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Abstract: In this paper, the unsteady viscous flow produced by a sudden coincidence of the axes of a disk and 

the fluid at infinity rotating with the uniform angular velocity Ω has been studied. The exact solution of the 
governing equation has been obtained using Laplace transform technique. The velocity field and the shear 

stress components that rare related to the force components in the x and y –directions exerted by the fluid on the 

disk are discussed. The exact solutions are also verified by another solution obtained and that is valid at small 

times instants. The fluid motions are depicted through graphs using MATLAB.  
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I. Introduction 
The rotating disk is a popular geometry has studying different flows, because of its simplicity and the 

fact that it represents a classical fluid dynamics problem. It is a subject of wide spread practical interest in 
connection with stream turbines, gas turbines, pumps and other rotating fluid machines. This flow parading is 

also be used to investigate the momentum and heat and mass transfer characteristics of Newtonian and Non-

Newtonian fluids. 

The flow due to an infinite rotating disk is one of the classical problems in fluid mechanics which was 

first introduced by Von karman. He show that the Navier Strokes equation a steady flow on the Newtonian in-

compressed fluid due to disk rotating far from other solid surfaces can be reduced the set of ordinary differential 

equations. These equations can be solved by an approximate integral method. 

Erdogan (1997) was the first to study the unsteady floe generated by non-coaxial rotation suddenly 

while a disk and a fluid at infinity are initially rotating about a common axis. He obtained an exact solution to 

this type of flow for a Newtonian fluid. Pop (1979) was the first to consider the unsteady flow produced by a 

disk and a fluid at infinity. He considered the problem for a Newtonian fluid a studied the unsteady flow 

induced when the disk and the fluid at infinity start impulsively rotate with the same angular velocity about non 
coincident axes. Kasiviswanathan and Rao (1987) presented an exact solution of the unsteady Navier-Stokes 

equations for the floe produced by an eccentrically rotating porous disk oscillating in its own plane and the fluid 

at infinity. Erdogan (1997) studied the unsteady viscous flow resulting from rotation about non-coaxial axes 

while the disk and the fluid at infinity are initially rotating about a common axis. Hayat et al. (1999) obtained an 

exact analytic solution for the unsteady disk in its own plane. They also discussed the unsteady viscous flow 

induced by the oscillations of a porous disk in its own plane. They also discussed the unsteady viscous flow due 

to the porous disk oscillating and the fluid at infinity rotating about an axis parallel to their first rotation axis. 

Erdogan (2000) studied the flow due to non coaxial rotation of a disk oscillating in its own plane and a viscous 

fluid at infinity. Hayat et al. (2001) examined Erdogan’s work (1997) for a porous disk in the presence of a 

magnetic field. Siddique ct al. (2001) studied the same problem for second grade fluid. However, they 

considered small values of the elastic parameter.  
In this mainly we studied about the unsteady flow of a Newtonian fluid resulting from rotation about a 

common axis while a disk and the same angular velocity about non-coincident axes. The disk and the fluid at 

infinity rotate with the same angular velocity about non- coincident axes. The disk and the fluid at infinity rotate 

with the same angular velocity throughout the flow.      

 

II. Mathematical Formulation 
Let us consider a Newtonian fluid filling the semi infinite space z≥0 in a Cartesian coordinate system. 

The axis of rotation of the disk located at z=0 and that of the fluid at infinity are in the plane x=0. The disk and 

the fluid at infinity are initially rotating with the same angular velocity Ω about the z- and z’ axes, respectively, 
and the distance between the axes is denoted by l .The disk suddenly starts to rotate with its initial angular 

velocity about the z’-axis. Therefore, the initial and boundary conditions are 

u = −Ωy + f  z , v = Ωx + g  z , w = 0  at  t = 0   for z ≥ 0,                                     (1)  
 u = −Ω y − ℓ , v = Ωx,                        w = 0   at  z = 0   for t > 0,                                      (2) 
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u = −Ω y − ℓ , v = Ωx,                        w = 0   at  z = ∞   for t ≥ 0,                                      (3) 

Where u,v, w denote the velocity components along the x, y, z-directions, respectively. The functions  f  z  
andg  z , obtained by courier(1972), are given by  

f  z + ig  z = Ωℓ 1 − e−kz                                                                                                              (4) 

Where i =  −1 , k =  1 + i  
Ω

2v
,  and v is the kinematic viscosity of the fluid. The solution shown by Eq. (2) is 

summarized in the Appendix. 

 Thus it seems reasonable to try a solution of the form 

u = −Ωy + f z, t , v = Ωx + g(z, t),       w = 0 ,                                                                  (5) 
This seems that the flow is a result of superposition, in each z= constant plane, of a rigid body rotation 

with the angular velocity Ω about the z-axis and of a time dependent rigid body translation that changes from 

plane to plane with the velocity {f (z, t); g (z, t); 0} in a Cartesian coordinate system. Using Eqs(1-3) and (5) we 

have 

f z, 0 = f  z , g z, 0 = g  z    for  z ≥ 0,                                                                                    (6)   
f 0, t = Ωℓ, g ∞, t = 0         for t > 0,                                                                               (7)   
f ∞, t = Ωℓ, g ∞, t = 0         for  t ≥ 0,                                                                                      (8)   

Substituting Eq. (5) into the Navier-stokes equations, one obtains 

1

ρ

∂p

∂x
= Ω2x +  v

∂2f

∂z2
−

∂f

∂t
+ Ωg ,                                                                                              (9) 

1

ρ

∂p

∂y
= Ω2y +  v

∂2g

∂z2
−

∂g

∂t
− Ωf ,                                                                                              (10) 

1

ρ

∂p

∂z
= 0,                                                                                                                                               (11) 

Where ρ is the density of the fluid and p is the modified pressure.  Equations (9-11) give 

v
∂2f

∂z2
−

∂f

∂t
+ Ωg = C1 t ,                                                                                                                (12) 

v
∂2g

∂z2
−

∂g

∂t
− Ω = C2 t                                                                                                                    (13) 

 

 Since the fluid at infinity has no shear stress, we find that C1 t = 0 and C2 t = −Ω2l with the help of 

Eq. (4c).Introducing  F z, t = f z, t + ig(z, t) and using Eqs. (12-13), we get 

v
∂2F

∂z2
−

∂F

∂t
− iΩF = −iΩ2l                                                                                                             (14) 

If we introduce the following dimensionless variables 
  

F =
f

Ωl
+ i

g

Ωl
− 1, ζ =  

Ω

2v
z, τ = Ωt                                                                                          (15) 

Then Eq. (14) and the conditions (6-8) become 

∂2F

∂ζ2
− 2

∂F

∂τ
− 2iF = 0,                                                                                                                      (16) 

And  

F 0, τ = 0  τ > 0 ,                                                                                                                            (17) 

F ∞,τ = 0  τ ≥ 0 ,                                                                                                                           (18) 

F ζ, 0 = −e−(1+i)ζ ζ ≥ 0 .                                                                                                             (19) 
Solution of the problem 

Setting 

F ζ, τ = H ζ, τ e−iτ ,                                                                                                                         (20) 
We have 

∂2H

∂ζ2
− 2

∂H

∂τ
= 0,                                                                                                                                 (21) 

With the conditions as follows: 

H 0, τ = 0  τ > 0 ,                                                                                                                            22  

H ∞, τ = 0  τ ≥ 0 ,                                                                                                                          (23) 

H ζ, 0 = −e−(1+i)ζ ζ ≥ 0 .                                                                                                            (24) 

Let the Laplace transform of H ζ, τ  beH  ζ, s , so that 
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H  ζ, s =  H ζ, τ e−sτdτ
∞

0

                                                                                                             (25) 

Taking the Laplace transforms of Eqs. (21-24), we get 

H ′′ − 2sH = 2e− 1+i ζ ,                                                                                                                       (26) 

H  0, s = 0(τ > 0),                                                                                                                            (27) 

H  ∞, s = 0(τ ≥ 0),                                                                                                                           (28) 

And we obtain the transformed solution as 

H =
1

s − i
e− 2sζ −

1

s − i
e− 1+i ζ                                                                                                    (29) 

In order to take the Laplace inversion of  H  , equation(29) becomes: 

H =
1

2 s
 

1

 s +  i
+

1

 s −  i
 e− 2sζ −

1

s − i
e− 1+i ζ                                                            (30) 

We obtain 

H =
1

2
eiτ  e 2iζerfc   iτ +

ζ

 2τ
 + e− 2iζerfc  − iτ +

ζ

 2τ
  − eiτe− 1+i ζ                (31) 

Where erfc(.) denotes the complementary error function. 

Using Eqs (20) and (31), one finds 
f

Ωl
+ i

g

Ωl
= 1 − e− 1+i ζ +

1

2
 e 2iζerfc   iτ +

ζ

 2τ
 + e− 2iζerfc  − iτ +

ζ

 2τ
      32  

The dimensionless shear stress components in the fluid are obtained by 
Txz + iTyz

Tr

=  
∂

∂ζ
 

f

Ωl
+ i

g

Ωl
                                                                                                           (33)  

Where Tr =  μρΩ3/2l ,and μ is the dynamic viscosity of the fluid. Using equations (32-33), we obtain 
Txz + iTyz

Tr

=  1 + i  e− 1+i ζ +
1

2
e 2iζerfc   iτ +

ζ

 2τ
 +

1

2
e− 2iζerfc  − iτ +

ζ

 2τ
   

−
2

 2

1

 πτ
 e

 2iζ−  iτ+
ζ

 2τ
 

2

+ e
− 2iζ− − iτ+

ζ

 2τ
 

2

                                                                         (34) 

Finally, we have the dimensionless shear stress components on the disk in the following form: 

(T xz )ζ=0 + i(T yz )ζ=0 =  1 + i  1 +
1

2
 erfc  iτ − erfc − iτ   −  

2

πτ
e−iτ               (35) 

Where T xz =
Txz

Tr
 and  T yz =

Tyz

Tr
 

 

III. Solution at small times 
Although the solution given above is exact, we shall search for another solution that is valid for small 

values of time. Thus, our purpose is to compare the results obtained in two different forms. We shall write Eq 

(29) as follows: 

H =
1

s

1

(1 − i/s)
 e−φζ − e− 1+i ζ                                                                                                   (36) 

Where φ =  2s.It is well known that the series  xn∞
n=0  converges to (1-x)-1 for  x < 1.  using this binomial 

series, it is possible to obtain the solution for small values of the time corresponding to large s. (i.e.) 

H =
1

s
 (

1

s
)n

∞

n=0

 e−φζ − e− 1+i ζ                                                                                                    (37)  

Or 

H =  (i)n
e−φζ

sn+1
−

∞

n=0

 (i)n
e− 1+i ζ

sn+1
 

∞

n=0

                                                                                           (38) 

 Now the Laplace inversion of H   becomes 

H =   i n 4τ n i2nerfc(
ζ

 2τ
) − e−(1+i)ζeiτ

∞

n=0

                                                                          (39) 

Where   in erfc(.) denotes the repeated integrals of the complementary error function and is given by 

i−1erfc x =
2

 π
e−x2

 , i0erfc x = erfc x, 
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  inerfc x =  in−1
∞

x

erfc ∅ d∅   n = 0,1,2,…                                                  (40) 

From equations (20) and (39), we have 

f

Ωl
+ i

g

Ωl
= 1 − e− 1+i ς + e−iτ   i n

∞

n=0

 4τ n i2nerfc 
ζ

 2τ
                                                 (41)  

Or 
f

Ωl
=  1 − eζ cos ζ + (cos τ) A ζ, τ  + (sin τ) B ζ, τ  ,                                                       (42) 

g

Ωl
=  e−ζ sin ζ + (cos τ) B ζ, τ  − (sin τ) A ζ, τ  ,                                                             (43) 

Where 

 A ζ, τ  = erfc  
ζ

 2τ
 −  4τ 2i4erfc 

ζ

 2τ
 +  4τ 4i8erfc 

ζ

 2τ
 − ⋯ ,                       (44) 

 B ζ, τ  = (4τ)i2erfc 
ζ

 2τ
 −  4τ 3i6erfc 

ζ

 2τ
 +  4τ 5i10 erfc 

ζ

 2τ
 − ⋯ ,         (45) 

Bearing in mind the identity 
d

dz
inerfc y = − 

dy

dz
 in−1erfc y,                                                                                                 (46) 

One finds 
Txz

Tr

= e−ζ cosζ + sin ζ −
cos τ

 2τ
 C ζ, τ  −

sin τ

 2τ
 D ζ, τ  ,                                                   (47) 

Tyz

Tr

= e−ζ cosζ − sin ζ −
cos τ

 2τ
 D ζ, τ  +

sin τ

 2τ
 C ζ, τ  ,                                                   (48) 

where 

 C ζ, τ  = i−1erfc  
ζ

 2τ
 −  4τ 2i3erfc 

ζ

 2τ
 +  4τ 4i7erfc 

ζ

 2τ
 − ⋯ ,                 (49) 

 D ζ, τ  =  4τ i erfc 
ζ

 2τ
 −  4τ 3i5erfc 

ζ

 2τ
 +  4τ 5i9erfc 

ζ

 2τ
 − ⋯ ,            (50) 

Using the identity 

inerfc 0 = [2nΓ(
n

2
+ 1)]−1   n = −1,0,1,2, …                                                                           (51) 

the shear stress components on the disk are 

 Txz  ζ=0 = 1 −
cos τ

 2τ
 

1

2−1Γ 0.5 
−

 4τ 2

23Γ 2.5 
+

 4τ 4

27Γ 4.5 
−

 4τ 6

211Γ 6.5 
+ ⋯  

−
sin τ

 2τ
 

(4τ)

2Γ 1.5 
−

 4τ 2

25Γ 3.5 
+

 4τ 4

29Γ 5.5 
−

 4τ 6

213Γ 7.5 
+ ⋯ ,           (52) 

 Tyz  ζ=0
= 1 −

cos τ

 2τ
 

 4τ 

2Γ 1.5 
−

 4τ 2

25Γ 3.5 
+

 4τ 4

29Γ 5.5 
−

 4τ 6

213Γ 7.5 
+ ⋯  

−
sin τ

 2τ
 

1

2−1Γ 0.5 
−

 4τ 2

23Γ 2.5 
+

 4τ 4

27Γ 4.5 
−

 4τ 6

211Γ 6.5 
+ ⋯ ,                 (53) 

where  Γ(.) is the gamma function defined by 

Γ n =  xn−1e−x dx  n > 0                                                                                                        (54)
∞

0

 

For small values of time, the solutions given by equations (42-43) and (52-53) can be used instead of 

the exact solutions given by Eqs. (32) and (35), respectively. It is clear that equations(42-43) and (52-53) are 

very convenient for τ≤0.25. 

 

IV. Results and Discussion 
When a disk and a fluid at infinity rotate with the same angular velocity about non-coincident axes, the 

fluid layer in each z= constant plane rotates as a rigid body with their angular velocity. The coordinates of the 

rotation centers of these fluid layers in this paper are obtained by  
x

l
= −g/Ωl and   

y

l
= −f/Ωl for 0 ≤ ζ <

∞.Thus the velocity components in the planes parallel to the xy-plane are calculated according to the 

coordinates. 

In our problem, the disk and the fluid at infinity are initially rotating with the same angular velocity 

about two parallel axes normal to the disk. Hence, the initial condition becomes the solution given by 

Corier(1972).Because of the rotation about the common axis for t>0, the fluid tends to a rigid body rotation and 
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it rotates about the z’-axis in the steady flow, as expected (Figures 1-2). In the limit as τ→∞, this result is readily 

acquired from Eq. (41) for every ζ. 
At the region near the disk, the projections of the rotation enter of the fluid layers on the xy-plane are in 

the second quadrant until the computed value τ=2.05158.After this instant, the projections are in the first 

quadrant. The projections continue to be in both the first and second quadrants as time elapses, and they reach 

the point o’(0, l ,0) in the steady flow. 

Since the shear stress components  Txz and Tyz do not depend on x and y, (Txz )ζ=0  and (Tyz )ζ=0 are 

related to the x and y-components of the force per unit area exerted by the fluid on the disk ,respectively .At 
small times ,the components become negative and positive in the x- and y-directions, respectively; however, the 

x-component is larger than the y-component. The components change their directions continuously and finally 

go to zero. As shown in Figure 4, these components become equal at some values of time (for 

example(Txz )ζ=0 = (Tyz )ζ=0 = 0.11928) for τ=1.37947 and (Txz )ζ=0 = (Tyz )ζ=0 = −0.02951) for τ=4.22331). 

 

 
 

 

 
 

V. Conclusion 
The unsteady viscous flow for produced by a sudden coincidence of the axes of a disk and the fluid at 

infinity rotating with the uniform angular velocity Ω has been studied. Exact solution of the governing equation 

has been obtained using Laplace transform technique are analysis to produced the result.  It is found that the 

fluid tense to uniform motion in the curse of time  τ > 0. 
 

 

 

Reference 
[1]. Abramowitz, M., and Stegun, I.A., Handbook of Mathematical Functions, Dover Publications, NewYork, 1965. 

[2]. Berker, R., \An Exact Solution of the Navier-Stokes Equation: The Vortex with Curvilinear Axis", Int.J. Eng. Sci., 20, 217-230, 

1982. 

Figure 1 :  variation of f/ Ωl versus ξ for various values of 𝝉            Figure 2:  Variation of g/Ωl versus ξ for   various    values of 𝝉 

 



Investigation of Viscous Fluid in A Rotating Disk 

www.iosrjournals.org                                                    47 | Page 

[3]. Coirier, J., \Rotations non Coaxiales d'un Disque etd'un Fluide _a L'in_ni", J. M_ecanique, 11, 317-340,1972. 

[4]. Erdo_gan, M.E., \Flow due to Eccentric Rotating a Porous Disk and a Fluid at In_nity", J. Appl. Mech. - T. ASME,43E, 203-204, 

1976a. 

[5]. Erdo_gan, M.E., \Non-Newtonian Flow due to Noncoaxially Rotations of a Disk and a Fluid at In_nity", Z. Angew.Math. Mech., 

56, 141-146, 1976b. 

[6]. Erdo_gan, M.E., \Flow due to Noncoaxially Rotations of a Porous Disk and a Fluid at In_nity", Rev. Roum. Sci.Techn.- M_ec. 

Appl., 22, 171-178, 1977. 

[7]. Erdo_gan, M.E., \Unsteady Flow of a Viscous Fluid due to Non-Coaxial Rotations of a Disk and a Fluid at In_nity", Int. J. Non-

Linear Mech:, 32, 285-290, 1997. 

[8]. Erdo_gan, M.E., \Flow Induced by Non-Coaxial Rotation of a Disk Executing Non- Torsional Oscillations and a Fluid Rotating at 

In_nity", Int. J. Eng.Sci., 38, 175-196, 2000. 

[9]. K. R. Rajagopal, “On the flow of a simple fluid in an orthogonal rheometer,” Archive for Rational Mechanics and Analysis, vol. 79, 

no. 1, pp. 39–47, 1982. 

[10]. T. Hayat, R. Ellahi, S. Asghar, and A. M. Siddiqui, “Flow induced by non-coaxial rotation of a porous disk executing non-torsional 

oscillations and a second grade fluid rotating at infinity,” Applied Mathematical Modelling, vol. 28, no. 6, pp. 591–605, 2004. 


