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Abstract: In this paper we have extended a result of Nevanlinna theory to Euler’s gamma function which is 

known to be a meromorphic function.   
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I. Introduction And Main Results 

              Let )z(  be the Euler’s gamma function defined by, 

                       
)z( = 
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lim , the Euler’s constant . 

Clearly )z(  is a meromorphic function  with simple poles   0kk  and  

)z(  0 for any z C. 

 In 1999, Zhuan Ye[2] has proved the following result.  

Theorem (A) : with usual notations,  

                    i) T (r,  ) = (1 +  o(1)) 


r
log r 

                   ii) ),o(   = 1, ),(   =1  

                   iii) 0),a(    for a  ,0
 

 

 

Proceeding on the same lines,we can observe the following. 

 

since 0),a(   for a  ,0  and 1),a(   and 1),(  , 

Using the basics of Nevalinna theory, we can easily prove that, 

i) Θ (a,  )=0 for 0a  ,   

ii) Θ (0,  )=0 and Θ 1),(  . 

We wish to establish the following result. 

Theorem : Let )z(  be the Euler’s gamma function.Then  

T(r, 
)n( ) ~ (n+1) T(r,  ) where n is any positive integer, as r    outside a  

set of finite linear measure. 

Proof:        Clearly )z(  is a meromorphic function  with simple poles  

                
  0kk  and )z(  0 for any z C. 

Therefore,            0
1
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Using the basics of Nevanlinna theory, we have 

0,rm
|













 { log T(r,  ) + O (log r)as r    outside a set of finite linear measure. 

By induction on n, we can prove that, 
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 {log T(r,  ) + O (log r) for all finite n. 

Since N 
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  since 
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We have, 
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≤n ),r(N  + O {log T(r,  )} + O (log r)} 

Then, T(r, 
)n( )  = 
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             < T(r,  ) + n ),r(N  + O {{log T(r,  )} + O (log r)}  

----------(1) 

Conversely,          T(r,  )= T 
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,r  + T(r, 
)n( ) + O(1) 

            < T(r, 
)n( ) + n ),r(N   + O{log T(r,  )}+O(log r)  

----------(2) 

From (1) and (2), We have 

| T(r, 
)n( ) – T(r,  ) | < n ),r(N  + O{log T(r,  )}+O(log r)  

On simplification, we get 
),r(T

),r(T
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 = n+1 

Or  T(r, 
)n( ) ~ (n+1) T(r,  ) 

Hence the result. 
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