzy HX subring of  1 then  

                                   ( ) ( ) min ( ), ( )C C Ci U T U T       

                                  ( ) ( ) min ( ), ( )C C Cii UT U T      

                                  ( ) ( ) max ( ), ( )C C Ciii U T U T       

                                 ( ) ( ) max ( ), ( )C C Civ UT U T      

To Prove that f(C) is an intuitionistic fuzzy HX subring of  2. 

Let V = f(U) , W  = f(T) 2 , where U,T1.  

Now     ( ) ( )D f U f T    =   ( )D f U T      (  f  is homomorphism ) 

                                                           = [ ]C U T 
                  (  f  is onto ) 

                                 
                                    min ( ), ( )C CU T    

                  min ( ( )), ( ( ))D Df U f T    

Hence ,      [ ( ) ( ) ] min ( ( )), ( ( ))D D Df U f T f U f T                  

 Again      ( ) ( )D f U f T =   ( )D f UT      (  f  is homomorphism ) 

                                                    = [ ]C UT
                   (  f  is onto ) 

                                 
                                     min ( ), ( )C CU T    

                   min ( ( )), ( ( ))D Df U f T    

Hence ,        [ ( ) ( )] min ( ( )), ( ( ))D D Df U f T f U f T                 

Now                                          
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                [ ( ) ( )]D f U f T 
     =   [ ( )]D f U T    (  f  is homomorphism) 

                                              [ ]C U T             (  f  is onto ) 

                                               max ( ), ( )C CU T    

                                               max ( ( )) , ( ( ))D Df U f T    

Hence ,       [ ( ) ( )] max ( ( )) , ( ( ))D D Df U f T f U f T                                       

Also  

                  [ ( ) ( )]D f U f T
    =  [ ( )]D f UT   ( f is homomorphism ) 

                                              ( )C UT           (  f  is onto ) 

                                               max ( ), ( )C CU T    

                                               max ( ( )) , ( ( ))D Df U f T    

Hence,                [ ( )] max ( ( )) , ( ( ))D D Df UT f U f T      

Thus D = f(C) is an  intuitionistic fuzzy HX subring of  2. 

 

3.13 Theorem 

Let R1 and R2 be any two rings. Let A = { ( x, A(x), A(x) ) / x R1 } and  

B = { ( y, B(y), B(y) ) / y R2 } be any two intuitionistic fuzzy sets  on R1 and R2 respectively. 

Let C = { ( U, (C U ), ( )C U  ) / U 1 } and D = { ( V, ( )D V  , ( )D V  ) / V 2 } be  any two 

intuitionistic fuzzy sets  in 1 and 2 resp. Let  f  be an onto homomorphism from  1 to 2. If D be the 

intuitionistic fuzzy HX subring of  2  then f1(D) is a intuitionistic fuzzy HX subring of  1. 

Proof. 

 Let D be the intuitionistic fuzzy HX subring of  2 then  

                                  ( ) [ ] min ( ), ( )D D Di V W V W       

                                  ( ) [ ] min ( ), ( )D D Dii VW V W      

                                 ( ) [ ] max ( ), ( )D D Diii V W V W       

                                 ( ) [ ] max ( ), ( )D D Div V W V W      

To Prove that f1(D) is a intuitionistic fuzzy HX subring of  1. 

Let  U,T 1 and  f(U) = V , f(T) =W 2. 

Now          1[ ( )]( ) [ ( )]D Df U T f U T          

                                               [ ( ) ( )]D f U f T   ( f  is  homomorphism )  

                                               min ( ( )), ( ( ))D Df U f T     

                                                1 1min [ ( )]( ),[ ( )]( )D Df U f T     

   Hence,     1 1 1[ ( )] ( ) min [ ( )]( ) , [ ( )]( )D D Df U T f U f T          

   Also            1[ ( )] ( ) [ ( )]D Df UT f UT            

                                               [ ( ) ( )]D f U f T ( f  is  homomorphism ) 

                                               min ( ( )), ( ( ))D Df U f T    

                                                1 1min [ ( )] ( ) , [ ( )]( )D Df U f T     

Hence,           1 1 1[ ( )] ( ) min [ ( )] ( ), [ ( )] ( )D D Df UT f U f T        

 
again  

                 1[ ( )]( ) [ ( )]D Df U T f U T          

                                                 [ ( ) ( )]D f U f T  ( f  is homomorphism ) 

                                                  max ( ( ), ( ( ))D Df U f T     

                                                  1 1max [ ( )]( ) ,[ ( )] ( )D Df U f T     

Hence,        1 1 1[ ( )]( ) max [ ( )]( ) ,[ ( )]( )D D Df U T f U f T          

Also 
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                      1[ ( )]( ) [ ( )]D Df UT f UT        

                                                  [ ( ) ( )]D f U f T ( f  is homomorphism ) 

                                                   max ( ( ), ( ( ))D Df U f T     

                                                   1 1max [ ( )]( ) ,[ ( )]( )D Df U f T     

   Hence,            1 1 1[( )( )] max ( )( ), ( )( )D D Df UT f U f T         

   Therefore,   f1(D) is a intuitionistic fuzzy HX subring of  1. 

 

3.14 Theorem 

Let R1 and R2 be any two rings. Let A = { ( x, A(x), A(x) ) / x R1 } and  

B = { ( y, B(y), B(y) ) / y R2 } be any two intuitionistic fuzzy sets  on R1 and R2 respectively. 

Let C = { ( U, (C U ), ( )C U  ) / U 1 } and D = { ( V, ( )D V  , ( )D V  ) / V 2 }  be any two 

intuitionistic fuzzy sets  in 1 and 2 resp. Let  f  be an onto  anti-homomorphism from  1 to 2. If C be the 

intuitionistic fuzzy HX subring of  1  then f(C) is a intuitionistic fuzzy HX subring of  2. 

Proof. 

Let C be the intuitionistic fuzzy HX subring of  1 then  

                                        ( ) ( ) min ( ), ( )C C Ci U T U T       

                                       ( ) ( ) min ( ) , ( )C C Cii UT U T      

                                      ( ) ( ) max ( ), ( )C C Ciii U T U T       

                                      ( ) ( ) max ( ), ( )C C Civ UT U T      

To Prove that f(C) is an intuitionistic fuzzy HX subring of  2. 

Let V = f(U) , W  = f(T) 2 , where U,T1.  

Now     ( ) ( )D f U f T    =   ( )D f T U      (  f  is an anti homomorphism ) 

                                                           = [ ]C T U 
                  (  f  is onto ) 

                                 
                                    min ( ), ( )C CT U    

                                             min ( ), ( )C CU T    

                  min ( ( )), ( ( ))D Df U f T    

Hence ,      [ ( ) ( ) ] min ( ( )), ( ( ))D D Df U f T f U f T                  

Again      ( ) ( )D f U f T =   ( )D f TU      (  f  is an anti homomorphism ) 

                                                  = [ ]C TU
                   (  f  is onto ) 

                                 
                                    min ( ), ( )C CT U    

                                             min ( ), ( )C CU T    

                  min ( ( )), ( ( ))D Df U f T    

Hence ,       [ ( ) ( ) ] min ( ( )), ( ( ))D D Df U f T f U f T                 

Now                                          

                [ ( ) ( )]D f U f T 
     =   [ ( )]D f T U    (  f  is an anti homomorphism) 

                                              [ ]C T U             (  f  is onto ) 

                                               max ( ), ( )C CT U    

                                               max ( ), ( )C CU T    

                                               max ( ( )) , ( ( ))D Df U f T    

Hence ,      [ ( ) ( )] max ( ( )) , ( ( ))D D Df U f T f U f T                                       

Also  

                [ ( ) ( )]D f U f T       =     [ ( )]D f UT   ( f is an anti homomorphism ) 

                                               ( )C UT            (  f  is onto ) 

                                                max ( ) , ( )C CU T    
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                                                max ( ( )) , ( ( ))D Df U f T    

Hence ,               [ ( )] max ( ( )) , ( ( ))D D Df UT f U f T      

Thus D = f(C) is an  intuitionistic fuzzy HX subring of  2. 

 

3.15 Theorem 

Let R1 and R2 be any two rings. Let A = { ( x, A(x), A(x) ) / x R1 } and  

B = { ( y, B(y), B(y) ) / y R2 } be any two intuitionistic fuzzy sets  on R1 and R2 respectively. 

Let C = { ( U, (C U ), ( )C U  ) / U 1 } and D = { ( V, ( )D V  , ( )D V  ) / V 2 } be  any two intuitionistic 

fuzzy sets  in 1 and 2 resp. Let  f  be an onto anti- homomorphism from  1 to 2. If D be the intuitionistic 

fuzzy HX subring of  2  then f1(D) is a intuitionistic fuzzy HX subring of  1. 

Proof. 

Let D be the intuitionistic fuzzy HX subring of  2 then  

                                  ( ) [ ] min ( ), ( )D D Di V W V W       

                                  ( ) [ ] min ( ), ( )D D Dii VW V W      

                                 ( ) [ ] max ( ), ( )D D Diii V W V W       

                                 ( ) [ ] max ( ), ( )D D Div V W V W      

To Prove that f1(D) is a intuitionistic fuzzy HX subring of  1. 

Let  U,T 1 and  f(U) = V , f(T) =W 2. 

   Now,       1[ ( )]( ) [ ( )]D Df U T f U T          

                                               [ ( ) ( )]D f T f U   ( f  is  an anti homomorphism )  

                                               min ( ( )), ( ( ))D Df T f U    

                                               min ( ( )), ( ( ))D Df U f T     

                                                1 1min [ ( )]( ),[ ( )]( )D Df U f T     

   Hence,     1 1 1[ ( )] ( ) min [ ( )]( ), [ ( )]( )D D Df U T f U f T          

   Also            1[ ( )] ( ) [ ( )]D Df UT f UT            

                                               [ ( ) ( )]D f T f U ( f  is an anti  homomorphism ) 

                                                min ( ( )), ( ( ))D Df T f U    

                                                min ( ( )), ( ( ))D Df U f T    

                                                 1 1min [ ( )] ( ) , [ ( )]( )D Df U f T     

Hence,             1 1 1[ ( )] ( ) min [ ( )] ( ), [ ( )] ( )D D Df UT f U f T        

 

again  

                 1[ ( )]( ) [ ( )]D Df U T f U T          

                                                 [ ( ) ( )]D f T f U  ( f  is an anti homomorphism ) 

                                                  max ( ( ), ( ( ))D Df T f U    

                                                  max ( ( ), ( ( ))D Df U f T     

                                                  1 1max [ ( )]( ) ,[ ( )] ( )D Df U f T     

Hence,        1 1 1[ ( )]( ) max [ ( )]( ) ,[ ( )]( )D D Df U T f U f T          

Also 

                      1[ ( )]( ) [ ( )]D Df UT f UT        

                                                  [ ( ) ( )]D f T f U ( f  is an anti homomorphism ) 

                                                   max ( ( ), ( ( ))D Df T f U    

                                                   max ( ( ), ( ( ))D Df U f T     

                                                   1 1max [ ( )]( ) ,[ ( )]( )D Df U f T     
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   Hence,            1 1 1[( )( )] max ( )( ), ( )( )D D Df UT f U f T         

  Therefore,   f1(D) is a intuitionistic fuzzy HX subring of  1. 

 

IV. Conclusion 

In this paper we introduce the concept of intuitionistic fuzzy HX ring and discuss the basic results on 

intuitionistic HX subring. Further investigation may be in intuitionistic  fuzzy HX ideals on HX ring. which will 

give a new horizon in the further study. 
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