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Abstract: In this paper we investigate of multi-server retrial queue system .Server provides two stages of 

homogeneous service in succession. The customer has to complete first service from  first  server then to the 

second server of the service. After completion of the second service, the second server takes Bernoulli vacation. 

On arriving customer on finding a free for the first server enters into service immediately, and   goes for the 

second server; otherwise the customer enters into an orbit of infinite service. An orbiting customer competes for 

the service by sending signals at random times until a free server is captured. Using the above concept we 

obtain steady state behaviour of multiserver.  
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I. Introduction 
In this paper, an M/M/2 queueing model with server vacation is taken .The  server providing service  

one by one ,provides the  second server  is an fixed size k( .The customers are queued up for the first 
service ,which is essential for all customer s .The second server give an optional service is demand for some  the 

customer  whereas the others leave the system after the first server provide the service . Considerable attention 

has been paid to the analysis of queueing systems retrial [3] queues.  

  

II. Model Description 
Assume that the customers arrive at the system in accordance with a Poisson process with rate .If 

arriving customer finds the server idle ,the customer enters the service immediately and go for the second server 

.If the server found to be blocked ,the arriving customer enters a retrial queue . The customer at the head of the 

retail queue attempts to reach the server in a retrial time distributed with general distribution function A(x), 

density function a(x). and Laplace –Stieltjes transform A *(x).The service times are independent ,identically 

distributed with common distribution function B(X),density function b(x) and Laplace –Stieltjes transform B 
*(x).The vacation  period of the server has ,each service completion epoch ,the server may go for vacation. Here 

one of the service dependent upon the another service for the customer .Here any customer who has not yet 

completed service in unit-I will be called a I-customer .If have said   because of free from the server, 

otherwise customer wait to get the server in the probability 1- .Customer go for the service in unit-II get a 

service  otherwise wait and get the service 1-  Anyone who has completed service in I but not yet in II will 

be referred to as a II-customer. 

The finite capacity of unit-II is expressed by the restriction. There can never be more the k+1 II-

customers in the system. Whenever the number of II-Customers reaches K+1 we say that the system blocks. 

The service mechanism in II may be different depending on whether Unit-I is blocked or not. The description 

below covers a large number of different operating procedures for unit-II.Some rather practical examples could 

be the following: 

 If blocking is penalized we may wish to study the effect and cost of accelerated service in unit-I 

 If the occurrence rather than the duration of blocking is generalized we may require that several customers 

be processed in II before the system becomes unblocked and service in I is resumed. 

 If the time between the beginning of a blocked period and the next departure of an II-customer is too long, 

the blocked customer in I may require extra service thus extending the blocked period. 

An instance of this might be an ingot which has to be reheated if the time between its service 

completion in I and its access to II is too long, so that its temperature drops below an allowable level. 

 

III. Analysis Of The System 
 (A). Service In Ii When The System Is Not Blocked: 

Let T1 and T2  be two successive epochs of arrival in unit-II and let the system be unblocked at time 

T1+0.The system is then necessarily unblocked during the entire interval (T1 , T2) .we will then assume that in 

the interval (T1 , T2)the departure process from II is a Markovian death process with possibly state-dependent 
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death rates . Specifically , let T1<t<t+dt< T2  and let there be j II-customers in the system at time t , then the 

event that a customer’s leaves in (t , t +dt) depends only on j and has probability dt with =0 and  for 

j=1,2,…………..k. 

 

(B). Service In Ii When The System Is Blocked:  

Let T be the any epoch in which the number of II-customers in the system reaches k+1.T is necessarily 

the time of a service completion in unit-I and we refer to the corresponding customer as the blocking customer. 

The system remains blocked until a later time T’ when the blocking customer is released into unit II.We assume 

that the duration T’-T of the blocked time is stochastically independent of the arrival process, the service 

process in I and conditionally independent of the      service process in unit II before time T. 
The probability that T’-T is at most x and that the number of II-customer at T’+0 is equal to j will be denoted by 

Hj(x) with  

                                                                          (3.1) 

is an honest probability distribution with finite mean . We set  

We assume that at T’+0 the service mechanism in unit II becomes again as described in (i) above. The 

reader should note that two consecutive blocked intervals must always be separated by an interval of time during 

which the system is not blocked. In order to see this, we observe that at the end of a blocked period the blocking 

customer is released into unit II. There is therefore no customer in unit I who has completed service. This 

automatically makes the system unblocked. 

 

(C). The Simple Death (Departure) Process: 

Let   denote the negative exponential distribution of mean .Suppose that we have a simple 

Markovian death process with  I individuals at time t=0,0<i k.If at any time t there are v individuals then the 

probability that a death, here a departure from  II occurs in (t,t+dt) is given by . We denote by 

 the conditional probability that there are j individuals at time t , given that there are where I at t=0.The 

probability    are given by 

 

 

 
 

                                                           (3.2) 

These expressions are elementary and follow from the independence of the times between successive 

deaths. This it is a consequence of the Markov assumption. 

A (k+1) –state Markov renewal process, related to the service process in unit-II 

As long as there is a steady supply of customers in unit I, it is possible to describe the behavior of the system in 

terms of a finite Markov renewal process. This will be made precise later, but at this state it is worthwhile to 

make the following heuristic consideration .Consider any instant of time in which there are  

Customers in I, one of which just begin service. If we disregard for the time being any new arrivals to I, 

then let  be the epochs in which these I customers begin service in unit  I and let   be 

the time of the  iTh service .Let    ,n=0,1,2,3i be the number of II-customers at  

,n=0,1,2,……………i.It then follows readily from the assumptions on the system that the random 

variables  may be regarded as the first i+1 states  and 

sojourn times in a Markov renewal processes with k+1 states 1,2,3,…………………..k+1.The transition 

probability  

                                                          (3.3) 

And  

                                                           (3.4) 

 
This formula corresponds to the case where there is a blocked period between the two successive 

service completions in unit I. 

 
For future reference, we note that  
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                                                                         ……………………………. (3.5) 

                                                                         

                                                                          =  

We note that  for r=1, 2, 3,……..k+1 

                                                                           (3.6) 

The stochastic matrix   } is irreducible. We will denote its stationary probabilities by 

We note for future use that  

 

                                                                (3.7) 

We define  

                                                     (3.8) 

And observe that 

                                                                   (3.9) 

So that the matrix  is the i- fold matrix –convolution of the matrix R(.)={ } 

with itself .In terms of Laplace –Stieltjes transform we obtain the following .If is the (k+1)X(K+1) matrix 

of Laplace –Stieltjes  transform of the distribution   we have  

,                                                                               (3.10) 

We define   the identified matrix.The successive Busy Cycles in Parallel queues In the 

queueing system under study, it does not suffice to distinguish simply between busy and idle periods for the  

unit-I. The possibility that unit-I is simultaneously empty and blocked may lead to quit complicated transitions , 

which we have to discuss in detail. Let  and let be the successive epochs in which unit I 

become empty: ie  is the instant in which, for the nth time, there is a service completion in unit I such that all 

remaining customers in the system are II-Customers . We will call the interval ) the initial busy 

cycle and the intervals ), ), ),…… the ordinary busy cycles. Furthermore, let  and let 

 be the number of II-customers in the system at the epochs ) we will call   the state of the circle of the 

busy cycle  ).It follows  readily from the basic assumptions concerning the input and service 

processes ,that the random variables ,n>=0 from a (k+1) –state Markov chain and that the random variables   

,n>=0 .Are the conditionally independent given the Markov chain . Thus the busy cycles and 

their states from a (k+1)-state Markov renewal processes. This will be one of the basic imbedded processes of 

the queueing system .For n>=1,the transition probability matrix of the Markov renewal processes  of buys is 

cycles is define by 

                                                       (3.11) 

. We will represent its Laplace –Stieltjes transform by the matrix  

. For the initial busy cycle, the transition probability matrix   is defined by 

                                                       (3.12) 

.Its Laplace-Stieltjes transform will be denoted by   

is the number of I-customers at t=0. Let at any time the number of I-customers be I and let 

one of these customers just enter service (i>=j).The additional time required until for the first time thereafter, 

there are no more I-customers in the system ,will be called a busy period with I I-customers initially .A busy 
period with one I-customer initially is simply called a busy period. 

 

IV. Conclusion 
In this paper, we have proposed multiserver retrial queue with Bernoulli vacation time. The system of 

equations for this second server is obtained. We analyzed that multi-server retrial queue system. Server provides 

two stages of homogeneous service in succession. We have formulated the queueing model by a Steady state 
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conditions. For future study, we plan to take into account the impatience of customers in the queueing model 

and investigate the ergodic condition. Furthermore, we also pay attention to the derivation of the waiting time 

distribution. 
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