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Abstract: In the present paper, after defining an integrated contact metric structure manifold [3] I have
defined M :* and nearly M ;* manifold. It has been shown that M ;* is integrable. Several useful theorems on

these manifolds have also been derived.
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I.  Introduction
Let M, be a differentiable manifold of differentiability class C* . Let there exist in Af , @ vector

valued C” - linear function ®,a C” - vector field 77 anda C™ -one form & such that

(1.1) O’ (X)=a’X—c&(X)n
(1.2) (7)=0,
(1.3) G(X.Y)=d’G(X,Y)-c&(X)E(Y)

Where @ (X ) =X , @ 1s anonzero complex number and ¢ is an integer.
Let us agree to say that @ gives to M , a differentiable structure define by algebraic equation (1.1).

We shall call (CD, n,a,c,& ) as an integrated contact structure.

Remark 1.1: The manifold Af ., equipped with an integrated contact structure (CD, n,a,c,& ) will be called an

integrated contact structure manifold.

Remark 1.2: The C* manifold M, satisfying (1.1), (1.2) and (1.3) is called an integrated contact metric
structure manifold (CD, n,a,c,G,& )

Agreement 1.1: All the equations which follow will hold for arbitrary vector field X,Y,Z,...... ete.
It is easy to calculate in A that

(1.4) £(n)= %

(1.5) d(X)=0

and

(1.6) G(X.n)def £(X)

Remark 1.3: The integrated contact metric structure manifold (CD,U,a,c, G,f) gives an almost norden
contact metric manifold [2], Lorentzian Para-contact manifold [1] or an almost Para-contact Riemannian
manifold [4] according as (a2 =—1c =1),(a2 =l c=- 1) or (a2 =1c =1)

Agreement 1.2: An integrated contact metric structure manifold will be denoted by M .

In the sequel, arbitrary vector fields will be denoted by X,Y, Z,...... etc.
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Definition 1.1: A C” -manifold )/ , satisfying

(1.7)

)_(:DXU

will be denoted by M . It is easy to calculate in M

(1.8)

where

(1.9)
(1.10)

(Deg)(Y)="0(X.Y).
©(X.Y) def G(X.Y)=G(X.T)

(D) (Y)~(Dy&)(X) =0

Definition 1.2: A C* -manifold M, satisfying

(1.11)

(DeE)(Y)==(Dx8)(Y) ==(D,$)(X); D, @ =0

will be called M -manifold if

(1.12)

(D ®@)(Y)==&(¥) (D) +(Dy) (X )

and will be called nearly M~ -manifold if

(1.13)

(Dx®)(Y)+(Dy®)(X) ==& (Y) Dy =& (X) Dy

where D is a Riemannian connection.
The Nijenhuis tensor N with respect to @ is given by

(1.14)

which yields
(1.15)

and
(1.16)

where
(1.17)

N(X.Y)def [ XY [+ [X.Y]-[X.Y]-[X.V]

N(X,Y)=(Ds@)(Y)=(Dy®)(X) = (Dy®)(¥)+(D,®)(X)

‘N(X,Y,Z)=(Dg ®)(Y,Z)—(D; ®)(X.Z)
~(Dy ®)(Y.2)+(D, @) (X.2)

N(X.Y,Z) def G(N(X.Y),Z)

II. On M -Manifold

Theorem 2.1: In M; , we have

(2.1a) (D, @)(Y,2)==£(Y) ®(X,Z)+(D,&£)(X)&(2Z)

(2.1b) (D, ®)(Y,Z)+(D, CD)(XZ =a’ [5 Y)G(X,Z)+£(X)G(Y,Z)]
+2c£(X)E(Y)E(Z)

(2.10) (Dy ®@)(V,2)+(D, ®)(¥,Z)=[(D,&)(X)é(2)+a* E(Y) @(X,Z)]

Proof: (1.9) yields

(2.2) (D, ®)(Y,2)=G((D,®)(Y),Z)

Operating G on both sides of (1.12) and using (1.3) (1.6) and (2.2), we get

ey (D, ®)(Y.2)==£(V)G(Den. Z)+(D,€)(X)£(2)

Using (1.7) and (1.9) in the above equation, we get (2.1a). Using (1.9) and (1.1) in (2.1a), we get
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2.4) (Dy @) (Y,2)=a’4(Y)G(X,Z)+cE(X)E(Y)E(Z)+(D,&)(X)E(2)
Interchanging X and Y in above equation, we get

2.5) (D, ®@)(X,Z)=a*4(X)G(Y.Z)+cE(Y)E(X)E(Z)+(Dy&)(Y)E(2)
adding (2.4) and (2.5) and using (1.11), we get (2.1b). Barring Y in (2.4) and using (1.5), we get

.6 (D @)(Y.2)=(D;8)(X)é(2)

Barring Z in (2.4) and using (1.5) and (1.9), we get

@7) (D @)(Y.2)=a’¢(Y) 0(X,2)

adding (2.6) and (2.7), we get (2.1c¢).

Corollary 2.1: In M, we have

(2.8 (Dy ®)(Y.Z)==a’¢(Y) 0(X.2)

(2.8b) (D, @)(Y.Z)=0

(2.8¢) (D)? CD)(Y,Z)+ , @) (X,Z)—- (D, ®)(Y,Z)=0
(2.8d) (D, cD)(Y,Z +(D; ®@)(X,Z)=0

Proof: Barring Z in (2.1a) and using (1.5), (1.9), (1.1), (1.3), we get (2.8a). Barring Y in (2.8a) and using

(1.5), we get (2.8b). Barring X in (2.1b) and using (1.5) and (2.8a), we get (2.8¢c). Barring X and Y both in
(2.1b) and using (1.5), we get (2.8d).

Theorem 2.2: M~ is integrable.

Proof: Barring X in (1.12), we get

(2.9) (Dg @)(¥)==E(Y)(Dg )+ (D, £)(X )

Barring both sides of (1.12) and using (1.2), we get

(2.10) (Dy ®@)(Y)==&(Y)(Dy7)

Interchanging X and Y in (2.9) and (2.10) separately, we get

2.11) (D @) () ==E(X)(D; 1) +(Dy (),

and

2.12) (Dy @)(X)==&(X)(Dy )

Using (2.9), (2.10), (2.11), (2.12) and (1.7) in (1.15), we get

(2.13) N(X,Y):[(Dyg)()?)—(DXg)(Yﬂn
(1.1) yields

(2.14) g(?):g(azY—cg(Y)n)
Differentiating corollary (2.14) covariantly along the vector X and using (1.4), we get
(2.15) (DXff)(Y):a2 (Dy&)(Y)

Integrating X and Y in the above equation, we get

(2.16) (Dg)()?): a’ (D,¢)(X)

Using (2.15), (2.16) and (1.10) in (2.13), we get

(2.17) N(X,Y)=0
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which proves the theorem.

Corollary 2.2: In M, we have

(2.18) (Dy®)(Y)==a*&(Y) X +c&(X)E(Y)n+(DyE)(X)n
(2.19) c&((Dy@)(Y))=—a* (D, &)(X)
(2.20) 'N(X,Y,Z)=0

Proof: Using (1.7) and (1.1) in (1.12), we get (2.18). Operating & on both the sides of (2.18) and using (1.4),
we get (2.19). Operating G on both the sides of (2.17) and using (1.17), we get (2.20).

III.  Affine Connection
Let B be an affine connection in M ;* defined by

(3.1 BXYdﬁfDXY+H(X,Y)

where H (X Y ) is a vector valued bilinear function. If S be the torsion tensor of the connection B , we have
(3.2) S(X,Y)ZH(X,Y)—H(Y,X)

If H(X, Y) is skew-symmetric, we have

(3.3) S(X,Y)=2H(X,Y)=—2H(Y,X)
Consequently

(3.4 ‘S(X,Y,Z)ZZ‘H(X,Y,Z)Z—Z ‘H(Y,X,Z),
where

(3.52) S(X.,Y.Z) def G(S(X.Y).Z),

and o

(3.5b) H(X,Y,Z) def G(H(X.Y),Z)

Theorem 3.1: On M;* , we have
(3.6) (By®@)(Y ) +&(Y)(Byn)—(B,E)(X )n=H(X.Y)-H(X.Y)

Proof: Using (1.5) in (1.12) and @ (X) =X, we get

(3.7) DY -D,Y ==£(Y)(Dgn)-&(D, X )n
Using (3.1) in the above, we get (3.6).

Theorem 3.2: On M :* , we have

G3) (B:&)(Y)==(Be&)(¥) =~(8,¢)(X).
if

(3.92) g(H(X,Y)) -0,

and

(3.9b) H (X ,Y ) is skew-symmetric

Proof: Using (1.5) in (1.11), we have
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{(D.F)=—£(D, )

Using (3.1) in the above equation, we get

(3.10) (B Y)+&£(B,X)=¢(H(X,Y))+&(H(Y, X))
From (3.9b), we have

3.11) f(H()_(, Y)) =—§(H(Y,)_())

From (1.5), we get

(3.12) E(BY)=—(B&)(Y)

From (3.10), (3.11) and (3.12), we get

(3.13) (By&)(V)+(B,&)(X)=—&(H(X.T))+&(H(X.Y))
(1.11) yields

(3.14) E(D,Y)=XE(Y)-£(D,Y)

Using (3.1) in above, we get

(3.15) (ByE)(Y)+(By&)(Y)=—¢(H(X,Y))-£(H(X,Y))

Thus using (3.92), (3.9b) in (3.13) and (3.15), we get (3.8).

Theorem 3.3: On M :* , we have
(3.16) §(BX?)+§(BX7) =&(H(X.Y))+a*6(H(X.Y))-c&(Y)E(H (X.n))

Proof: (1.11) yields
E(DeY) =X (£(1)-£(DyY)

Using (3.1) in the above equation, we get
E(DyY)+E(BY) =X (E(Y))+&E(H(X.T))+&(H(X,Y))

Barring Y in the above equation and using (1.1), (1.2), we get (3.16).

Theorem 3.4: In M :* , we have

(3.17) (D, ®@)(Y,Z)+(D, ®)(Z,X)+(D, @)(X,Y)=2[ £(X)(D,&)(Y)
+§(Y)(DX§)(Z)+g(z)(Dyg)()_()]

Proof: From (1.7), (1.8) and (1.9), we have

(3.18) (Dy&)(Y)=G(Dyn.Y)

Barring X in (3.18), we get

(3.19) (D:&)(Y)=G(Dyn.Y)

Using (3.19) in (2.3), we get

(3.20) (D ®)(¥.2) =4 (Y)(D5£)(2)+(D,6)(X)4(2)
By the cyclic permutation of X, ¥, Z , we also have

(3.21) (D, ®)(2,X)==&(Z)(Ds8)(X)+(D,6)(Y ) §(X)
(3.22) (D, ®@)(X,Y)==£(X)(D,8)(Y)+(Dx)(Z)&(Y)

adding (3.20), (3.21) and (3.22) and using (1.11), we get (3.17).

Theorem 3.5: M~ is necessarily nearly M, .
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Proof: In M ;* , we have a result (3.21). Interchanging X and Z in (3.21), we get

(3.23) (D, ®)(X.2)=-&(X)((D;€)(2))+(Dy&)(Y)E(2)

adding (3.20) and (3.23) and using (1.11), we get

(3.24) (Dy @)(Y,Z)+(D, @)(X,Z) ==&(Y)(Dx$)(2) - £ (X)(Ds¢)(2)

Using (2.2) and (3.19) in the above equation, we get
G((Dy®@)Y,Z)+G((D,®)X,Z)=-E&(Y)G(Dyn. Z)-E(X)G(Dyn, Z)

which yield (1.13). Hence M~ is necessarily nearly M~ .
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