A Common Fixed Point Result for Compatible Mappings of Type (P) in Metrically Convex Metric Spaces

Geeta Modi^{*} And Bhawna Bhatt^{**}

* Department of Mathematics, Govt. Motilal Vigyan Mahavidyalya, Bhopal, India **Department of Mathematics, Truba College Of Science and Technology, Bhopal, India

Abstract: In the present paper, we improve upon a result on common fixed point theorems for compatible mappings of type (P) in metrically convex metric spaces by relaxing continuity restriction of two out of four mappings. MSC: 47H10,54H25

Key Words: Metrically convex metric spaces , Compatible mappings , Compatible mappings of type (P)

I. Introduction:

Compatible mappings of type (P) were introduced in [5]. Later on [4] gave a result on common fixed point theorems for such mappings. We improve one of its results for metrically convex metric spaces. The result is as follows:

THEOREM 1.1: Let (X, d) be a complete metrically convex metric space and K a non empty closed subset of X. Suppose that S, T: X \rightarrow X are continuous from X into itself $\partial K \subset S(K) \cap T(K)$, where ∂ denotes boundary of K and A, B: K \rightarrow X are continuous mappings with A(K) \cap K \subset S(K), B(K) \cap K \subset T(K). Suppose further that the pairs (A, T) and (B, S) are relatively compatible of type (P) satisfying

We relax the restriction of all the four mappings A, B, S, T to be continuous by imposing continuity condition on only two of the four mappings. Also we change the inequality (1.1.1)

II. Preliminaries

DEFINITION 2.1: Let A, B: $(X, d) \rightarrow (X, d)$ be mappings .Then A, B are said to be compatible if $\lim_{n \to \infty} d(ABx_n, BAx_n) = 0$

whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} A x_n = \lim_{n\to\infty} B x_n = t$ for some $t \in X$. DEFINITION 2.2: Let A, B: $(X, d) \to (X, d)$ be mappings .Then A, B are said to be compatible of type (P) if $\lim_{n\to\infty} d(AAx_n, BBx_n) = 0$

whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = t$ for some $t \in X$. PROPOSITION 2.3: Let A, B: $(X, d) \to (X, d)$ be mappings .If A, B are compatible of type (P) and $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = t$ for some $t \in X$, then we have the following (i) $\lim_{n\to\infty} AAx_n = Bt$ if B is continuous at t.

(ii) $\lim_{n\to\infty} BBx_n = At$ if A is continuous at t.

(iii) ABt = BAt and At = Bt if A and B are continuous at t.

III. MAIN RESULT

THEOREM 3.1: Let (X, d) be a complete metrically convex metric space and K a non empty closed subset of X. Suppose that M, N: X \rightarrow X are continuous and F, G: K \rightarrow X satisfy the following conditions

1. $\partial K \subset MK \cap NK$, where ∂ denotes boundary of K

2. FK \cap K \subset NK, GK \cap K \subset MK

3. Mx, Nx $\in \partial K \Rightarrow$ Fx, Gx $\in K$

4. (F, M) and (G, N) are relatively compatible of type (P)

5. $\phi(d(Fx, Gy)) \le cmax\{\phi(d(Mx, Ny), \phi(d(Fx, Mx)), \phi(d(Gy, Ny)), \phi(d(Fx, Ny)) + \phi(d(Mx, Gy))\}$ for all $x, y \in X$, where $\phi: [0, \infty) \to [0, \infty)$ is an increasing upper semi-continuous function such that

for all $x, y \in X$, where $\emptyset: [0, \infty) \to [0, \infty)$ is an increasing upper semi-continuous function such that $\emptyset(t) = 0 \Rightarrow t = 0$.

PROOF: We construct two sequences $\{x_n\}$ and $\{y_n\}$ in the following way:

Let $x \in \partial K$ and $x_0 \in K$ be such that $x = Mx_0$. Then $Fx_0 \in K$ by (3) and hence $Fx_0 \in FK \cap K \subset NK$.

This implies that there exists a point $x_1 \in K$ such that $y_1 = Nx_1 = Fx_0 \in K$. Since $y_1 = Fx_0$ there exists point $y_2 = Gx_1$ such that $d(y_1, y_2) = d(Fx_0, Gx_1)$. Suppose $y_2 \in K$. Then $y_2 \in GK \cap K \subset MK$ which implies that there exists a point $x_2 \in K$ such that $y_2 = Mx_2$. If $y_2 \notin K$, then there exists point $p \in \partial K$ such that

$$d(Nx_1, p) + d(p, y_2) = d(Nx_1, y_2)$$

Since $p \in \partial K \subset MK$ there exists a point $x_2 \in K$ with $p = Mx_2$ such that

$$d(Nx_1, Mx_2) + d(Mx_2, y_2) = d(Nx_1, y_2)$$

Let $y_3 = Fx_2$ be such that $d(y_2, y_3) = d(Gx_1, Fx_2)$. Thus continuing this process by similar arguments we obtain two sequences $\{x_n\}$ and $\{y_n\}$ such that

- (i) $y_{2n} = Gx_{2n-1}$, $y_{2n+1} = Fx_{2n}$
- (ii) $y_{2n} \in K \Rightarrow y_{2n} = Mx_{2n} \text{ or } y_{2n} \notin K \Rightarrow Mx_{2n} \in \partial K \text{ and} d(Nx_{2n-1}, Mx_{2n}) + d(Mx_{2n}, y_{2n}) = d(Nx_{2n-1}, y_{2n})$
- (iii) $y_{2n+1} \in K \Rightarrow y_{2n+1} = Nx_{2n+1}$ or $y_{2n+1} \notin K \Rightarrow Nx_{2n+1} \in \partial K$ and $d(Mx_{2n}, Nx_{2n+1}) + d(Nx_{2n+1}, y_{2n+1}) = d(Mx_{2n}, y_{2n+1})$
- We denote $P_0 = \{Mx_{2i} \in \{Mx_{2n}\}: Mx_{2i} = y_{2i}\}$
 - $P_1 = \{Mx_{2i} \in \{Mx_{2n}\}: Mx_{2i} \neq y_{2i}\}$
 - $Q_0 = \{Nx_{2i+1} \in \{Nx_{2n+1}\}: Nx_{2i+1} = y_{2i+1}\}$
 - $Q_1 = \{Nx_{2i+1} \in \{Nx_{2n+1}\}: Nx_{2i+1} \neq y_{2i+1}\}$

We observe that $(Mx_{2n}, Nx_{2n+1}) \notin P_1 \times Q_1$ as if $Mx_{2n} \in P_1$, then $y_{2n} \neq Mx_{2n}$ and we infer that $Mx_{2n} \in \partial K \Rightarrow y_{2n+1} = Fx_{2n} \in K$. Hence $y_{2n+1} = Nx_{2n+1} \in Q_0$. Similarly one can argue that $(Mx_{2n-1}, Nx_{2n}) \notin Q_1 \times P_1$. There arise three cases : Case I : $(Mx_{2n}, Nx_{2n+1}) \in P_0 \times Q_0$ $\emptyset(d(Mx_{2n}, Nx_{2n+1})) = \emptyset(d(y_{2n}, y_{2n+1}))$

 $= \emptyset(d(Gx_{2n}, Fx_{2n})) = \emptyset(d(Gx_{2n-1}, Fx_{2n}))$ $= \emptyset(d(Gx_{2n-1}, Fx_{2n})) = \emptyset(d(Fx_{2n}, Gx_{2n-1})) = \emptyset(d(Fx_{2n}, Gx_{2n-1})), \emptyset(d(Mx_{2n}, Fx_{2n})), \emptyset(d(Gx_{2n-1}, Nx_{2n-1})),$ $\le c \max\{\emptyset(d(Mx_{2n}, Gx_{2n-1})) + \emptyset(d(Fx_{2n}, Nx_{2n-1})), \emptyset(d(Mx_{2n}, Nx_{2n-1}))\}$ $\le c \max\{\emptyset(d(Mx_{2n}, Nx_{2n-1})), \emptyset(d(Mx_{2n}, Nx_{2n-1})), \emptyset(d(Mx_{2n}, Nx_{2n-1})),$ $\emptyset(d(Mx_{2n}, Mx_{2n})) + \emptyset(d(Nx_{2n}, Nx_{2n-1})), \emptyset(d(Mx_{2n}, Nx_{2n-1})),$ $\le c \max\{\emptyset(d(Mx_{2n}, Nx_{2n-1})), \emptyset(d(Mx_{2n}, Nx_{2n-1})),$

 $= \emptyset (d(Mx_{2n}, Nx_{2n+1})) + \emptyset (d(Mx_{2n}, Nx_{2n-1}))$

Thus $\emptyset(d(Mx_{2n}, Nx_{2n+1})) \leq \frac{c}{1-c} \emptyset(d(Mx_{2n}, Nx_{2n-1}))$

Case II : $(Mx_{2n}, Nx_{2n+1}) \in P_0 \times Q_1$

$$\emptyset (d(Mx_{2n}, Nx_{2n+1})) = \emptyset (d(Mx_{2n}, y_{2n+1})) = \emptyset (d(y_{2n}, y_{2n+1})) \\
\leq \frac{c}{1-c} \emptyset (d(Mx_{2n}, Nx_{2n-1})) \quad [From Case I]$$

Therefore, $\emptyset(d(Mx_{2n}, Nx_{2n+1})) \leq \frac{1+2c}{1-c} \emptyset(d(Nx_{2n-1}, y_{2n}))$

$$\leq \frac{1+2c}{(1-c)^2} \emptyset (d(Mx_{2n-2}, Nx_{2n-1}))$$

Thus in all the three cases

 $\emptyset \big(d(Mx_{2n}, Nx_{2n+1}) \big) \le \max\{ \frac{p}{1-c} \emptyset \big(d(Mx_{2n}, Nx_{2n-1}) \big), \frac{c(1+2c)}{(1-c)^2} \emptyset \big(d(Mx_{2n-2}, Nx_{2n-1}) \big) \}$ = k max $\mathbb{Q}(d(Mx_{2n}, Nx_{2n-1}))$, $\emptyset(d(Mx_{2n-2}, Nx_{2n-1}))$ where $k = \max\{\frac{c}{1-c}, \frac{c(1+2c)}{(1-c)^2}\} < 1$. By induction, for $n \ge 1$, we have $\emptyset(d(Mx_{2n}, Nx_{2n+1})) < k^n \delta$ and $\emptyset(d(Nx_{2n+1}, Mx_{2n+2})) < k^{n+1/2} \delta$ where $\delta = k^{-1/2} \max \left\{ \phi \left(d(Mx_0, Nx_1) \right), \phi \left(d(Nx_1, Mx_2) \right) \right\} \right\}$ The sequence $\{Mx_0, Nx_1, Mx_2, Nx_3, ..., Mx_{2n}, Nx_{2n+1}\}$ is Cauchy .Hence there exists at least one subsequence $\{Mx_{2n}\}$ or $\{Nx_{2n+1}\}$ which is contained in P_0 or Q_0 respectively and converges to $q \in K$. Since K is a closed subset of a complete metric space (X, d), therefore $q = \lim_{n \to \infty} Nx_{2n+1} = \lim_{n \to \infty} Mx_{2n}$(3.1.1) By hypothesis there exists a sequence $\{n_k\}$ in N such that $Mx_{2n_k} = Gx_{2n_k-1}$ or $Nx_{2n_k+1} = Fx_{2n_k}$ We observe $\phi\left(d\left(FFx_{2n_{k}},GGx_{2n_{k}-1}\right)\right) \leq c \max\{\phi\left(d\left(MFx_{2n_{k}},NGx_{2n_{k}-1}\right)\right), \phi\left(d\left(MFx_{2n_{k}},FFx_{2n_{k}}\right)\right)$ $\emptyset \left(d(MFx_{2n_k}, GGx_{2n_k-1}) \right) + \emptyset \left(d(FFx_{2n_k}, NGx_{2n_k-1}) \right)$ Letting $k \to \infty$, from (3.1.1), proposition 2.3(i) and (ii) we have $\phi(d(Mq, Nq)) \leq c \max\{\phi(d(Mq, Nq)), \phi(d(Mq, Mq)), \phi(d(Nq, Nq)), \phi(d(Mq, Nq)) + \phi(d(Mq, Nq)) \}$ $\emptyset(d(Mq, Nq))$ $\leq c \max\{\emptyset(d(Mq, Nq)), 0, 0, 2\emptyset(d(Mq, Nq))\}$ $= 2c\emptyset(d(Mq, Nq))\}$ which shows that $\phi(d(Mq, Nq)) = 0$, since $c < \frac{1}{2}$. Thus showing Mq = Nq.....(3.1.2) Now, $\emptyset\left(d\left(FFx_{2n_{k}},Gq\right)\right) \leq c \max\{\emptyset\left(d\left(MFx_{2n_{k}},Nq\right)\right),\emptyset\left(d\left(MFx_{2n_{k}},FFx_{2n_{k}}\right)\right),\emptyset\left(d(Gq,Nq)\right),$ $\emptyset(d(MFx_{2n_{1}},Gq)) + \emptyset(d(FFx_{2n_{1}},Nq))$ $= c \max\{\emptyset(d(Mq, Nq)), \emptyset(d(Mq, Mq)), \emptyset(d(Gq, Nq)), \emptyset(d(Mq, Gq)) +$ $\emptyset(d(Mq,Nq))\}$ Letting $k \rightarrow \infty$, (3.1.1), (3.1.2) and proposition 2.3 (i) $\phi(d(Mq, Gq)) \le c\phi(d(Nq, Gq)) = c\phi(d(Mq, Gq))$. This gives Mq = Gq since $c < \frac{1}{2}$. $\phi\left(d\left(FFx_{2n_{k}},Gx_{2n_{k}-1}\right)\right) \leq c \max\{\phi\left(d\left(MFx_{2n_{k}},Nx_{2n_{k}-1}\right)\right), \phi\left(d\left(FFx_{2n_{k}},MFx_{2n_{k}}\right)\right), \phi\left$ $\emptyset\left(d(Gx_{2n_k-1},Nx_{2n_k-1})\right),\emptyset\left(d(FFx_{2n_k},Nx_{2n_k-1})\right)+$ $\emptyset\left(d\left(MFx_{2n_{k}},Nx_{2n_{k}-1}\right)\right)$ Letting $n \rightarrow \infty$, proposition 2.3 (i) and (3.1.1) gives $\emptyset(d(Mq,q)) \le c \max\{\emptyset(d(Mq,q)), \emptyset(d(Mq,Mq)), \emptyset(d(q,q)), \emptyset(d(Mq,q)) + \emptyset(d(Mq,q))\}$ Thus $(1 - 2c)\phi(d(Mq, q)) \le 0$ which gives Mq = q since $c < \frac{1}{2}$. From (3.1.2) and (3.1.3) we have Mq = Gq = Nq = q...... (3.1.4) Also $\phi(d(Fq, Gq)) \le c \max\{\phi(d(Mq, Nq)), \phi(d(Mq, Fq)), \phi(d(Gq, Nq)), \phi(d(Mq, Gq)), \phi(d(Fq, Nq))\}$ From (3.1.4) we get $\emptyset(d(Fq,q)) \le c \max\{0, \emptyset(d(q,Fq)), 0, \emptyset(d(Fq,q))\}$ showing Fq = qHence Mq = Nq = Gq = Fq = q. To prove the uniqueness of this point, let there be another point t such that Mt = Nt = Gt = Ft = q. Then $\phi(d(Fq, Gt)) \leq c \max\{\phi(d(Mq, Nt)), \phi(d(Mq, Fq)), \phi(d(Gt, Nt)), \phi(d(Mq, Gt)) + \phi(d(Fq, Nt))\}$

which, from above discussion, yields

 $\emptyset(d(q,t)) \le c \max\{\emptyset(d(q,t)), \emptyset(d(q,q)), \emptyset(d(t,t)), \emptyset(d(q,t)) + \emptyset(d(q,t))\}$ Thus $\phi(d(q, t)) = 0$ giving us q = t. Therefore the common fixed point is unique. This proves the result.

References

- [1]. Hadzic O.: On coincidence theorems for a family of mappings in convex metric spaces, Internat, J. Math. and Math. Sci., 10,453-460 (1987)
- [2]. [3]. Jungck ,G. : Compatible mappings and common fixed points ,Internat.J. Math. and Math. Sci. 9,771-779 (1986)
- Jungck ,G. : Compatible mappings and common fixed points(2) ,Internat.J. Math. and Math. Sci. 11, 285-288 (1988)
- [4]. Pathak H.K., Cho Y.J., Kang S.M., Lee B.S. : Fixed point theorems for compatible mappings of type(P) and applications to dynamic programming ,Le Matematiche Vol.L, 15-33 (1995).
- Pathak H.K., Cho Y.J., Chang S.S., Kang S.M.: Compatible mappings of type(P) and fixed point theorems in metric spaces and [5]. probabilistic metric spaces.