On Jordan Generalized Higher Reverse Derivations on Γ-rings

Salah Mehdi Salih and Marwa Riyadh Salih
Al-Mustansirya University College of Education Department of Mathematics

Abstract: In this paper, we study the concepts of generalized higher reverse derivation and Jordan generalized higher reverse derivation and Jordan generalized triple higher reverse derivation on Γ-ring M.
The aim of this paper is prove that every Jordan generalized higher reverse derivation of Γ-ring M is generalized higher reverse derivation of M.
Mathematics Subject Classification: 16U80, 16W25

Key word: Γ-ring, prime Γ-ring, semiprime Γ-ring, derivation, higher derivation, generalized higher derivation of Γ-ring, reverse derivation of R

I. Introduction

The concepts of a Γ-ring was first introduced by Nobusause[9] in 1964 this Γ-ring is generalized by W.E.Barnesin [2] a broad sense that served now a day to call a Γ-ring.

Let M and Γ be two additive abelian groups. Suppose that there is a mapping from $M \times \Gamma \times M \rightarrow M$ (the image of (a, α, b) being denoted by $a \alpha b, a, b \in M$ and $\alpha \in \Gamma)$ satisfying for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$
i) $(a+b) \alpha c=a \alpha c+b \alpha c$
$a(\alpha+\beta) c=a \alpha c+a \beta c$
$a \alpha(b+c)=a \alpha b+a \alpha c$
ii) $(\mathrm{a} \alpha \mathrm{b}) \beta \mathrm{c}=\mathrm{a} \alpha(\mathrm{b} \beta \mathrm{c})$

Then M is called a Γ-ring.[2]
Throughout this paper M denotes a Γ-ring with center $Z(M)[1]$, recall that a $-\Gamma$ ring M is called prime if $\mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{b}=(0)$ implies $\mathrm{a}=\mathrm{o}$ or $\mathrm{b}=0[8]$, and it is called semiprime if $\mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{a}=(0)$ implies $\mathrm{a}=\mathrm{o}[6]$, a prim Γ-ring is obviously semiprime and a Γ-ring M is called 2-torision free if $2 \mathrm{a}=0$ implies $\mathrm{a}=0$ for every $\mathrm{a} \in \mathrm{M}$ [5], an additive mapping d from M into itself is called a derivations if $d(a \alpha b)=d(a) \alpha b+a \alpha d(b)$, for all $a, b \in M, \alpha \in \Gamma$ [7] and d is said to be Jordan derivation of a Γ-ring M if $d(a \alpha a)=d(a) \alpha a+a \alpha d(a)$, for all $a \in M, \alpha \in \Gamma$ [7].A mapping f from M into itself is called generalized derivation of M if there exists derivation d of M such that
$f(a \alpha b)=f(a) \alpha b+a \alpha d(b)$, for all $a, b \in M, \alpha \in \Gamma[4]$. And f is said to be Jordan generalized derivation of Γ-ring M if there exists Jordan derivation of M such that $f(a \alpha a)=f(a) \alpha a+a \alpha d(a)$
for all $\mathrm{a} \in \mathrm{M}$ and $\alpha \in \Gamma[4]$.
Bresar and Vukman[3] have introduced the notion of a reverse derivation as an additive mapping d from a ring R into itself satisfying $d(x y)=d(y) x+y d(x)$ for all $x, y \in R$.
M. Sammn[10] presented the study between the derivation and reverse derivation in semiprime ring R. Also it is shown that non-commutative prime rings don't admit a non-trivial skew commuting derivation. We defined in [11] the concepts of higher reverse derivation of Γ-ring M as follow:
Let $\mathrm{D}=\left(\mathrm{d}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be additive mappings on a ring R then D is called higher reverse derivation of Γ-ring M if

$$
\mathrm{d}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{~d}_{\mathrm{i}}(\mathrm{y}) \alpha \mathrm{d}_{\mathrm{j}}(\mathrm{x})
$$

For all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$
and Jordan higher reverse derivation of Γ-ring M if

$$
d_{n}(x \alpha x)=\sum_{i+j=n} d_{i}(x) \alpha d_{j}(x)
$$

and Jordan triple higher reverse derivation of Γ-ring M if

$$
d_{n}(x \alpha y \beta x)=d_{n}(x) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} d_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)
$$

For all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$
also we proved that every Jordan higher reverse derivation of a Γ-ring M is higher reverse derivation of M [11], the main object of this paper is present the concepts of generalized higher reverse derivation , Jordan
generalized higher reverse derivation of Γ-ring M and we prove that every Jordan generalized higher reverse derivation of Γ-ring M is generalized higher reverse derivation of M.

II. Generalized Higher Reverse Derivation of $Г$-Rings

In this section we introduce and study of concepts of generalized higher reverse derivation, Jordan generalized higher reverse derivation and Jordan generalized triple higher reverse derivation of Γ-ring.

Definition 2.1:

Let M be a Γ-ring and $F=(f i)_{i \in N}$ be a family of additive mappings of M such that $f_{0}=\operatorname{id}_{M}$ then F is called generalized higher reverse derivation of \mathbf{M} if there exists a higher reverse derivation $D=(d i)_{i \in N}$ of M such that for all $\mathrm{n} \in \mathrm{N}$ we have :

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{f}_{\mathrm{i}}(\mathrm{y}) \alpha \mathrm{d}_{\mathrm{i}}(\mathrm{x}) \ldots(\mathrm{i})
$$

F is called a Jordan generalized higher reverse derivation of \mathbf{M} if there exists a Jordan higher reverse derivation $D=(d i)_{i \in N}$ of M such that for all $n \in N$ we have :

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{f}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{d}_{\mathrm{j}}(\mathrm{x}) \tag{ii}
\end{equation*}
$$

For every $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$
F is said to be a Jordan generalized triple higher reverse derivation of \mathbf{M} if there exists Jordan triple higher reverse derivation $D=(d i)_{i \in N}$ of M for all $n \in N$ we have:

$$
\begin{equation*}
f_{n}(x \alpha y \beta x)=f_{n}(x) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x) \tag{iii}
\end{equation*}
$$

For every $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$

Example 2.2:

Let $F=\left(f_{i}\right)_{i \in N}$ be a generalized higher reverse derivation on a ring R then there exists a higher reverse derivation $d=\left(f_{i}\right)_{i \in N}$ of R such that

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{xy})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{f}_{\mathrm{i}}(\mathrm{y}) \mathrm{d}_{\mathrm{j}}(\mathrm{x})
$$

We take $M=M_{1 \times 2}(R)$ and $\Gamma=\left\{\binom{n}{0}: n \in Z\right\}$, then M is Γ-ring .
We define $D=(D i)_{i \in N}$ be a family of additive mappings of M such that $D_{n}(a \quad b)=\left(d_{n}(a) d_{n}(b)\right)$ then D is higher reverse derivation of M .
Let $F=\left(f_{i}\right)_{i \in N}$ be a family of additive mappings of M defined by $F_{n}(a b)=\left(f_{n}(a) f_{n}(b)\right)$
Then F is a generalized higher reverse derivation of M .
It is clear that every generalized higher reverse derivation of a Γ-ring M is Jordan generalized
Higher reverse derivation of M, But the converse is not true in general.

Lemma 2.3

Let M be a Γ-ring and let $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a Jordan generalized higher reverse derivation of M then for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$, $\alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$,the following statements hold :
i) $f_{n}(x \alpha y+y \alpha x)=\sum_{i+j=n}^{i<n} f_{i}(y) \alpha d_{j}(x)+f_{i}(x) \alpha d_{j}(y)$

In particular if $y \in Z(M)$
ii) $f_{n}(x \alpha y \beta x+x \beta y \alpha x)=f_{n}(x) \beta x \alpha y+\sum_{i+j+r=}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)+f_{n}(x) \alpha x \beta y$
$+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(y) \beta d_{r}(x)$
iii) $f_{n}(x \alpha y \alpha x)=f_{n}(x) \alpha x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(y) \alpha d_{r}(x)$
iv) $f_{n}(x \alpha y \alpha z+z \alpha y \alpha x)=f_{n}(z) \alpha x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \alpha d_{j}(y) \alpha d_{r}(x)+f_{n}(x) \alpha z \alpha y+\sum_{i+j+r=}^{i<n} f_{i}(x) \alpha d_{j}(y) \alpha d_{r}(z)$
v) $f_{n}(x \alpha y \beta z)=f_{n}(z) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \beta d_{j}(y) \alpha d_{r}(x)$
vi) $f_{n}(x \alpha y \beta z+z \alpha y \beta x)=f_{n}(z) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \beta d_{j}(y) \alpha d_{r}(x)+f_{n}(x) \beta z \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(z)$

Proof:
i)Replace $(x+y)$ for x and y in definition 2.1 (i) we get :

$$
\begin{align*}
& f_{n}((x+y) \alpha(x+y))=\sum_{i+j=n} f_{i}(x+y) \alpha d_{j}(x+y) \\
& =\sum_{i+j=n} f_{i}(x) \alpha d_{j}(x)+f_{i}(y) \alpha d_{j}(x)+f_{i}(x) \alpha d_{j}(y)+f_{i}(y) \alpha d_{j}(y) \tag{1}
\end{align*}
$$

On the other hand:

$$
\begin{align*}
& f_{n}((x+y) \alpha(x+y))=f_{n}(x \alpha x+x \alpha y+y \alpha x+y \alpha y) \\
& =f_{n}(x \alpha x+y \alpha y)+f_{n}(x \alpha y+y \alpha x) \\
& =\sum_{i+j=n} f_{i}(x) \alpha d_{j}(x)+f_{i}(y) \alpha d_{j}(y)+f_{n}(x \alpha y+y \alpha x) \tag{2}
\end{align*}
$$

Compare (1) and (2) we get:
$f_{n}(x \alpha y+y \alpha x)=\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)+f_{i}(x) \alpha d_{j}(y)$
ii) Replacing $x \beta y+y \beta x$ for y in 2.3 (i) we get:
$f_{n}(x \alpha(x \beta y+y \beta x)+(x \beta y+y \beta x) \alpha x)$
$=f_{n}(x \alpha(x \beta y)+x \alpha(y \beta x)+(x \beta y) \alpha x+(y \beta x) \alpha x)$
$=\mathrm{f}_{\mathrm{n}}((\mathrm{x} \alpha \mathrm{x}) \beta \mathrm{y}+(\mathrm{x} \alpha \mathrm{y}) \beta \mathrm{x}+(\mathrm{x} \beta \mathrm{y}) \alpha \mathrm{x}+(\mathrm{y} \beta \mathrm{x}) \alpha \mathrm{x}$
$=\sum_{i+j=n} f_{i}(y) \beta d_{j}(x \alpha x)+f_{i}(x) \beta d_{j}(x \alpha y)+f_{i}(x) \alpha d_{i}(x \beta y)+f_{i}(x) \alpha d_{j}(y \beta x)$
$=\sum_{i+j+r=n} f_{i}(y) \beta d_{j}(x) \alpha d_{r}(x)+f_{i}(x) \beta d_{j}(y) \alpha f_{i}(x)+f_{i}(x) \alpha d_{j}(y) \beta d_{r}(x)$
$+\mathrm{f}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{d}_{\mathrm{j}}(\mathrm{x}) \beta \mathrm{d}_{\mathrm{r}}(\mathrm{y})$
$=f_{n}(y) \beta x \alpha x+\sum_{i+j+r=n}^{i<n} f_{i}(y) \beta d_{j}(x) \alpha d_{r}(x)+f_{n}(x) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)$
$+f_{n}(x) \alpha x \beta y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(y) \beta d_{r}(x)+f_{n}(x) \alpha y \beta x+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(x) \beta d_{r}(y) \ldots(1)$
On the other hand:
$f_{n}(x \alpha(x \beta y+y \beta x)+(x \beta y+y \beta x) \alpha x)=f_{n}(x \alpha x \beta y+x \alpha y \beta x+x \beta y \alpha x+y \beta x \alpha x)$
$=f_{n}(y) \beta x \alpha x+\sum_{i+j+r=n}^{i<n} f_{i}(y) \beta d_{j}(x) \alpha d_{r}(x)+f_{n}(x) \alpha y \beta x+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(x) \beta d_{r}(y)$
$+f_{n}(x \alpha y \beta x+x \beta y \alpha x)$
Compare (1) and (2) we get the require result.
iii) Replacing α for β in 2.3 (ii) we have:
$f_{n}(x \alpha y \alpha x+x \alpha y \alpha x)=2\left(f_{n}(x \alpha y \alpha x)\right)$
$=2\left(f_{n}(x) \alpha x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(y) \alpha d_{r}(x)\right)$
Since M is 2-torsion free then we get:
$f_{n}(x \alpha y \alpha x)=f_{n}(x) \alpha x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(y) \alpha d_{r}(x)$
iv) Replacing $\mathrm{x}+\mathrm{z}$ for x in 2.3 (iii) we have:

$$
\begin{align*}
f_{n}((x+y) \alpha y \alpha(x+y)) & =f_{n}(x+z) \alpha(x+z) \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x+z) \alpha d_{j}(y) \alpha d_{r}(x+z) \\
& =f_{n}(x) \alpha x \alpha y+\sum_{i+j+r=n}^{i+n} f_{i}(x) \alpha d_{j}(y) \alpha d_{r}(x) \\
& +f_{n}(z) \alpha x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \alpha d_{j}(y) \alpha d_{r}(x) \\
& +f_{n}(x) \alpha z \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(y) \alpha d_{r}(z) \\
+f_{n}(z) \alpha z \alpha y & +\sum_{i+j+r=n}^{i<n} f_{i}(z) \alpha d_{j}(y) \alpha d_{r}(z) \tag{1}
\end{align*}
$$

On the other hand:
$f_{n}((x+y) \alpha y \alpha(x+z))=f_{n}(x \alpha y \alpha x+x \alpha y \alpha z+z \alpha y \alpha x+z \alpha y \alpha z)$
$=f_{n}(x) \alpha x y \alpha+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(y) \alpha d_{r}(x)$
$+f_{n}(z) \alpha z \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \alpha d_{j}(y) \alpha d_{r}(z)+f_{n}(x \alpha y \alpha z+z \alpha y \alpha x)$
Compare (1) and (2) we get the require result.
(v) Replace $(\mathrm{x}+\mathrm{z})$ for x in definition 2.1(iii) we have:
$f_{n}\left((x+z) \alpha y \beta(x+z)=f_{n}(x+z) \beta(x+z) \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x+z) \beta d_{j}(y) \alpha d_{r}(x+z)\right.$

$$
\begin{align*}
& =f_{n}(x) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)+f_{n}(z) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \beta d_{j}(y) \alpha d_{r}(x) \\
& +f_{n}(z) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \beta d_{j}(y) \alpha d_{r}(x)+f_{n}(z) \beta z \alpha y \sum_{i+j+r=n}^{i<n} f_{i}(z) \beta d_{j}(y) \alpha d_{r}(z) \ldots \tag{1}
\end{align*}
$$

On the other hand:
$f_{n}((x+z) \alpha y \beta(x+z))=f_{n}(x \alpha y \beta x+x \alpha y \beta z+z \alpha y \beta x+z \alpha y \beta z)$
$=f_{n}(x \alpha y \beta x+z \alpha y \beta x+z \alpha y \beta z)+f_{n}(x \alpha y \beta z)$
$=f_{n}(x) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)$
$+f_{n}(x) \beta z \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(z)+f_{n}(z) \beta z \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \beta d_{j}(y) \alpha d_{r}(z)$
$+f_{n}(x \alpha y \beta z)$
Compare (1) and (2) we get:
$f_{n}(x \alpha y \beta z)=f_{n}(z) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \beta d_{j}(y) \alpha d_{r}(x)$
vi)Replace $(x+z)$ for x in definition 2.1(iii) we have:

$$
\begin{aligned}
& f_{n}((x+z) \alpha y \beta(x+z))=f_{n}(x+z) \beta(x+z) \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x+z) \beta d_{j}(y) \alpha d_{r}(x+z) \\
& =\left(f_{n}(x)+f_{n}(z)\right) \beta(x+z) \alpha y+\sum_{i+j+r=n}^{i<n}\left(f_{i}(x)+f_{i}(z)\right) \beta d_{j}(y) \alpha\left(d_{r}(x)+d_{r}(z)\right) \\
& =\mathrm{f}_{\mathrm{n}}(\mathrm{x}) \beta \mathrm{x} \alpha \mathrm{y}+\mathrm{f}_{\mathrm{n}}(\mathrm{z}) \beta \mathrm{x} \alpha \mathrm{y}+\mathrm{f}_{\mathrm{n}}(\mathrm{x}) \beta \mathrm{z} \alpha \mathrm{y}+\mathrm{f}_{\mathrm{n}}(\mathrm{z}) \beta \mathrm{z} \alpha \mathrm{y} \\
& +\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)+f_{i}(z) \beta d_{j}(y) \alpha d_{r}(x)+f_{i}(x) \beta d_{j}(y) \alpha d_{r}(z) \\
& +\mathrm{f}_{\mathrm{i}}(\mathrm{z}) \beta \mathrm{d}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{d}_{\mathrm{r}}(\mathrm{z}) \ldots \ldots . . \text { (1) }
\end{aligned}
$$

On the other hand:
$f_{n}((x+z) \alpha$ y $\beta(x+z))=f_{n}(x \alpha y \beta x+x \alpha y \beta z+z \alpha y \beta x+z \alpha y \beta z)$
$=f_{n}(x \alpha y \beta x+z \alpha y \beta z)+f_{n}(x \alpha y \beta z+z \alpha y \beta x)$
$=f_{n}(x) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)$
$+f_{n}(z) \beta z \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(z) \beta d_{j}(y) \alpha d_{r}(z)+f_{n}(x \alpha y \beta z+z \alpha y \beta x) \ldots \ldots$ (2)
Compare (1) and (2) we get the require result

Definition 2.4:

Let $F=\left(f_{i}\right)_{i \in N}$ be a Jordan generalized higher reverse derivation of a Γ-ring M,then for all $x, y \in M$ and $\alpha \in \Gamma$ we define:

$$
\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}=\mathrm{f}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y})-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{f}_{\mathrm{i}}(\mathrm{y}) \alpha \mathrm{d}_{\mathrm{j}}(\mathrm{x})
$$

In the following lemma introduce some properties of $\delta_{n}(x, y)_{\alpha}$

Lemma 2.5

If $F=\left(f_{i}\right)_{i \in N}$ is a Jordan generalized higher reverse derivation of Γ-ring M then for all $x, y, z \in M, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$:
i. $\quad \delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}=-\delta_{\mathrm{n}}(\mathrm{y}, \mathrm{x})_{\alpha}$
ii. $\quad \delta_{\mathrm{n}}(\mathrm{x}+\mathrm{y}, \mathrm{z})_{\alpha}=\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{z})_{\alpha}+\delta_{\mathrm{n}}(\mathrm{y}, \mathrm{z})_{\alpha}$
iii. $\quad \delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y}+\mathrm{z})_{\alpha}=\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}+\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{z})_{\alpha}$
iv. $\quad \delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha+\beta}=\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}+\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\beta}$

Proof:
i. by lemma 2.3 (i) and since f_{n} is additive mapping of M we get:
$f_{n}(x \alpha y+y \alpha x)=\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)+f_{i}(x) \alpha d_{j}(y)$
$f_{n}(x \alpha y)+f_{n}(y \alpha x)=\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)+\sum_{i+j=n} f_{i}(x) \alpha d_{j}(y)$
$f_{n}(x \alpha y)-\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)=-f_{n}(y \alpha x)+\sum_{i+j=n} f_{i}(x) \alpha d_{j}(y)$
$f_{n}(x \alpha y)-\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)=-\left(f_{n}(y \alpha x)-\sum_{i+j=n} f_{i}(x) \alpha d_{j}(y)\right)$
$\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}=-\delta_{\mathrm{n}}(\mathrm{y}, \mathrm{x})_{\alpha}$.
ii.
$\delta_{n}(x+y, z)_{\alpha}=f_{n}((x+y) \alpha z)-\sum_{i+j=n} f_{i}(z) \alpha d_{j}(x+y)$
$=f_{n}(x \alpha z+y \alpha z)-\left(\sum_{i+j=n} f_{i}(z) \alpha d_{j}(x)+f_{i}(z) \alpha d_{j}(y)\right)$
$=f_{n}(x \alpha z)-\sum_{i+j=n} f_{i}(z) \alpha d_{j}(x)+f_{n}(y \alpha z)-\sum_{i+j=n} f_{i}(z) \alpha d_{j}(y)$
$=\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{z})_{\alpha}+\delta_{\mathrm{n}}(\mathrm{y}, \mathrm{z})_{\alpha}$.iii.
$\delta_{n}(x, y+z)_{\alpha}=f_{n}(x \alpha(y+z))-\sum_{i+j=n} f_{i}(y+z) \alpha d_{j}(x)$
$=f_{n}(x \alpha y+x \alpha z)-\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)-f_{i}(z) \alpha d_{j}(x)$
Since f_{n} is additive mapping of M then we have:
$=f_{n}(x \alpha y)-\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)+f_{n}(x \alpha z)-\sum_{i+j=n} f_{i}(z) \alpha d_{j}(x)$
$=\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}+\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{z})_{\alpha}$.
iv.
$\delta_{n}(x, y)_{\alpha+\beta}=f_{n}(x(\alpha+\beta) y)-\sum_{i+j=n} f_{i}(y)(\alpha+\beta) d_{j}(x)$
$=f_{n}(x \alpha y+x \beta y)-\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)-f_{i}(y) \beta d_{j}(x)$
Since f_{n} is additive mapping
$=f_{n}(x \alpha y)-\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)+f_{n}(x \beta y)-\sum_{i+j=n} f_{i}(y) \beta d_{j}(x)$
$=\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}+\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\beta}$.

Remark 2.6:

Note that $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ is generalized higher reverse derivation of a Γ-ring M if and only if $\delta_{n}(\mathrm{x}, \mathrm{y})_{\alpha}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$.

III. The Main Results

In this section we present the main results of this paper.

Theorem 3.1:

Let $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a Jordan generalized higher reverse derivation of M then $\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}=0$ for all $x, y \in M, \alpha \in \Gamma$ and $n \in N$.

Proof:
By lemma 2.3 (i) we get:
$f_{n}(x \alpha y+y \alpha x)=\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)+f_{i}(x) \alpha d_{j}(y)$
On the other hand:
Since f_{n} is additive mapping of the Γ-ring M we have:
$f_{n}(x \alpha y+y \alpha x)=f_{n}(x \alpha y)+f_{n}(y \alpha x)$
$=f_{n}(x \alpha y)+\sum_{i+j=n} f_{i}(x) \alpha d_{j}(y)$
Compare (1) and (2) we get:
$f_{n}(x \alpha y)=\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)$
$f_{n}(x \alpha y)-\sum_{i+j=n} f_{i}(y) \alpha d_{j}(x)=0$

By definition 2.5 we get:
$\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}=0$

Corollary 3.2:

Every Jordan generalized higher reverse derivation of Γ-ring M is generalized higher reverse derivation of M .
Proof:
By theorem 3.1 we get $\delta_{\mathrm{n}}(\mathrm{x}, \mathrm{y})_{\alpha}=0$ and by Remark 2.6 we get the require result .

Proposition 3.3

Every Jordan generalized higher reverse derivation of a 2-torision free Γ-ring M such that $x \alpha y \beta z=$ $x \beta y \alpha z$ and $y \in Z(M)$ is Jordan generalized triple higher reverse derivation of M.

Proof:
Let $F=\left(f_{i}\right)_{i \in N}$ be a Jordan generalized higher reverse derivation of M
Replace y by $(x \beta y+y \beta x)$ in lemma 2.3 (i) we get

$$
\begin{align*}
& f_{n}(x \alpha(x \beta y+y \beta x)+(x \beta y+y \beta x) \alpha x)=f_{n}((x \alpha(x \beta y)+x \alpha(y \beta x)+(x \beta y \alpha) x+(y \beta x) \alpha x) \\
& =f_{n}((x \alpha x) \beta y+(x \alpha y) \beta x+(x \beta y) \alpha x+(y \beta x) \alpha x) \\
& =\sum_{i+j=n} f_{i}(y) \beta d_{j}(x \alpha x)+f_{i}(x) \beta d_{j}(x \alpha y)+f_{i}(x) \alpha d_{j}(x \beta y)+f_{i}(x) \alpha d_{j}(y \beta x) \\
& =\sum_{i+j+r=n} f_{i}(y) \beta d_{j}(x) \alpha d_{r}(x)+f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)+f_{i}(x) \alpha d_{j}(y) \beta d_{r}(x)+f_{i}(x) \alpha d_{j}(x) \beta d_{r}(y) \\
& =f_{n}(y) \beta x \alpha x+\sum_{i+j+r=n}^{i<n} f_{i}(y) \beta d_{j}(x) \alpha d_{r}(x)+f_{n}(x) \beta x \alpha y+\sum_{i=j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x) \\
& +f_{n}(x) \alpha x \beta y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(y) \beta d_{r}(x)+f_{n}(x) \alpha y \beta x+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(x) \beta d_{r}(y) \ldots \ldots .(1) \tag{1}
\end{align*}
$$

On the other hand:
$f_{n}(x \alpha(x \beta y+y \beta x)+(x \beta y+y \beta x) \alpha x)=f_{n}(x \alpha x \beta y+x \alpha y \beta x+x \beta y \alpha x+y \beta x \alpha x)$
$=f_{n}(x \alpha x \beta y+y \beta x \alpha x)+f_{n}(x \alpha y \beta x+x \beta y \alpha x)$
$=f_{n}(y) \beta x \alpha x+\sum_{i+j+r=n}^{i<n} f_{i}(y) \beta d_{j}(x) \alpha d_{r}(x)$
$+f_{n}(x) \alpha y \beta x+\sum_{i+j+r=n}^{i<n} f_{i}(x) \alpha d_{j}(x) \beta d_{r}(y)+f_{n}(x \alpha y \beta x+x \beta y \alpha x)$
Compare (1) and (2) and since $x \alpha y \beta z=x \beta y \alpha z$ we get
$f_{n}(x \alpha y \beta x+x \alpha y \beta x)=2\left(f_{n}(x \alpha y \beta x)\right)$
$=2\left(f_{n}(x) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)\right)$
Since M is a 2-torision free then we have:

$$
f_{n}(x \alpha y \beta x)=f_{n}(x) \beta x \alpha y+\sum_{i+j+r=n}^{i<n} f_{i}(x) \beta d_{j}(y) \alpha d_{r}(x)
$$

References

[1]. M. Asci and S. ceran, "The commutativity in prime gamma rings with left derivation", International Mathematical ,Vol. 2, No.3, pp. 103-108, 2007.
[2]. W. E. Barnes "On The Γ-rings of Nobusawa", Pacific J . Math ,Vol. 18 ,PP .411-422, 1966.
[3]. M. Bresar and J. Vukman, On Some additive mappings in rings with involution, Aequation Math., 38(1989), 178-185.
[4]. Y. Ceven and M. A.Ozlurk" On Jordan Generalized Derivation in Gamma rings ", Hacettepe, J. of Mathematics and Statistics, Vol. 33 ,pp. 11-14, 2004
[5]. S. Chakraborty and A .c. Paul, "On Jordan K-derivation of 2-torision free Γ_{N}-ring" Punjab University J-of Math., Vol. 40 , pp. 97 101, 2008.
[6]. T. K. Dutta and S . K .Sadar, "Semmiprime Ideals and Irreducible Ideal Of Γ-semirings", Novi sad J. Math, Vol. 30 ,No. 1 ,pp. $97-$ 108,2000.
[7]. F.J Jing,"On Derivation Of Γ-rings" Q U F U Shi Fan DaxueXuebeoZiranKexueBan ,Vol.13, No. , PP.159-161, 1987.
[8]. S.Kyuno, "On Prime Gamma Rings" ,pacific J. of Math., Vol.75, pp.185-190, 1987
[9]. N. Nobusawa, 1964, "On a generalization of the ring theory" Osaka J. Math. 1,81-89.
[10]. M .Samman and N. Alyamani ,"Derivation and Reverse Derivation in Semiprime Rings" ,International Mathematical Forum ,2 , No. 39, 1895-1902, 2007.
[11]. S. M.Salih and M.R.Salih " On Jordan Generalized Higher Reverse Derivations in Γ-rings" to appear.

