Ideal of Prime Γ-Rings with Right Reverse Derivations

Salah Mehdi Salih and Marwa Riyadh Salih

Al-Mustansirya University College of Education Department of Mathematics

Abstract: In this paper some results concerning to right reverse derivation on prime Γ -rings are presented if M be a prime Γ -ring with non-zero right reverse derivation d and U be the ideal of M, then M is commutative. **Mathematics Subject Classification:** 16A70, 16N60, 16W25 **Keywords:** prime Γ -ring, derivation, reverse derivation.

I. Introduction:

The concepts of a Γ -ring was first by Nodusawa [5] in 1964. Now a day his Γ -ring is called a Γ -ring in the sense of Nobusawa this Γ -ring is generalized by W.E.Barnes [1] in a broad sense that served now- a day to call Γ -ring

Let M and Γ be additive abelian groups, if there exists a mapping M x Γ x M \rightarrow M: (x, α ,y) \rightarrow x α y which satisfies the following conditions ,for all a,b,c \in M and α , $\beta \in \Gamma$:

1. $(a + b) \alpha c = a\alpha c + b\alpha c$

 $a(\alpha + \beta) b = a\alpha b + a\beta b$

 $a\alpha(b+c) = a\alpha b + a\alpha c$

2. $(a\alpha b)\beta c = a\alpha(b\beta c)$

Then M is called a Γ -ring. [1]

We writ $[x, y]_{\alpha}$ for $x\alpha y - y\alpha x$. Recall that a Γ -ring M is called prime if $a\Gamma M\Gamma b = 0$ implies a=0 or b=0 and it is called semiprime if $a\Gamma M\Gamma a = 0$ implies a=0, a Γ -ring M is called commutative if $[x, y]_{\alpha} = 0$ for all $x, y \in M$ and $\alpha \in \Gamma$, Bresar and Vakman [2] have introduced the notion of a reverse derivation, the reverse derivation on semi prime rings have been studied by Samman and Alyamani [6] and K.KDey, A.IC.Paul, I.S.Rakhimov [3] have introduced the concepts of reverse derivation on Γ -ring as an additive mapping d from M in to M is called reverse derivation if $d(x\alpha y) = d(y)\alpha x + y\alpha d(x)$, for all $x, y \in M$, $\alpha \in \Gamma$ and we consider an assumption (*) by $x\alpha y\beta z = x\alpha y\beta z$ for all $x, y, z \in U, \alpha, \beta \in \Gamma$, where U is ideal of Γ -ring.

Taking the above as assumption (*) the basic commutate identities reduce to $[x\beta y, z]_{\alpha} = x\beta[y, z]_{\alpha} + [x, z]_{\alpha}\beta y$ and $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z$ for all x,y,z \in U and for all $\alpha, \beta \in \Gamma$ which are used extensively in our results

C.J.S.Reddy and K.Hemavathi [4] studied the right reverse derivation on prim ring and we extend in this paper the results mentioned above to prime Γ -rings case

II. The Main Results:

In this section we introduce the main results of this paper we begin with the following theorem:

Theorem(1):Let M be a prime Γ -ring,U a non zero ideal of M and d be a right reverse derivation of M ,if U is non-commutative such that (*) for all x, y, $z \in U$ And $\alpha, \beta \in \Gamma$, then d=0.

Proof: Since d is right reverse derivation and since (*) then Let d $(x\alpha x\beta y) = d(y)\beta x\alpha x + d(x)\alpha x\beta y + d(x)\alpha x\beta y$ $=d(y)\beta x\alpha x + d(x)\beta x\alpha y + d(x)\alpha x\beta y(1)$ On the other hand $d(x\alpha x\beta y) = d(x\alpha (x\beta y))$ $=d(x\beta y)\alpha x + d(x)\alpha x\beta y$ $=d(y)\beta x\alpha x + d(x)\beta y\alpha x + d(x)\alpha x\beta y(2)$ Compare (1) and (2) we get $d(x)\beta y\alpha x = d(x)\beta x\alpha y = 0$ $\Rightarrow d(x)\beta (y\alpha x - \alpha x) = 0$ $\Rightarrow d(x)\beta [y, x]_{\alpha} = 0$ for all x, $y \in U, \alpha, \beta \in \Gamma.....(3)$ We replace y by y βz in equation (3) and using (3) we get : $d(x)\beta[y\beta z, x]_{\alpha} = 0$ for all x,y,z \in U and $\alpha,\beta\in\Gamma$ $\Rightarrow d(x)\beta y\beta[z, x]_{\alpha} + d(x)\beta[y, x]_{\alpha}\beta z = 0$ $\Rightarrow d(x)\beta y\beta[z, x]_{\alpha} = 0$ for all x,y,z \in U and $\alpha,\beta\in\Gamma$ (4) By writing y by y α m,m \in M in equation (4) we obtain $\Rightarrow d(x)\beta y\alpha$ m $\beta[z, x]_{\alpha} = 0$ for all x,y,z \in U and $\alpha,\beta\in\Gamma$,m \in M If we interchange m and y, then we get $\Rightarrow d(x)\beta$ m $\alpha y\beta[z, x]_{\alpha} = 0$ for all x,y,z \in U, m \in M and $\alpha,\beta\in\Gamma$ By primness property, either d(x) = 0 (or) [z, x]_{\alpha} = 0 Since U is non-commutative, then d = 0.

Theorem(2):Let M be a prime Γ -ring, U is ideal of M and d be a non-zero right reverse derivation of M. if $[d(y), d(x)]_{\alpha} = [y, x]_{\alpha}$ such that (*) for all x, y, z \in U and $\alpha, \beta \in \Gamma$, then $[x, d(x)]_{\alpha} = 0$ and hence M is commutative.

Proof:

Gavin that $[d(y), d(x)]_{\alpha} = [y, x]_{\alpha}$ for all $x, y \in U, \alpha \in \Gamma$ By taking $y\beta$ x instead of y in the hypothesis, then we get $[y\beta x, x]_{\alpha} = [d(y\beta x), d(x)]_{\alpha}$ $\Rightarrow y\beta[x,x]_{\alpha} + [y,x]_{\alpha}x = [d(x)\beta y + d(y)\beta x, d(x)]_{\alpha}$ $\Rightarrow [y, x]_{\alpha}\beta x = (d(x)\beta y + d(y)\beta x)\alpha d(x) - d(x)\alpha (d(x)\beta y + d(y)\beta x)$ $\Rightarrow [y, x]_{\alpha}\beta x = d(x)\beta y\alpha d(x) + d(y)\beta x\alpha d(x) - d(x)\alpha d(x)\beta y - d(x)\alpha d(y)\beta x$ Adding and subtracting $d(y)\beta d(x)\alpha x$ $\Rightarrow [y, x]_{\alpha}\beta x = d(x)\beta y\alpha d(x) + d(y)\beta x\alpha d(x) - d(x)\alpha d(x)\beta y - d(x)\alpha d(y)\beta x + d(y)\beta d(x)\alpha x - d(y)\beta d(x)\alpha x$ $\Rightarrow [y, x]_{\alpha}\beta x = d(x)\beta y\alpha d(x) + d(y)\beta x\alpha d(x) - d(x)\beta d(x)\alpha y - d(x)\alpha d(y)\beta x + d(y)\alpha d(x)\beta x - d(y)\beta d(x)\alpha x$ $\Rightarrow [y, x]_{\alpha} = d(x)\beta y\alpha d(x) - d(x)\beta d(x)\alpha y + d(y)\beta x\alpha d(x) - d(y)\beta x\alpha d(x) + d(y)\alpha d(x)\beta x - d(x)\alpha d(y)\beta x$ $\Rightarrow [y, x]_{\alpha} \beta x = d(x)\beta[y, d(x)]_{\alpha} + d(y)\beta[x, d(x)]_{\alpha} + [d(y), d(x)]_{\alpha} \beta x$ \Rightarrow d(x) β [y, d(x)]_{α} + d(y) β [x, d(x)]_{α} = 0(5) Replace y by cay where $c \in Z(M)$ and using equation (5) we get, $\Rightarrow d(x)\beta[y, x]_{\alpha} + d(c\alpha y)\beta[x, d(x)]_{\alpha} = 0$ $\Rightarrow d(x)\beta(c\alpha[y, d(x)]_{\alpha} + [c, d(x)]_{\alpha}\alpha y) + (d(y)\alpha c + d(c)\alpha y)\beta[x, d(x)]_{\alpha} = 0$ \Rightarrow cad(x) β [y, d(x)]_a + [d(x) β c, d(x)]_a ay + cad(y) β [x, d(x)]_a $+ d(c)\alpha y\beta[x, d(x)]_{\alpha} = 0$ $\Rightarrow -\operatorname{cad}(y)\beta[x, d(x)]_{\alpha} + d(x)\beta c, d(x)]_{\alpha}\alpha y + \operatorname{cad}(y)\beta[x, d(x)]_{\alpha} + d(c)\alpha y\beta[x, d(x)]_{\alpha} = 0$ \Rightarrow d(c) α y β [x, d(x)]_{\alpha} = 0 for all x, y \in U and α , $\beta \in \Gamma$ Since $0 \neq d(c) \in Z(M)$ and U is ideal of M, then we have $[x, d(x)]_{\alpha} = 0$ for all $x \in U$ By using the similar procedure as in theorem (1) then we get either d(x)=0 (or) $[z, x]_{\alpha}=0$ Since d is non-zero, then $[z, x]_{\alpha} = 0$ Hence M is commutative.

Theorem (3): Let M be a prime Γ -ring, U is ideal of M and d be a non-zero right reverse derivation of M. if $[d(y), d(x)]_{\alpha} = 0$ for all $x, y \in U, \alpha, \beta \in \Gamma$, then M is commutative. **Proof:**

Given that $[d(y), d(x)]_{\alpha} = 0$ for all $x, y \in U$ and $\alpha \in \Gamma$ By taking $y\beta x$ instead of y in the hypothesis, then we get, $\Rightarrow [d(y\beta x), d(x)]_{\alpha} = 0$ for all $x, y \in U$ and $\alpha, \beta \in \Gamma$ $\Rightarrow [d(x)\beta y + d(y)\beta x, d(x)]_{\alpha} = 0$ $\Rightarrow [d(x)\beta y, d(x)]_{\alpha} + [d(y)\beta x, d(x)]_{\alpha} = 0$ $\Rightarrow d(x)\beta[y, d(x)]_{\alpha} + [d(x), d(x)]_{\alpha}\beta y + d(y)\beta[x, d(x)]_{\alpha} + [d(y), d(x)]_{\alpha}\beta x = 0$ $\Rightarrow d(x)\beta[y, d(x)]_{\alpha} + d(y)\beta[x, d(x)]_{\alpha} = 0$ (6) The proof is now completed by using equation (5) of theorem (2). Hence M is commutative.

References

- [1]
- W.E.Barnes, 1966, "on the gamma rings of Nobusawa", pacific .J. math 18, 411-422.M.Bresar and J.Vukman ,on some additive mapping in rings with involution, equation math, 38(1989), 178-185. [2] [3]
- K.K.Dey ,A.C.Paul, I.S.Rakhimove "Semiprim Gamma Rings With Orthogonal Reverse Derivations", International Journal Of Pure and Applied Mathematics, vol.83, No.2, 2013, 233-245.
- C.J.S.Reddy and K.Hemavathi, "right reverse derivation on prime rings", International Journal of Research in Engineering and Tec, [4] vol.2, Issue 3, 2014, 141-144.
- [5] [6]
- N.Nobusawa, 1964, "on a generalization of the ring theory " Osaka J. Math.1, 81-89. M.Samman and N.Alyamani, "Derivation and reverse derivations in semiprim rings", International Mathematical forum2, No.39, (2007), 1895-1902.