Ideal of Prime Γ-Rings with Right Reverse Derivations

Salah Mehdi Salih and Marwa Riyadh Salih
Al-Mustansirya University College of Education
Department of Mathematics

Abstract: In this paper some results concerning to right reverse derivation on prime Γ-rings are presented if M be a prime Γ-ring with non-zero right reverse derivation d and U be the ideal of M, then M is commutative.
 Mathematics Subject Classification: 16A70, 16N60, 16W25

Keywords: prime Г-ring, derivation,reverse derivation.

I. Introduction:

The concepts of a Γ-ring was first by Nodusawa [5] in 1964. Now a day his Γ-ring is called a Γ-ring in the sense of Nobusawa this Γ-ring is generalized by W.E.Barnes [1] in a broad sense that served now- a day to call Γ-ring
Let M and Γ be additive abelian groups, if there exists a mapping $\mathrm{M} \times \Gamma \mathrm{x} M \rightarrow \mathrm{M}:(\mathrm{x}, \alpha, \mathrm{y}) \rightarrow \mathrm{x} \alpha \mathrm{y}$ which satisfies the following conditions , for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$:

1. $(\mathrm{a}+\mathrm{b}) \alpha \mathrm{c}=\mathrm{a} \alpha \mathrm{c}+\mathrm{b} \alpha \mathrm{c}$
$a(\alpha+\beta) b=a \alpha b+a \beta b$

$$
a \alpha(b+c)=a \alpha b+a \alpha c
$$

2. $(\mathrm{a} \alpha \mathrm{b}) \beta \mathrm{c}=\mathrm{a} \alpha(\mathrm{b} \beta \mathrm{c})$

Then M is called a Γ-ring. [1]
We writ $[x, y]_{\alpha}$ for $\mathrm{x} \alpha \mathrm{y}$ - yox. Recall that a Γ-ring M is called prime if $\mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{b}=0$ implies $\mathrm{a}=0$ or $\mathrm{b}=0$ and it is called semiprime if $\mathrm{a} \Gamma \mathrm{M} \mathrm{a}=0$ implies $\mathrm{a}=0, \mathrm{a} \Gamma$-ring M is called commutative if $[x, y]_{\alpha}=0$ for all $x, y \in M$ and $\alpha \in \Gamma, B r e s a r$ and Vakman [2] have introduced the notion of a reverse derivation, the reverse derivation on semi prime rings have been studied by Samman and Alyamani [6] and K.KDey, A.IC.Paul, I.S.Rakhimov [3] have introduced the concepts of reverse derivation on Γ-ring as an additive mapping d from M in to M is called reverse derivation if $d(x \alpha y)=d(y) \alpha x+y \alpha d(x)$, for all $x, y \in M, \alpha \in \Gamma$ and we consider an assumption (*) by $x \alpha y \beta z=x \alpha y \beta z$ for all $x, y, z \in U, \alpha, \beta \in \Gamma$, where U is ideal of Γ-ring.
Taking the above as assumption $\left({ }^{*}\right)$ the basic commutate identities reduce to $[x \beta y, z]_{\alpha}=x \beta[y, z]_{\alpha}+[x, z]_{\alpha} \beta y$ and $[x, y \beta z]_{\alpha}=y \beta[x, z]_{\alpha}+[x, y]_{\alpha} \beta z$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$ and for all $\alpha, \beta \in \Gamma$ which are used extensively in our results
C.J.S.Reddy and K.Hemavathi [4] studied the right reverse derivation on prim ring and we extend in this paper the results mentioned above to prime Γ-rings case

II. The Main Results:

In this section we introduce the main results of this paper we begin with the following theorem:

Theorem(1):Let M be a prime Γ-ring, U a non zero ideal of M and d be a right reverse derivation of M, if U is non-commutative such that (*) for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$ And $\alpha, \beta \in \Gamma$, then $\mathrm{d}=0$.
Proof:
Since d is right reverse derivation and since $\left(^{*}\right)$ then
Let $\mathrm{d}(\mathrm{x} \alpha \mathrm{x} \beta \mathrm{y})=\mathrm{d}(\mathrm{y}) \beta \mathrm{x} \alpha \mathrm{x}+\mathrm{d}(\mathrm{x}) \alpha \mathrm{x} \beta \mathrm{y}+\mathrm{d}(\mathrm{x}) \alpha \mathrm{x} \beta \mathrm{y}$
$=\mathrm{d}(\mathrm{y}) \beta \mathrm{x} \alpha \mathrm{x}+\mathrm{d}(\mathrm{x}) \beta \mathrm{x} \alpha \mathrm{y}+\mathrm{d}(\mathrm{x}) \alpha \mathrm{x} \beta \mathrm{y} \ldots \ldots$. (1)
On the other hand
$\mathrm{d}(\mathrm{x} \alpha \mathrm{x} \beta \mathrm{y})=\mathrm{d}(\mathrm{x} \alpha(\mathrm{x} \beta \mathrm{y}))$
$=\mathrm{d}(\mathrm{x} \beta \mathrm{y}) \alpha \mathrm{x}+\mathrm{d}(\mathrm{x}) \alpha \mathrm{x} \beta \mathrm{y}$
$=\mathrm{d}(\mathrm{y}) \beta \mathrm{x} \alpha \mathrm{x}+\mathrm{d}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{x}+\mathrm{d}(\mathrm{x}) \alpha \mathrm{x} \beta \mathrm{y}$
Compare (1) and (2) we get
$\mathrm{d}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{x}=\mathrm{d}(\mathrm{x}) \beta \mathrm{x} \alpha \mathrm{y}$
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{x}-\mathrm{d}(\mathrm{x}) \beta \mathrm{x} \alpha \mathrm{y}=0$
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta(\mathrm{y} \alpha \mathrm{x}-\mathrm{x} \alpha \mathrm{y})=0$
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta[y, x]_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}, \alpha, \beta \in \Gamma \ldots$

We replace y by $\mathrm{y} \beta \mathrm{z}$ in equation (3) and using (3) we get :
$\mathrm{d}(\mathrm{x}) \beta[y \beta z, x]_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$ and $\alpha, \beta \in \Gamma$
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta \mathrm{y} \beta[\mathrm{z}, x]_{\alpha}+\mathrm{d}(\mathrm{x}) \beta[y, x]_{\alpha} \beta \mathrm{z}=0$
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta \mathrm{y} \beta[z, x]_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$ and $\alpha, \beta \in \Gamma \ldots . .(4)$
By writing y by $y \alpha m, m \in M$ in equation (4) we obtain
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{m} \beta[\mathrm{z}, x]_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$ and $\alpha, \beta \in \Gamma, \mathrm{m} \in \mathrm{M}$
If we interchange m and y, then we get
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta \mathrm{m} \alpha \mathrm{y} \beta[z, x]_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}, \mathrm{m} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
By primness property, either $\mathrm{d}(\mathrm{x})=0$ (or) $[z, x]_{\alpha}=0$
Since U is non-commutative, then $d=0$.

Theorem(2):Let M be a prime Γ-ring, U is ideal of M and d be a non-zero right reverse derivation of M . if $[d(y), d(x)]_{\alpha}=[y, x]_{\alpha}$ such that (*)for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$ and $\alpha, \beta \in \Gamma$,then $[x, d(x)]_{\alpha}=0$ and hence M is commutative.

Proof:

Gavin that $[d(y), d(x)]_{\alpha}=[y, x]_{\alpha}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}, \alpha \in \Gamma$
By taking y $\beta \mathrm{x}$ instead of y in the hypothesis, then we get
$[y \beta x, x]_{\alpha}=[d(y \beta x), d(x)]_{\alpha}$
$\Rightarrow \mathrm{y} \beta[x, x]_{\alpha}+[y, x]_{\alpha} \mathrm{x}=[d(x) \beta y+d(y) \beta x, d(x)]_{\alpha}$
$\Rightarrow[y, x]_{\alpha} \beta \mathrm{x}=(\mathrm{d}(\mathrm{x}) \beta \mathrm{y}+\mathrm{d}(\mathrm{y}) \beta \mathrm{x}) \alpha \mathrm{d}(\mathrm{x})-\mathrm{d}(\mathrm{x}) \alpha(\mathrm{d}(\mathrm{x}) \beta \mathrm{y}+\mathrm{d}(\mathrm{y}) \beta \mathrm{x})$
$\Rightarrow[y, x]_{\alpha} \beta \mathrm{x}=\mathrm{d}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{d}(\mathrm{x})+\mathrm{d}(\mathrm{y}) \beta \mathrm{x} \alpha \mathrm{d}(\mathrm{x})-\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{x}) \beta \mathrm{y}-\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y}) \beta \mathrm{x}$
Adding and subtracting $\mathrm{d}(\mathrm{y}) \beta \mathrm{d}(\mathrm{x}) \alpha \mathrm{x}$
$\Rightarrow[y, x]_{\alpha} \beta \mathrm{x}=\mathrm{d}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{d}(\mathrm{x})+\mathrm{d}(\mathrm{y}) \beta \mathrm{x} \alpha \mathrm{d}(\mathrm{x})-\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{x}) \beta \mathrm{y}-\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y}) \beta \mathrm{x}+\mathrm{d}(\mathrm{y}) \beta \mathrm{d}(\mathrm{x}) \alpha \mathrm{x}-\mathrm{d}(\mathrm{y}) \beta \mathrm{d}(\mathrm{x}) \alpha \mathrm{x}$
$\Rightarrow[y, x]_{\alpha} \beta \mathrm{x}=\mathrm{d}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{d}(\mathrm{x})+\mathrm{d}(\mathrm{y}) \beta \mathrm{x} \alpha \mathrm{d}(\mathrm{x})-\mathrm{d}(\mathrm{x}) \beta \mathrm{d}(\mathrm{x}) \alpha \mathrm{y}-\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y}) \beta \mathrm{x}+\mathrm{d}(\mathrm{y}) \alpha \mathrm{d}(\mathrm{x}) \beta \mathrm{x}-\mathrm{d}(\mathrm{y}) \beta \mathrm{d}(\mathrm{x}) \alpha \mathrm{x}$
$\Rightarrow[y, x]_{\alpha}=\mathrm{d}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{d}(\mathrm{x})-\mathrm{d}(\mathrm{x}) \beta \mathrm{d}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{d}(\mathrm{y}) \beta \mathrm{x} \alpha \mathrm{d}(\mathrm{x})-\mathrm{d}(\mathrm{y}) \beta \mathrm{x} \alpha \mathrm{d}(\mathrm{x})+\mathrm{d}(\mathrm{y}) \alpha \mathrm{d}(\mathrm{x}) \beta \mathrm{x}-\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y}) \beta \mathrm{x}$
$\Rightarrow[y, x]_{\alpha} \beta \mathrm{x}=\mathrm{d}(\mathrm{x}) \beta[y, d(x)]_{\alpha}+\mathrm{d}(\mathrm{y}) \beta[x, d(x)]_{\alpha}+[d(y), d(x)]_{\alpha} \beta \mathrm{x}$
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta[y, d(x)]_{\alpha}+\mathrm{d}(\mathrm{y}) \beta[x, d(x)]_{\alpha}=0 \ldots . .(5)$
Replace y by c $\alpha \mathrm{y}$ where $\mathrm{c} \in \mathrm{Z}(\mathrm{M})$ and using equation (5) we get,
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta[y, x]_{\alpha}+\mathrm{d}(\mathrm{c} \alpha \mathrm{y}) \beta[x, d(x)]_{\alpha}=0$
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta\left(\mathrm{c} \alpha[y, d(x)]_{\alpha}+[c, d(x)]_{\alpha} \alpha \mathrm{y}\right)+(\mathrm{d}(\mathrm{y}) \alpha \mathrm{c}+\mathrm{d}(\mathrm{c}) \alpha \mathrm{y}) \beta[x, d(x)]_{\alpha}=0$
$\Rightarrow \operatorname{cod}(\mathrm{x}) \beta[y, d(x)]_{\alpha}+[\mathrm{d}(\mathrm{x}) \beta c, d(x)]_{\alpha} \alpha \mathrm{y}+\operatorname{cod}(\mathrm{y}) \beta[x, d(x)]_{\alpha}$
$+\mathrm{d}(\mathrm{c}) \alpha \mathrm{y} \beta[x, d(x)]_{\alpha}=0$
$\left.\Rightarrow-\operatorname{cod}(\mathrm{y}) \beta[x, d(x)]_{\alpha}+\mathrm{d}(\mathrm{x}) \beta c, d(x)\right]_{\alpha} \alpha \mathrm{y}+\operatorname{c} \alpha \mathrm{d}(\mathrm{y}) \beta[x, d(x)]_{\alpha}+\mathrm{d}(\mathrm{c}) \alpha \mathrm{y} \beta[x, d(x)]_{\alpha}=0$
$\Rightarrow \mathrm{d}(\mathrm{c}) \alpha \mathrm{y} \beta[x, d(x)]_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ and $\alpha, \beta \in \Gamma$
Since $0 \neq \mathrm{d}(\mathrm{c}) \in \mathrm{Z}(\mathrm{M})$ and U is ideal of M , then we have $[x, d(x)]_{\alpha}=0$ for all $\mathrm{x} \in \mathrm{U}$
By using the similar procedure as in theorem (1) then we get either $\mathrm{d}(\mathrm{x})=0$ (or) $[z, x]_{\alpha}=0$
Since d is non-zero, then $[z, x]_{\alpha}=0$
Hence M is commutative.

Theorem (3): Let M be a prime Γ-ring, U is ideal of M and d be a non-zero right reverse derivation of M. if $[d(y), d(x)]_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}, \alpha, \beta \in \Gamma$, then M is commutative.

Proof:

Given that $[d(y), d(x)]_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ and $\alpha \in \Gamma$
By taking $\mathrm{y} \beta \mathrm{x}$ instead of y in the hypothesis, then we get,
$\Rightarrow[d(y \beta x), d(x)]_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ and $\alpha, \beta \in \Gamma$
$\Rightarrow[d(x) \beta y+d(y) \beta x, d(x)]_{\alpha}=0$
$\Rightarrow[d(x) \beta y, d(x)]_{\alpha}+[d(y) \beta x, d(x)]_{\alpha}=0$
$\Rightarrow d(x) \beta[y, d(x)]_{\alpha}+[d(x), d(x)]_{\alpha} \beta y+d(y) \beta[x, d(x)]_{\alpha}+[d(y), d(x)]_{\alpha} \beta x=0$
$\Rightarrow \mathrm{d}(\mathrm{x}) \beta[y, d(x)]_{\alpha}+\mathrm{d}(\mathrm{y}) \beta[x, d(x)]_{\alpha}=0$
The proof is now completed by using equation (5) of theorem (2).
Hence M is commutative.

References

[1] W.E.Barnes, 1966, "on the gamma rings of Nobusawa ",pacific .J. math 18, 411-422.
[2] M.Bresar and J.Vukman ,on some additive mapping in rings with involution, equation math, 38(1989), 178-185.
[3] K.K.Dey ,A.C.Paul, I.S.Rakhimove "Semiprim Gamma Rings With Orthogonal Reverse Derivations", International Journal Of Pure and Applied Mathematics, vol.83, No.2, 2013, 233-245.
[4] C.J.S.Reddy and K.Hemavathi, "right reverse derivation on prime rings", International Journal of Research in Engineering and Tec , vol.2, Issue 3, 2014, 141-144.
[5] N.Nobusawa, 1964, "on a generalization of the ring theory " Osaka J. Math.1, 81-89.
[6] M.Samman and N.Alyamani, "Derivation and reverse derivations in semiprim rings", International Mathematical forum2, No.39, (2007), 1895-1902.

