A Common Fixed Point Result for Compatible Mappings of Type (P) in Metrically Convex Metric Spaces

Geeta Modi * And Bhawna Bhatt
* Department of Mathematics, Govt. Motilal Vigyan Mahavidyalya, Bhopal ,India
**Department of Mathematics , Truba College Of Science and Technology, Bhopal ,India

Abstract

In the present paper, we improve upon a result on common fixed point theorems for compatible mappings of type (P) in metrically convex metric spaces by relaxing continuity restriction of two out of four mappings. MSC: $47 \mathrm{H10,54H25}$

Key Words: Metrically convex metric spaces, Compatible mappings ,Compatible mappings of type (P)

I. Introduction:

Compatible mappings of type (P) were introduced in [5]. Later on [4] gave a result on common fixed point theorems for such mappings. We improve one of its results for metrically convex metric spaces. The result is as follows:
THEOREM 1.1: Let (X, d) be a complete metrically convex metric space and K a non empty closed subset of X . Suppose that $S, T: X \rightarrow X$ are continuous from X into itself $\partial K \subset S(K) \cap T(K)$, where ∂ denotes boundary of K and $A, B: K \rightarrow X$ are continuous mappings with $A(K) \cap K \subset S(K), B(K) \cap K \subset T(K)$. Suppose further that the pairs (A, T) and (B, S) are relatively compatible of type (P) satisfying

$$
d(\mathrm{Ax}, \mathrm{By}) \leq \emptyset(\mathrm{d}(\mathrm{Tx}, \mathrm{Sy})
$$

for all $x, y \in K$, where $\emptyset:[0, \infty) \rightarrow[0, \infty)$ is a non-decreasing and upper semi-continuous function such that $\phi(\mathrm{t})<\mathrm{t}$ and $\sum \phi^{\mathrm{n}}(\mathrm{t})<\infty$ for all $\mathrm{t}>0$.If for $\mathrm{x} \in \mathrm{K}, \mathrm{Tx}, \mathrm{Sx} \in \partial \mathrm{K} \Rightarrow A x, B \mathrm{x} \in \mathrm{K}$, then there exists a point $\mathrm{z} \in \mathrm{K}$ such that $\mathrm{z}=\mathrm{Az}=\mathrm{Bz}=\mathrm{Sz}=\mathrm{Tz}$. Further if $\mathrm{Av}=\mathrm{Bv}=\mathrm{Sv}=\mathrm{Tv}$, then $\mathrm{Tv}=\mathrm{Tz}$
We relax the restriction of all the four mappings $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}$ to be continuous by imposing continuity condition on only two of the four mappings. Also we change the inequality (1.1.1)

II. Preliminaries

DEFINITION 2.1: Let $\mathrm{A}, \mathrm{B}:(\mathrm{X}, \mathrm{d}) \rightarrow(\mathrm{X}, \mathrm{d})$ be mappings .Then A, B are said to be compatible if

$$
\lim _{n \rightarrow \infty} d\left(A B x_{n}, B A x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=t$ for some $t \in X$.
DEFINITION 2.2: Let $\mathrm{A}, \mathrm{B}:(\mathrm{X}, \mathrm{d}) \rightarrow(\mathrm{X}, \mathrm{d})$ be mappings .Then A, B are said to be compatible of type (P) if

$$
\lim _{n \rightarrow \infty} d\left(A A x_{n}, B B x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=t$ for some $t \in X$.
PROPOSITION 2.3: Let $\mathrm{A}, \mathrm{B}:(\mathrm{X}, \mathrm{d}) \rightarrow(\mathrm{X}, \mathrm{d})$ be mappings .If A, B are compatible of type (P) and
$\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=t$ for some $t \in X$,then we have the following
(i) $\lim _{n \rightarrow \infty} A A x_{n}=B t$ if B is continuous at t.
(ii) $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{BBx}_{\mathrm{n}}=\mathrm{At}$ if A is continuous at t .
(iii) $\mathrm{ABt}=\mathrm{BAt}$ and $\mathrm{At}=\mathrm{Bt}$ if A and B are continuous at t .

III. MAIN RESULT

THEOREM 3.1: Let (X, d) be a complete metrically convex metric space and K a non empty closed subset of X. Suppose that $\mathrm{M}, \mathrm{N}: \mathrm{X} \rightarrow \mathrm{X}$ are continuous and $\mathrm{F}, \mathrm{G}: \mathrm{K} \rightarrow \mathrm{X}$ satisfy the following conditions

1. $\partial \mathrm{K} \subset \mathrm{MK} \cap \mathrm{NK}$, where ∂ denotes boundary of K
2. $\mathrm{FK} \cap \mathrm{K} \subset \mathrm{NK}, \mathrm{GK} \cap \mathrm{K} \subset \mathrm{MK}$
3. $\mathrm{Mx}, \mathrm{Nx} \in \partial \mathrm{K} \Rightarrow \mathrm{Fx}, \mathrm{Gx} \in \mathrm{K}$
4. (F, M) and (G, N) are relatively compatible of type (P)
5. $\emptyset(\mathrm{d}(\mathrm{Fx}, \mathrm{Gy})) \leq \operatorname{cmax}\{\emptyset(\mathrm{d}(\mathrm{Mx}, \mathrm{Ny}), \emptyset(\mathrm{d}(\mathrm{Fx}, \mathrm{Mx})), \emptyset(\mathrm{d}(\mathrm{Gy}, \mathrm{Ny})), \emptyset(\mathrm{d}(\mathrm{Fx}, \mathrm{Ny}))+\emptyset(\mathrm{d}(\mathrm{Mx}, \mathrm{Gy}))\}$
for all $x, y \in X$, where $\emptyset:[0, \infty) \rightarrow[0, \infty)$ is an increasing upper semi-continuous function such that
$\emptyset(\mathrm{t})=0 \Rightarrow \mathrm{t}=0$.
PROOF: We construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in the following way:
Let $x \in \partial K$ and $x_{0} \in K$ be such that $x=M x_{0}$.Then $F x_{0} \in K$ by (3) and hence $F x_{0} \in F K \cap K \subset N K$.

This implies that there exists a point $x_{1} \in K$ such that $y_{1}=N x_{1}=F x_{0} \in K$. Since $y_{1}=F x_{0}$ there exists point $y_{2}=G x_{1}$ such that $d\left(y_{1}, y_{2}\right)=d\left(\mathrm{Fx}_{0}, G x_{1}\right)$. Suppose $y_{2} \in K$.Then $y_{2} \in G K \cap K \subset M K$ which implies that there exists a point $x_{2} \in K$ such that $y_{2}=M x_{2}$. If $y_{2} \notin K$, then there exists point $p \in \partial K$ such that

$$
\mathrm{d}\left(\mathrm{Nx}_{1}, \mathrm{p}\right)+\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2}\right)=\mathrm{d}\left(\mathrm{Nx}_{1}, \mathrm{y}_{2}\right)
$$

Since $p \in \partial K \subset M K$ there exists a point $x_{2} \in K$ with $p=M x_{2}$ such that

$$
\mathrm{d}\left(\mathrm{Nx}_{1}, \mathrm{Mx}_{2}\right)+\mathrm{d}\left(\mathrm{Mx}_{2}, \mathrm{y}_{2}\right)=\mathrm{d}\left(\mathrm{Nx}_{1}, \mathrm{y}_{2}\right)
$$

Let $y_{3}=\mathrm{Fx}_{2}$ be such that $\mathrm{d}\left(\mathrm{y}_{2}, \mathrm{y}_{3}\right)=\mathrm{d}\left(\mathrm{Gx}_{1}, \mathrm{Fx}_{2}\right)$.Thus continuing this process by similar arguments we obtain two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that
(i) $y_{2 n}=G x_{2 n-1}, \quad y_{2 n+1}=F x_{2 n}$
(ii) $\mathrm{y}_{2 \mathrm{n}} \in \mathrm{K} \Rightarrow \mathrm{y}_{2 \mathrm{n}}=\mathrm{Mx}_{2 \mathrm{n}}$ or $\mathrm{y}_{2 \mathrm{n}} \notin \mathrm{K} \Rightarrow \mathrm{Mx}_{2 \mathrm{n}} \in \partial \mathrm{K}$ and

$$
\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{Mx}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}\right)=\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)
$$

(iii) $y_{2 n+1} \in K \Rightarrow y_{2 n+1}=N x_{2 n+1}$ or $y_{2 n+1} \notin K \Rightarrow N x_{2 n+1} \in \partial K$ and $d\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}\right)=\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)$
We denote $\mathrm{P}_{0}=\left\{\mathrm{Mx}_{2 \mathrm{i}} \in\left\{\mathrm{Mx}_{2 \mathrm{n}}\right\}: \mathrm{Mx}_{2 \mathrm{i}}=\mathrm{y}_{2 \mathrm{i}}\right\}$

$$
\mathrm{P}_{1}=\left\{\mathrm{Mx}_{2 \mathrm{i}} \in\left\{\mathrm{Mx}_{2 \mathrm{n}}\right\}: \mathrm{Mx}_{2 \mathrm{i}} \neq \mathrm{y}_{2 \mathrm{i}}\right\}
$$

$$
Q_{0}=\left\{N x_{2 i+1} \in\left\{N x_{2 n+1}\right\}: N x_{2 i+1}=y_{2 i+1}\right\}
$$

$$
Q_{1}=\left\{N_{x_{2 i+1}} \in\left\{N_{2 n+1}\right\}: N_{2 i+1} \neq y_{2 i+1}\right\}
$$

We observe that $\left(\mathrm{Mx}_{2 n}, N x_{2 n+1}\right) \notin P_{1} \times Q_{1}$ as if $M x_{2 n} \in P_{1}$, then $y_{2 n} \neq M x_{2 n}$ and we infer that $\mathrm{Mx}_{2 \mathrm{n}} \in \partial \mathrm{K} \Rightarrow \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Fx}_{2 \mathrm{n}} \in K$.. Hence $\mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Nx}_{2 \mathrm{n}+1} \in \mathrm{Q}_{0}$. Similarly one can argue that $\left(M x_{2 n-1}, N x_{2 n}\right) \notin Q_{1} \times P_{1}$. There arise three cases :
Case I: $\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right) \in \mathrm{P}_{0} \times \mathrm{Q}_{0}$

Thus $\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right) \leq \frac{\mathrm{c}}{1-\mathrm{c}} \varnothing\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)$
Case II : $\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right) \in \mathrm{P}_{0} \times \mathrm{Q}_{1}$

$$
\begin{aligned}
\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right) & =\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right)=\emptyset\left(\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right) \\
& \leq \frac{\mathrm{c}}{1-\mathrm{c}} \phi\left(\mathrm{~d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right) \quad[\text { From Case } \mathrm{I}]
\end{aligned}
$$

Case III: $\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right) \in \mathrm{P}_{1} \times \mathrm{Q}_{0}$

Therefore, $\varnothing\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right) \leq \frac{1+2 \mathrm{c}}{1-\mathrm{c}} \emptyset\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right)$

$$
\begin{aligned}
& \emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)=\varnothing\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right) \\
& \leq \emptyset\left(d\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}\right)\right)+\emptyset\left(\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right) \\
& \leq \emptyset\left(d\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}\right)\right)+\emptyset\left(\mathrm{d}\left(\mathrm{Bx}_{2 \mathrm{n}-1}, \mathrm{Ax}_{2 \mathrm{n}}\right)\right) \\
& \leq \emptyset\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right)+\mathrm{c} \max \left\{\emptyset\left(\mathrm{~d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right), \emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)\right. \text {, } \\
& \left.\emptyset\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right), \emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}\right)\right)+\emptyset\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)\right\} \\
& \leq \emptyset\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right)+\mathrm{c} \max \left\{\phi\left(\mathrm{~d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right), \phi\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)\right. \\
& \emptyset\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right), \emptyset\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right)+\emptyset\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{Mx}_{2 \mathrm{n}}\right)\right)+ \\
& \left.\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)\right\} \\
& \leq \emptyset\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right)+\mathrm{c}\left\{\varnothing\left(\mathrm{~d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right)+\varnothing\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}-1}, \mathrm{Mx}_{2 \mathrm{n}}\right)\right)+\right. \\
& \left.\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)=\varnothing\left(\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right) \\
& =\emptyset\left(\mathrm{d}\left(\mathrm{Gx}_{2 \mathrm{n}-1}, \mathrm{Fx}_{2 \mathrm{n}}\right)\right) \\
& =\emptyset\left(\mathrm{d}\left(\mathrm{Fx}_{2 \mathrm{n}}, \mathrm{Gx}_{2 \mathrm{n}-1}\right)\right) \\
& \leq \mathrm{c} \max \left\{\varnothing\left(\mathrm{~d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right), \emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Fx}_{2 \mathrm{n}}\right)\right), \varnothing\left(\mathrm{d}\left(\mathrm{Gx}_{2 \mathrm{n}-1}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)\right. \text {, } \\
& \left.\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Gx}_{2 \mathrm{n}-1}\right)\right)+\emptyset\left(\mathrm{d}\left(\mathrm{Fx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)\right\} \\
& \leq \mathrm{c} \max \left\{\varnothing\left(\mathrm{~d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right), \varnothing\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right), \varnothing\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)\right. \text {, } \\
& \left.\phi\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Mx}_{2 \mathrm{n}}\right)\right)+\varnothing\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}+1}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)\right\} \\
& \leq \mathrm{c} \max \left\{\emptyset\left(\mathrm{~d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right), \varnothing\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right), \emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)\right. \text {, } \\
& \left.\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)+\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)\right\} \\
& =\emptyset\left(d\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)+\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)
\end{aligned}
$$

$$
\leq \frac{1+2 \mathrm{c}}{(1-\mathrm{c})^{2}} \emptyset\left(\mathrm{~d}\left(\mathrm{Mx}_{2 \mathrm{n}-2}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)
$$

Thus in all the three cases

$$
\begin{aligned}
\emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right) & \left.\leq \operatorname{maxim} \frac{\mathrm{c}}{1-\mathrm{c}} \phi\left(\mathrm{~d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right), \frac{\mathrm{c}(1+2 \mathrm{c})}{(1-\mathrm{c})^{2}} \emptyset\left(\mathrm{~d}\left(\mathrm{Mx}_{2 \mathrm{n}-2}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)\right\} \\
& \left.=\mathrm{k} \max \underline{\operatorname{man}}\left(\mathrm{~d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right), \emptyset\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}-2}, \mathrm{Nx}_{2 \mathrm{n}-1}\right)\right)\right\}
\end{aligned}
$$

where $\left.\mathrm{k}=\max \frac{\mathrm{c}}{\mathrm{c}} \frac{\mathrm{c}(1+2 \mathrm{c})}{(1-\mathrm{c})^{2}}\right\}<1$. By induction, for $\mathrm{n} \geq 1$, we have
$\varnothing\left(\mathrm{d}\left(\mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right)\right)<\mathrm{k}^{\mathrm{n}} \delta$ and $\varnothing\left(\mathrm{d}\left(\mathrm{Nx}_{2 \mathrm{n}+1}, \mathrm{Mx}_{2 \mathrm{n}+2}\right)\right)<\mathrm{k}^{\mathrm{n}+1 / 2} \delta$
where $\left.\delta=\mathrm{k}^{-1 / 2} \max \Phi\left(\mathrm{~d}\left(\mathrm{Mx}_{0}, \mathrm{Nx}_{1}\right)\right), \varnothing\left(\mathrm{d}\left(\mathrm{Nx}_{1}, \mathrm{Mx}_{2}\right)\right)\right\}$
The sequence $\left\{\mathrm{Mx}_{0}, \mathrm{Nx}_{1}, \mathrm{Mx}_{2}, \mathrm{Nx}_{3}, \ldots \mathrm{Mx}_{2 \mathrm{n}}, \mathrm{Nx}_{2 \mathrm{n}+1}\right\}$ is Cauchy . Hence there exists at least one subsequence $\left\{\mathrm{Mx}_{2 \mathrm{n}}\right\}$ or $\left\{\mathrm{Nx}_{2 \mathrm{n}+1}\right\}$ which is contained in P_{0} or Q_{0} respectively and converges to $\mathrm{q} \in \mathrm{K}$.
Since K is a closed subset of a complete metric space (X, d), therefore

$$
\begin{equation*}
\mathrm{q}=\lim _{\mathrm{n} \rightarrow \infty} N x_{2 \mathrm{n}+1}=\lim _{\mathrm{n} \rightarrow \infty} M x_{2 n} \tag{3.1.1}
\end{equation*}
$$

By hypothesis there exists a sequence $\left\{\mathrm{n}_{\mathrm{k}}\right\}$ in N such that

$$
\mathrm{Mx}_{2 \mathrm{n}_{\mathrm{k}}}=\mathrm{Gx}_{2 \mathrm{n}_{\mathrm{k}}-1} \text { or } \mathrm{Nx}_{2 n_{k}+1}=\mathrm{Fx}_{2 \mathrm{n}_{\mathrm{k}}}
$$

We observe

$$
\begin{array}{r}
\varnothing\left(\mathrm{d}\left(\mathrm{FFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{GGx}_{2 \mathrm{n}_{\mathrm{k}}-1}\right)\right) \leq \mathrm{c} \max \left\{\varnothing\left(\mathrm{~d}\left(\mathrm{MFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{NGx}_{2 \mathrm{n}_{\mathrm{k}}-1}\right)\right), \varnothing\left(\mathrm{d}\left(\mathrm{MFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{FFx}_{2 \mathrm{n}_{\mathrm{k}}}\right)\right)\right. \\
\left.\emptyset\left(\mathrm{d}\left(\mathrm{MFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{GGx}_{2 \mathrm{n}_{\mathrm{k}}-1}\right)\right)+\emptyset\left(\mathrm{d}\left(\mathrm{FFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{NGx}_{2 \mathrm{n}_{\mathrm{k}}-1}\right)\right)\right\}
\end{array}
$$

Letting $\mathrm{k} \rightarrow \infty$, from (3.1.1), proposition 2.3(i) and (ii) we have
$\emptyset(d(M q, N q)) \leq c \max \{\varnothing(d(M q, N q)), \emptyset(d(M q, M q)), \emptyset(d(N q, N q)), \emptyset(d(M q, N q))+$ $\emptyset(\mathrm{d}(\mathrm{Mq}, \mathrm{Nq}))\}$
$\leq \mathrm{c} \max \{\varnothing(\mathrm{d}(\mathrm{Mq}, \mathrm{Nq})), 0,0,2 \emptyset(\mathrm{~d}(\mathrm{Mq}, \mathrm{Nq}))\}$

$$
=2 \mathrm{c} \emptyset(\mathrm{~d}(\mathrm{Mq}, \mathrm{Nq}))\}
$$

which shows that $\emptyset(\mathrm{d}(\mathrm{Mq}, \mathrm{Nq}))=0$, since $\mathrm{c}<\frac{1}{2}$. Thus showing

$$
\begin{equation*}
\mathrm{Mq}=\mathrm{Nq} \tag{3.1.2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\varnothing\left(\mathrm{d}\left(\mathrm{FFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{Gq}\right)\right) \leq & \mathrm{c} \max \left\{\varnothing\left(\mathrm{~d}\left(\mathrm{MFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{Nq}\right)\right), \emptyset\left(\mathrm{d}\left(\mathrm{MFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{FFx}_{2 \mathrm{n}_{\mathrm{k}}}\right)\right), \emptyset(\mathrm{d}(\mathrm{Gq}, \mathrm{Nq}))\right. \\
& \left.\emptyset\left(\mathrm{d}\left(\mathrm{MFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{Gq}\right)\right)+\emptyset\left(\mathrm{d}\left(\mathrm{FFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{Nq}\right)\right)\right\} \\
= & \mathrm{c} \max \{\varnothing(\mathrm{~d}(\mathrm{Mq}, \mathrm{Nq})), \varnothing(\mathrm{d}(\mathrm{Mq}, \mathrm{Mq})), \emptyset(\mathrm{d}(\mathrm{Gq}, \mathrm{Nq})), \emptyset(\mathrm{d}(\mathrm{Mq}, \mathrm{Gq}))+ \\
& \emptyset(\mathrm{d}(\mathrm{Mq}, \mathrm{Nq}))\}
\end{aligned}
$$

Letting $\mathrm{k} \rightarrow \infty$, (3.1.1), (3.1.2) and proposition 2.3 (i)
$\phi(\mathrm{d}(\mathrm{Mq}, \mathrm{Gq})) \leq \mathrm{c} \varnothing(\mathrm{d}(\mathrm{Nq}, \mathrm{Gq}))=\mathrm{c} \varnothing(\mathrm{d}(\mathrm{Mq}, \mathrm{Gq}))$. This gives $\mathrm{Mq}=\mathrm{Gq} \quad$ since $\mathrm{c}<\frac{1}{2}$.
$\emptyset\left(\mathrm{d}\left(\mathrm{FFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{Gx}_{2 \mathrm{n}_{\mathrm{k}}-1}\right)\right) \leq \mathrm{c} \max \left\{\emptyset\left(\mathrm{d}\left(\mathrm{MFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{Nx}_{2 \mathrm{n}_{\mathrm{k}}-1}\right)\right), \emptyset\left(\mathrm{d}\left(\mathrm{FFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{MFx}_{2 \mathrm{n}_{\mathrm{k}}}\right)\right)\right.$,

$$
\begin{aligned}
& \emptyset\left(\mathrm{d}\left(\mathrm{Gx}_{2 \mathrm{n}_{\mathrm{k}}-1}, \mathrm{Nx}_{2 \mathrm{n}_{\mathrm{k}}-1}\right)\right), \emptyset\left(\mathrm{d}\left(\mathrm{FFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{Nx}_{2 \mathrm{n}_{\mathrm{k}}-1}\right)\right)+ \\
& \left.\emptyset\left(\mathrm{d}\left(\mathrm{MFx}_{2 \mathrm{n}_{\mathrm{k}}}, \mathrm{Nx}_{2 \mathrm{n}_{\mathrm{k}}-1}\right)\right)\right\}
\end{aligned}
$$

Letting $\mathrm{n} \rightarrow \infty$, proposition 2.3 (i) and (3.1.1) gives
$\emptyset(d(M q, q)) \leq c \max \{\phi(d(M q, q)), \emptyset(d(M q, M q)), \emptyset(d(q, q)), \emptyset(d(M q, q))+\emptyset(d(M q, q))\}$
Thus $(1-2 c) \varnothing(d(M q, q)) \leq 0$ which gives $M q=q$ since $c<\frac{1}{2}$.
From (3.1.2) and (3.1.3) we have

$$
\begin{equation*}
\mathrm{Mq}=\mathrm{Gq}=\mathrm{Nq}=\mathrm{q} \tag{3.1.4}
\end{equation*}
$$

Also
$\emptyset(\mathrm{d}(\mathrm{Fq}, \mathrm{Gq})) \leq \mathrm{c} \max \{\varnothing(\mathrm{d}(\mathrm{Mq}, \mathrm{Nq})), \varnothing(\mathrm{d}(\mathrm{Mq}, \mathrm{Fq})), \varnothing(\mathrm{d}(\mathrm{Gq}, \mathrm{Nq})), \varnothing(\mathrm{d}(\mathrm{Mq}, \mathrm{Gq})), \varnothing(\mathrm{d}(\mathrm{Fq}, \mathrm{Nq}))\}$
From (3.1.4) we get
$\emptyset(\mathrm{d}(\mathrm{Fq}, \mathrm{q})) \leq \mathrm{c} \max \{0, \emptyset(\mathrm{~d}(\mathrm{q}, \mathrm{Fq})), 0, \varnothing(\mathrm{~d}(\mathrm{Fq}, \mathrm{q}))\}$ showing $\mathrm{Fq}=\mathrm{q}$
Hence $\mathrm{Mq}=\mathrm{Nq}=\mathrm{Gq}=\mathrm{Fq}=\mathrm{q}$. To prove the uniqueness of this point, let there be another point t such that $\mathrm{Mt}=\mathrm{Nt}=\mathrm{Gt}=\mathrm{Ft}=\mathrm{q}$. Then
$\emptyset(\mathrm{d}(\mathrm{Fq}, \mathrm{Gt})) \leq \mathrm{c} \max \{\varnothing(\mathrm{d}(\mathrm{Mq}, \mathrm{Nt})), \emptyset(\mathrm{d}(\mathrm{Mq}, \mathrm{Fq})), \varnothing(\mathrm{d}(\mathrm{Gt}, \mathrm{Nt})), \emptyset(\mathrm{d}(\mathrm{Mq}, \mathrm{Gt}))+\emptyset(\mathrm{d}(\mathrm{Fq}, \mathrm{Nt}))\}$
which, from above discussion , yields
$\emptyset(\mathrm{d}(\mathrm{q}, \mathrm{t})) \leq \mathrm{c} \max \{\varnothing(\mathrm{d}(\mathrm{q}, \mathrm{t})), \phi(\mathrm{d}(\mathrm{q}, \mathrm{q})), \varnothing(\mathrm{d}(\mathrm{t}, \mathrm{t})), \varnothing(\mathrm{d}(\mathrm{q}, \mathrm{t}))+\varnothing(\mathrm{d}(\mathrm{q}, \mathrm{t}))\}$
Thus $\varnothing(\mathrm{d}(\mathrm{q}, \mathrm{t}))=0$ giving us $\mathrm{q}=\mathrm{t}$. Therefore the common fixed point is unique. This proves the result.

References

[1]. Hadzic O.: On coincidence theorems for a family of mappings in convex metric spaces,Internat.J. Math. and Math. Sci. ,10,453-460 (1987)
[2]. Jungck ,G. : Compatible mappings and common fixed points ,Internat.J. Math. and Math. Sci. 9,771-779 (1986)
[3]. Jungck ,G. : Compatible mappings and common fixed points(2) ,Internat.J. Math. and Math. Sci. 11, 285-288 (1988)
[4]. Pathak H.K.,Cho Y.J.,Kang S.M.,Lee B.S. : Fixed point theorems for compatible mappings of type(P)and applications to dynamic programming, Le Matematiche Vol.L, 15-33 (1995) .
[5]. Pathak H.K.,Cho Y.J.,Chang S.S.,Kang S.M.: Compatible mappings of type(P) and fixed point theorems in metric spaces and probabilistic metric spaces.

