Some Properties of Annihilator Graph of a Commutative Ring

Priyanka Pratim Baruah¹, Kuntala Patra²

¹Department of Mathematics, Girijananda Chowdhury Institute of Management and Technology Guwahati - 781017, India ²Department of Mathematics, Gauhati University, Guwahati - 781014, India

Abstract: Let R be a commutative ring with unity. Let Z(R) be the set of all zero-divisors of R. For $x \in Z(R)$, let $ann_R(x) = \{y \in R \mid yx = 0\}$. We define the annihilator graph of R, denoted by $ANN_G(R)$, as the undirected graph whose set of vertices is $Z(R)^* = Z(R) - \{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq ann_R(x) \cap ann_R(y)$. In this paper, we study the ring-theoretic properties of R and the graph-theoretic properties of $ANN_G(R)$. For a commutative ring R, we show that $ANN_G(R)$ is connected, the diameter of $ANN_G(R)$ is at most two and the girth of $ANN_G(R)$ is at most four provided that $ANN_G(R)$ has a cycle. For a reduced commutative ring R, we study some characteristics of the annihilator graph ANNG(R) related to minimal prime ideals of R. Moreover, for a reduced commutative ring R, we establish some equivalent conditions which describe when $ANN_G(R)$ is a complete graph or a complete bipartite graph or a star graph.

Keywords: Annihilator graph, diameter, girth, zero-divisor graph. 2010 Mathematics Subject Classification: Primary 13A15; Secondary 05C25, 05C38, 05C40.

1. Introduction

Let R be a commutative ring with unity, and Z(R) be its set of all zero-divisors. For every $X \subseteq R$, we denote $X = \{0\}$ by X*. The concept of a zero-divisor graph of a commutative ring R was first introduced by I. Beck in [6], where all the elements of the ring R were taken as the vertices of the graph. In [2], D. F. Anderson and P. S. Livingston modified this concept by taking the zero-divisor graph $\Gamma(R)$ whose vertices are the nonzero zero-divisors of a commutative ring R and two distinct vertices x and y are adjacent if and only if xy = 0. In [2], for a commutative ring R it was shown that $\Gamma(R)$ is connected with $diam(\Gamma(R)) \le 3$ and that $gr(\Gamma(R)) \le 4$ if $\Gamma(R)$ contains a cycle (This was proved for commutative artinian rings in [2]) In general, if $\Gamma(R)$ contains a cycle it was shown that $gr(\Gamma(R)) \le 4$ in [11] and [7] and a simple proof is given in [4]. Thus $diam(\Gamma(R)) \in \{0, 1, 2, 3\}$ and $gr(\Gamma(R)) \in \{3, 4, \infty\}$. For $x \in Z(R)$, let $ann_R(x) = \{y \in R \mid yx = 0\}$. In [5], A. Badawi defined and studied the annihilator graph AG(R) of a commutative ring R, where the set of vertices of AG(R) is $Z(R)^* = Z(R) - \{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq ann_R(x) \cup ann_R(y)$. In [5], it was shown that $diam(AG(R)) \in \{0, 1, 2\}$ and $gr(AG(R)) \in \{0, 1, 2\}$ $\{3, 4, \infty\}$. In this paper, we give the definition of the *annihilator graph* in another way. In this paper, we define the annihilator graph of R, denoted by $ANN_G(R)$, as the undirected graph whose set of vertices is $Z(R)^* =$ $Z(R) - \{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq ann_R(x) \cap ann_R(y)$. It follows that each edge (path) of the zero-divisor graph $\Gamma(R)$ and the annihilator graph AG(R) (AG(R) was defined by A. Badawi in [5]) is an edge (path) of $ANN_G(R)$, but converse may not be true. We show that $ANN_G(R)$ is connected with diameter at most two. If $ANN_G(R)$ contains a cycle, we show that girth of $ANN_G(R)$ is at most four. For a reduced commutative ring R, we show that the annihilator graph $ANN_G(R)$ is identical to the zero-divisor graph $\Gamma(R)$ if and only if R has exactly two minimal prime ideals. Then for a reduced commutative ring R, we show that the annihilator graph $ANN_G(R)$ is identical to the zero-divisor graph $\Gamma(R)$, as well as to the annihilator graph AG(R) (AG(R)) was defined by A. Badawi in [5]) if and only if R has exactly two minimal prime ideals. Moreover, for a reduced commutative ring R, we establish some equivalent conditions which describe when $ANN_G(R)$ is a complete graph or a complete bipartite graph or a star graph.

For the sake of completeness, we state some definitions and notations used throughout this paper. Let *G* be an undirected graph. We denote the *vertex set* and the *edge set* of *G* by V(G) and E(G). We say that *G* is *connected* if there exists a path between any two distinct vertices. A *subgraph* of *G* is a graph having all of its points and lines in G. A *spanning subgraph* is a subgraph containing all the vertices of *G*. The *distance* between two vertices *x* and *y* of *G*, denoted by d(x, y), is the length of a shortest path connecting them (d(x, x) = 0 and if such a path does not exist, then $d(x, y) = \infty$. The *diameter* of *G* is $diam(G) = sup\{d(x, y) \mid x \text{ and } y \text{ are vertices of } G$. The *girth* of *G*, denoted by gr(G), is the length of a shortest cycle in *G* (if *G* contains no cycle,

then $gr(G) = \infty$). We denote by C^n the graph consisting of a *cycle* with *n* vertices. A graph *G* is *complete* if any two distinct vertices are adjacent. The complete graph with *n* vertices will be denoted by K^n (we allow *n* to be an infinite cardinal). A *complete bipartite* graph is a graph *G* which may be partitioned into two disjoint nonempty vertex sets *A* and *B* such that two distinct vertices are adjacent if and only if they are in distinct vertex sets. If one of the vertex set is singleton, we call *G* is a *star graph*. We denote the complete bipartite graph by $K^{m,n}$, where |A| = m and |B| = n (we allow *m* and *n* to be an infinite cardinal); hence a star graph is a $K^{1,n}$.

Throughout this paper, *R* is a commutative ring with unity, Z(R) is the set of all zero-divisors of *R*, *Nil*(*R*) is the set of all nilpotent elements of *R*, U(R) is the group of units, T(R) is the total quotient ring of *R* and *Min*(*R*) is the set of all minimal prime ideals of *R*. For every $X \subseteq R$, we denote $X - \{0\}$ by X^* . We call *R* is *reduced* if *Nil*(*R*) = $\{0\}$. The distance between two distinct vertices *x* and *y* of $\Gamma(R)$ will be denoted by $d_{\Gamma(R)}(x, y)$. For any two graphs *G* and *H*, if *G* is identical to *H*, then we write G = H; otherwise, we write $G \neq H$. As usual, the ring of integers and the ring of integers modulo *n* will be denoted by \mathbb{Z} and \mathbb{Z}_n , respectively. Any undefined notation or terminology is standard as in [8] or [9].

2. Some basic properties of $ANN_G(R)$

This section provides the study of some basic properties of the annihilator graph $ANN_G(R)$. If $|Z(R)^*| = 1$ for a commutative ring *R*, then *R* is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2[X] / \langle X^2 \rangle$. In this case $ANN_G(R) = \Gamma(R)$, $ANN_G(R) = AG(R)$ and thus $ANN_G(R) = AG(R) = \Gamma(R)$. Hence throughout this article, we consider commutative rings with more than one nonzero zero-divisors.

Lemma 2.1. Let *R* be a commutative ring.

(1) Let x and y be distinct elements of $Z(R)^*$. Then x - y is not an edge of $ANN_G(R)$ if and only if $ann_R(x) = ann_R(xy) = ann_R(y)$.

(2) If x - y is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$, then x - y is an edge of $ANN_G(R)$. In particular, if P is a path in $\Gamma(R)$, then P is a path in $ANN_G(R)$.

(3) If $d_{\Gamma(R)}(x, y) = 3$ for some distinct $x, y \in Z(R)^*$, then x - y is an edge of $ANN_G(R)$.

(4) If x - y is not an edge of $ANN_G(R)$ for some distinct $x, y \in Z(R)^*$, then there is a $w \in Z(R)^* - \{x, y\}$ such that x - w - y is a path in $\Gamma(R)$, and hence x - w - y is also a path in $ANN_G(R)$.

(5) If x - y is an edge of AG(R) for some distinct $x, y \in Z(R)^*$, then x - y is an edge of $ANN_G(R)$. In particular, if P is a path in AG(R), then P is a path in $ANN_G(R)$.

(6) If $ANN_G(R) = \Gamma(R)$, then $ANN_G(R) = AG(R)$.

Proof. (1) Suppose that x - y is not an edge of $ANN_G(R)$. Then $ann_R(xy) = ann_R(x) \cap ann_R(y)$ by definition. Thus $ann_R(xy) \subseteq ann_R(x)$ and $ann_R(xy) \subseteq ann_R(y)$. But $ann_R(x) \subseteq ann_R(xy)$ and $ann_R(y) \subseteq ann_R(xy)$. Hence $ann_R(x) = ann_R(xy) = ann_R(y)$. Conversely, suppose that $ann_R(x) = ann_R(xy) = ann_R(xy) = ann_R(x)$. Then $ann_R(xy) = ann_R(x) \cap ann_R(y)$. Hence x - y is not an edge of $ANN_G(R)$ by definition.

(2) Suppose that x - y is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Then xy = 0 and $ann_R(xy) = ann_R(0) = R$. Since $x \neq 0$, $y \neq 0$ we have $ann_R(x) \neq R$ and $ann_R(y) \neq R$. Therefore $ann_R(xy) \neq ann_R(x)$ and $ann_R(xy) \neq ann_R(y)$. Hence x - y is an edge of $ANN_G(R)$ by (1). In particular, suppose that $P: x_0 - x_1 - x_2 - \dots - x_{n-1}$ is a path of length n in $\Gamma(R)$. Then $x_i - x_{i+1}$ is an edge of $\Gamma(R)$ for all i ($0 \leq i < n - 1$). This implies $x_i - x_{i+1}$ is an edge of $ANN_G(R)$ for all i ($0 \leq i < n - 1$). Hence $P: x_0 - x_1 - x_2 - \dots - x_{n-1}$ is a path of length n in $ANN_G(R)$.

(3) Suppose that $d_{\Gamma(R)}(x, y) = 3$ for some distinct $x, y \in Z(R)^*$. So assume x - a - b - y is a shortest path connecting x and y in $\Gamma(R)$, where $a, b \in Z(R)^*$ and $a \neq b$. This implies xa = 0, ab = 0, by = 0, $xb \neq 0$ and $ay \neq 0$. Now $xa = 0 \Rightarrow xya = 0 \Rightarrow a \in ann_R(xy)$ and by = 0 $\Rightarrow xyb = 0 \Rightarrow b \in ann_R(xy)$. Thus $\{a, b\} \subseteq ann_R(xy)$ such that $a \notin ann_R(y)$ and $b \notin ann_R(x)$. Therefore $ann_R(xy) \neq ann_R(x)$ and $ann_R(xy) \neq ann_R(y)$. Hence x - y is an edge of $ANN_G(R)$ by (1).

(4) Suppose that x - y is not an edge of $ANN_G(R)$ for some distinct $x, y \in Z(R)^*$. Then $ann_R(x) = ann_R(y) = ann_R(xy)$ by (1). Also x - y is not an edge of $\Gamma(R)$ by (2) and hence $xy \neq 0$.

Therefore there is a $w \in ann_R(x) = ann_R(y)$ such that $w \neq 0$. If $w \in \{x, y\}$, then xy = 0, a contradiction. Thus $w \in Z(R)^* - \{x, y\}$ such that x - w - y is a path in $\Gamma(R)$. Hence x - w - y is a path in $ANN_G(R)$ by (2).

(5) Suppose that x - y is an edge of AG(R) for some distinct $x, y \in Z(R)^*$. Then $ann_R(xy) \neq ann_R(x)$ and $ann_R(xy) \neq ann_R(y)$ by [5, Lemma 2.1 (1)]. Hence x - y is an edge of $ANN_G(R)$ by (1). In particular, suppose that $P: x_0 - x_1 - x_2 - \dots - x_{n-1}$ is a path of length n in AG(R). Then $x_i - x_{i+1}$ is an edge of AG(R) for all i ($0 \leq i < n-1$) This implies $x_i - x_{i+1}$ is an edge of $ANN_G(R)$ for all i ($0 \leq i < n-1$). Hence $P: x_0 - x_1 - x_2 - \dots - x_{n-1}$ is a path of length n in $ANN_G(R)$.

(6) Let $ANN_G(R) = \Gamma(R)$. If possible, suppose that $ANN_G(R) \neq AG(R)$. Then there are some distinct $x, y \in Z(R)^*$ such that x - y is an edge of $ANN_G(R)$ that is not an edge of AG(R). So x - y is not an edge of $\Gamma(R)$ by [5, Lemma 2.1 (2)], and hence $ANN_G(R) \neq \Gamma(R)$, a contradiction. Thus $ANN_G(R) = AG(R)$.

Remark 2.1. (1) The converse of the Lemma 2.1 (2) may not be true. In \mathbb{Z}_8 , 2 — 6 is an edge of $ANN_G(\mathbb{Z}_8)$, but 2 — 6 is not an edge of $\Gamma(\mathbb{Z}_8)$.

(2) The converse of the Lemma 2.1 (5) may not be true. In \mathbb{Z}_{12} , 2 — 4 is an edge of $ANN_G(\mathbb{Z}_{12})$, but 2—4 is not an edge of $AG(\mathbb{Z}_{12})$.

(3) Every edge of $\Gamma(R)$ is an edge of $ANN_G(R)$ by Lemma 2.1 (2) and $V(ANN_G(R)) = V(\Gamma(R))$. So $\Gamma(R)$ is a spanning subgraph of $ANN_G(R)$. Again every edge of AG(R) is an edge of $ANN_G(R)$ by Lemma 2.1 (5) and $V(ANN_G(R)) = V(AG(R))$. So AG(R) is also a spanning subgraph of $ANN_G(R)$.

In light of Lemma 2.1 (4), we have the Theorem 2.1

Theorem 2.1. Let R be a commutative ring with $|Z(R)^*| \ge 2$. Then $ANN_G(R)$ is connected and $diam(ANN_G(R)) \le 2$.

Proof. Let x and y be two distinct elements of $Z(R)^*$. If x - y is an edge of $ANN_G(R)$, then d(x, y) = 1. Suppose that x - y is not an edge of $ANN_G(R)$. Then there is a $w \in Z(R)^* - \{x, y\}$ such that x - w - y is a path in $\Gamma(R)$, and hence x - w - y is also a path in $ANN_G(R)$ by Lemma 2.1 (4). Thus d(x, y) = 2. Hence $ANN_G(R)$ is connected and $diam(ANN_G(R)) \le 2$.

Lemma 2.2. Let R be a commutative ring. Suppose that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. If there is a $w \in ann_R(xy) - \{x, y\}$ such that $wx \neq 0$ or $wy \neq 0$, then x - w - y is a path in $ANN_G(R)$ that is not a path in $\Gamma(R)$ and $ANN_G(R)$ contains a cycle C of length 3 such that at least two edges of C are not the edges of $\Gamma(R)$.

Proof. Suppose that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Then $xy \neq 0$. Assume there is a $w \in ann_R(xy) - \{x, y\}$ such that $wx \neq 0$ or $wy \neq 0$. Then we have $y \in ann_R(xw) - \{ann_R(x) \cap ann_R(w)\}$ and $x \in ann_R(yw) - \{ann_R(y) \cap ann_R(w)\}$. Therefore $ann_R(xw) \neq ann_R(x) \cap ann_R(w)$ and $ann_R(yw) \neq ann_R(y) \cap ann_R(w)$. So x - w and y - w are the two edges of $ANN_G(R)$. Thus x - w - y is a path in $ANN_G(R)$. Since $xw \neq 0$ or $wy \neq 0$, we have x - w - y is not a path in $\Gamma(R)$. Hence C : x - w - y - x is a cycle of length 3 in $ANN_G(R)$ and at least two edges C are not the edges of $\Gamma(R)$.

Theorem 2.2. Let *R* be a commutative ring. Suppose that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. If $x^2 y \neq 0$ and $xy^2 \neq 0$, then there is a $w \in Z(R)^* - \{x, y\}$ such that x - w - y is a path in $ANN_G(R)$ that is not a path in $\Gamma(R)$ and $ANN_G(R)$ contains a cycle *C* of length 3 such that at least two edges of *C* are not the edges of $\Gamma(R)$.

Proof. Suppose that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Then $xy \neq 0$ and there is a $w \in ann_R(xy) - \{ann_R(x) \cap ann_R(y)\}$ such that $w \neq 0$. This implies $w \in Z(R)^*$ such that $wx \neq 0$ or $wy \neq 0$. If $w \in \{x, y\}$, then either $x^2y = 0$ or $xy^2 = 0$, a contradiction. Therefore $w \in ann_R(xy) - \{x, y\}$ such that $wx \neq 0$ or $wy \neq 0$. Thus x - w - y is a path in $ANN_G(R)$ that is not a path in $\Gamma(R)$ and $ANN_G(R)$ contains a cycle C of length 3 such that at least two edges of *C* are not the edges of $\Gamma(R)$ by Lemma 2.2.

Corollary 2.2.1. Let R be a reduced commutative ring. Suppose that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Then there is a $w \in ann_R(xy) - \{x, y\}$ such that x - w - y is a path in $ANN_G(R)$ that is not a path in $\Gamma(R)$ and $ANN_G(R)$ contains a cycle C of length 3 such that at least two edges of C are not the edges of $\Gamma(R)$.

Proof. Suppose that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Since R is reduced, we have $(xy)^2 \neq 0$. This implies $x^2y \neq 0$ and $xy^2 \neq 0$. Thus the claim is now clear by Theorem 2.2.

Corollary 2.2.2. Let R be a reduced commutative ring and suppose that $ANN_G(R) \neq \Gamma(R)$. Then $gr(ANN_G(R))$ = 3. Moreover, there is a cycle C of length 3 in $ANN_G(R)$ such that at least two edges of C are not the edges of $\Gamma(R)$.

Proof. Since $ANN_G(R) \neq \Gamma(R)$, there are some distinct $x, y \in Z(R)^*$ such that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$. Since R is reduced, we have $(xy)^2 \neq 0$. This implies $x^2y \neq 0$ and $xy^2 \neq 0$. П Thus the claim is now clear by Theorem 2.2.

Theorem 2.3. Let R be a commutative ring. Suppose that x - y is an edge of $ANN_G(R)$ that is not an edge of AG(R) for some distinct x, $y \in Z(R)^*$. Then there is a $w \in Z(R)^* - \{x, y\}$ such that x - w - y is a path in $ANN_G(R)$ and $ANN_G(R)$ contains a cycle C of length 3 such that exactly one edge of C is not an edge of AG(R).

Proof. Suppose that x - y is an edge of $ANN_G(R)$ that is not an edge of AG(R) for some distinct $x, y \in C$ $Z(R)^*$. Then $ann_R(x) \subseteq ann_R(y)$ or $ann_R(y) \subseteq ann_R(x)$ by [5, Lemma 2.1 (3)], and there is a $w \in$ $Z(R)^* - \{x, y\}$ such that x - w - y is a path in $\Gamma(R)$ [5, Lemma 2.1 (6)]. Thus x - w - y is a path in $ANN_G(R)$ by Lemma 2.1 (2). Hence C: x - w - y - x is a cycle of length 3 in $ANN_G(R)$. We have x - w - y is a path in AG(R) by [5, Lemma 2.1 (2)] and thus exactly one edge of C is not an edge of AG(R).

Corollary 2.3.1. Let R be a commutative ring. Suppose that x - y is an edge of $ANN_G(R)$ that is not an edge of AG(R) for some distinct x, $y \in Z(R)^*$. Then there is a $w \in ann_R(xy) - \{x, y\}$ such that x - w - yis a path in $ANN_G(R)$ and $ANN_G(R)$ contains a cycle C of length 3 such that exactly one edge of C is not an edge of AG(R).

Proof. It follows directly from Theorem 2.3.

Corollary 2.3.2. Let R be a commutative ring and suppose that $ANN_G(R) \neq AG(R)$. Then $gr(ANN_G(R)) = 3$. Moreover, there is a cycle C of length 3 in ANNG(R) such that exactly one edge of C is not an edge of AG(R). **Proof.** Since $ANN_G(R) \neq AG(R)$, there are some distinct $x, y \in Z(R)^*$ such that x - y is an edge of $ANN_G(R)$ that is not an edge of AG(R). Thus the claim is now clear by Theorem 2.3.

Theorem 2.4. Let R be a commutative ring with $|Z(R)^*| \geq 2$. Then $gr(ANN_G(R)) \neq 3$ if and only if $gr(ANN_G(R)) \in \{4, \infty\}.$

Proof. If $gr(ANN_G(R)) \neq 3$, then $ANN_G(R) = AG(R)$ by Corollary 2.3.2. Then we have the following two cases. Case 1: If $ANN_G(R) = AG(R) = \Gamma(R)$, then $gr(ANN_G(R)) = gr(AG(R)) = gr(\Gamma(R))$. We know that

 $gr(AG(R)) = gr(\Gamma(R)) \in \{3, 4, \infty\}$. Thus $gr(ANN_G(R)) \in \{3, 4, \infty\}$. Since $gr(ANN_G(R)) \neq 3$, we have $gr(ANN_G(R)) \in \{4, \infty\}.$ Case 2: If $ANN_G(R) = AG(R) \neq \Gamma(R)$, then $gr(AG(R)) \in \{3, 4\}$ by [5, Corollary 2.11]. Thus

 $gr(ANN_G(R)) \in \{3, 4\}$. Since $gr(ANN_G(R)) \neq 3$, we have $gr(ANN_G(R)) = 4$.

Thus combining both the cases, we have $gr(ANN_G(R)) \in \{4, \infty\}$. Conversely, if $gr(ANN_G(R)) \in \{4, \infty\}$, then clearly $gr(ANN_G(R)) \neq 3$.

Corollary 2.4.1. Let R be a commutative ring with $|Z(R)^*| \ge 2$. Then $gr(ANN_G(R)) \in \{3, 4, \infty\}$. **Proof.** It is a direct implication of Theorem 2.4.

Theorem 2.5. Let R be a commutative ring and suppose that $ANN_G(R) \neq \Gamma(R)$. Then $gr(ANN_G(R)) \in \{3, 4\}$.

 Proof. Since $ANN_G(R) \neq \Gamma(R)$, there are some distinct $x, y \in Z(R)^*$ such that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$. Since $\Gamma(R)$ is connected, we have $|Z(R)^*| \geq 3$. Again, since $diam(\Gamma(R)) \in \{0, 1, 2, 3\}$, we have $d_{\Gamma(R)}(x, y) \in \{2, 3\}$.

Case 1: If $d_{\Gamma(R)}(x, y) = 2$, then there exists a path of length 2 from x to y in $ANN_G(R)$ by Lemma 2.1(2). Since x - y is an edge of $ANN_G(R)$, we have $ANN_G(R)$ contains a cycle of length 3. Hence $gr(ANN_G(R)) = 3$.

Case 2: If $d_{\Gamma(R)}(x, y) = 3$, then there exists a path of length 3 from x to y in $ANN_G(R)$ by Lemma 2.1(2). Since x - y is an edge of $ANN_G(R)$, we have $ANN_G(R)$ contains a cycle of length 4. In this case, $|Z(R)^*| \ge 5$ by [2, Example 2.1 (b)]. Hence $gr(ANN_G(R)) \in \{3, 4\}$.

Thus combining both the cases, we have $gr(ANN_G(R)) \in \{3, 4\}$.

Theorem 2.6. Let R be a commutative ring and suppose that $ANN_G(R) \neq \Gamma(R)$ with $gr(ANN_G(R)) \neq 3$. Then there are some distinct $x, y \in Z(R)^*$ such that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$ and there is no path of length 2 from x to y in $\Gamma(R)$.

Proof. Since $ANN_G(R) \neq \Gamma(R)$, there are some distinct $x, y \in Z(R)^*$ such that x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$. If possible, suppose that x - w - y is a path of length 2 in $\Gamma(R)$. Then x - w - y is a path of length 2 in $ANN_G(R)$ by Lemma 2.1 (2). Therefore x - w - y - x is a cycle of length 3 in $ANN_G(R)$ and hence $gr(ANN_G(R)) = 3$, a contradiction. Thus there is no path of length 2 from x to y in $\Gamma(R)$.

3. When is $ANN_G(R)$ identical to $\Gamma(R)$ and AG(R)?

Let *R* be a commutative ring with unity such that $|Z(R)^*| \ge 2$. Then $diam(\Gamma(R)) \le 3$ by [2, Theorem 2.3]. Hence if $ANN_G(R) = \Gamma(R)$, then $diam(\Gamma(R)) \le 2$ by Theorem 2.1.

Lemma 3.1. [2, the proof of Theorem 2.8] Let *R* be a reduced commutative ring that is not an integral domain. Then $\Gamma(R)$ is complete if and only if *R* is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Lemma 3.2. [10, Theorem 2.6(3)] Let R be a commutative ring. Then diam $(\Gamma(R)) = 2$ if and only if either (i) R is reduced with exactly two minimal primes and at least three nonzero zero-divisors, or (ii) Z(R) is an ideal whose square is not {0} and each pair of distinct zero-divisors has a nonzero annihilator.

In this section we study the case when R is a reduced commutative ring.

Lemma 3.3. [5, Lemma 3.2] Let R be a reduced commutative ring that is not an integral domain and let $z \in Z(R)^*$. Then

(1) $ann_R(z) = ann_R(z^n)$ for each positive integer $n \ge 2$;

(2) If $c + z \in Z(R)$ for some $c \in ann_R(z) - \{0\}$, then $ann_R(z+c)$ is properly contained in $ann_R(z)$ (i.e., $ann_R(c+z) \subset ann_R(z)$). In particular, if Z(R) is an ideal of R and $c \in ann_R(z) - \{0\}$, then $ann_R(z+c)$ is properly contained in $ann_R(z)$.

Theorem 3.1. Let R be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent:

- (1) $ANN_G(R)$ is complete;
- (2) AG(R) is complete;
- (3) $\Gamma(R)$ is complete;
- (4) *R* is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. (1) \Rightarrow (2): Let $x \in Z(R)^*$. If possible, suppose that $x^2 \neq x$. Since *R* is reduced, we have $x^3 \neq 0$. Now $ann_R(x) = ann_R(x^2)$ and $ann_R(x) = ann_R(x^3)$ by Lemma 3.3(1). Therefore $ann_R(x) = ann_R(x^3) = ann_R(x^2)$ and hence $x - x^2$ is not an edge of $ANN_G(R)$ by Lemma 2.1 (1), a contradiction. Thus $x^2 = x$ for each $x \in Z(R)$. Since *R* is reduced, we have $|Z(R)^*| \ge 2$. Let *x* and *y* be any two distinct elements of $Z(R)^*$. We have to show that x - y is an edge of AG(R). Suppose that x - y is not an edge of AG(R). Therefore $ann_R(xy) = ann_R(x)$ or $ann_R(xy) = ann_R(y)$ by [5, Lemma 2.1(1)]. Without loss of generality assume that $ann_R(x y) = ann_R(x)$. Then we have either xy = x or $xy \neq x$. Clearly $xy \neq 0$. Let xy = x. Since $x^2 = x$, we have $xy = x^2$. This implies x(y-x) = 0. Also we have x(1-x) = 0 and $y(y-x) = y - x \neq 0$. Now $ann_R(x)$ and $ann_R(y-x)$ are two ideals of R. Then $ann_R(x) + ann_R(y-x)$ is also an ideal of R. Now $1 - x \in ann_R(x)$ and $x \in ann_R(y-x)$. This implies $(1 - x) + x = 1 \in ann_R(x) + ann_R(y-x)$. Therefore $R = ann_R(x) + ann_R(y-x)$. Then $y \in R = ann_R(x) + ann_R(y-x)$. Since y = y + 0 = 0 + y, we have $y \in ann_R(x)$ or $y \in ann_R(y-x)$, a contradiction. Next, let $xy \neq x$. Then $ann_R(x(xy)) = ann_R(x^2y) = ann_R(xy) = ann_R(x)$. Thus x - xy is not an edge of $ANN_G(R)$ by Lemma 2.1 (1), a contradiction. Hence x - y is an edge of AG(R).

- (2) \Leftrightarrow (3): It is clear by [5, Theorem 3.3].
- (3) \Leftrightarrow (4): It is clear by Lemma 3.1.
- (4) \Rightarrow (1): It follows directly since *R* is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Remark 3.1. If *R* is a reduced commutative ring, then it has at least two minimal prime ideals. So for a reduced commutative ring *R*, we have $|Min(R)| \ge 2$. If Z(R) is an ideal of *R*, then Min(R) may be infinite, as $Z(R) = \bigcup \{I \mid I \in Min(R)\}$. Example of a reduced commutative ring *R* with infinitely many minimal prime ideals such that Z(R) is an ideal of *R* is found in [1, Example 3.13] and [10, Section 5 (Examples)].

Theorem 3.2. Let *R* be a reduced commutative ring that is not an integral domain and suppose that Z(R) is an ideal of *R*. Then $\Gamma(R) \neq ANN_G(R) \neq AG(R)$ and $gr(ANN_G(R)) = 3$.

Proof. Let $z \in Z(R)^*$ and $c \in ann_R(z) - \{0\}$. We have $c \neq z$, as R is reduced. Since Z(R) is an ideal of R, we have $c + z \in Z(R)^* - \{c, z\}$. Since $(c + z) z = c z + z^2 = z^2 \neq 0$, we have (c + z) - z is not an edge of $\Gamma(R)$. Now $ann_R((c + z)z) = ann_R(z^2) = ann_R(z)$ by Lemma 3.3(1). But $ann_R(c + z) \subset ann_R(z) = ann_R((c + z)z)$ by Lemma 3.3 (2). Since $ann_R((c + z)z) = ann_R(z)$, we have (c + z) - z is not an edge of AG(R) by [5, Lemma 2.1 (1)]. Again since $ann_R((c + z)z) \neq ann_R(c + z)$, we have (c + z) - z is an edge of $ANN_G(R)$ by Lemma 2.1(1). Thus $\Gamma(R) \neq ANN_G(R) \neq AG(R)$ and hence $gr(ANN_G(R)) = 3$ by Corollary 2.2.2 or Corollary 2.3.2.

Theorem 3.3. Let *R* be a reduced commutative ring and $| Min(R) | \ge 3$ (Min(R) may be infinite). Then $ANN_G(R) \ne \Gamma(R)$ and $gr(ANN_G(R)) = 3$.

Proof. If Z(R) is an ideal of R, then $ANN_G(R) \neq \Gamma(R)$ by Theorem 3.2. Hence we assume that Z(R) is not an ideal of R. Since $|Min(R)| \ge 3$, we have $diam(\Gamma(R)) = 3$ by Lemma 3.2. Thus $ANN_G(R) \neq \Gamma(R)$ by Theorem 2.1. Since R is reduced and $ANN_G(R) \neq \Gamma(R)$, we have $gr(ANN_G(R)) = 3$ by Corollary 2.2.2.

Theorem 3.4. Let *R* be a reduced commutative ring that is not an integral domain. Then $ANN_G(R) = \Gamma(R)$ if and only if |Min(R)| = 2.

Proof. Assume that $ANN_G(R) = \Gamma(R)$. Since *R* is reduced commutative ring that is not an integral domain, we have |Min(R)| = 2 by Theorem 3.3. Conversely, suppose that |Min(R)| = 2. Let *P* and *Q* be the two minimal prime ideals of *R*. Since *R* is reduced, we have $Z(R) = P \cup Q$ and $P \cap Q = \{0\}$. Let $x, y \in Z(R)^*$. Suppose that $x, y \in P$. So neither $x \in Q$ nor $y \in Q$ and thus $xy \neq 0$. Since $PQ \subseteq P \cap Q = \{0\}$, we have $ann_R(xy) = ann_R(x) = ann_R(y) = Q$. Hence x - y is not an edge of $ANN_G(R)$ by Lemma 2.1(1). Similarly, if $x, y \in Q$, then also x - y is not an edge of $ANN_G(R)$. If $x \in P$ and $y \in Q$, then xy = 0 and hence x - y is an edge of $ANN_G(R)$. Thus each edge of $ANN_G(R)$ is an edge of $\Gamma(R)$. Hence $ANN_G(R) = \Gamma(R)$.

In light of Theorem 3.4, Lemma 2.1(6) and [5, Theorem 3.6], we have the Theorem 3.5. **Theorem 3.5.** Let *R* be a reduced commutative ring that is not an integral domain. Then $ANN_G(R) = AG(R) = \Gamma(R)$ if and only if |Min(R)| = 2.

Theorem 3.6. Let *R* be a reduced commutative ring. Then the following statements are equivalent: (1) $gr(ANN_G(R)) = 4$; (2) $ANN_G(R) = AG(R) = \Gamma(R)$ and $gr(AG(R)) = gr(\Gamma(R)) = 4;$

(3) $gr(AG(R)) = gr(\Gamma(R)) = 4;$

(4) T(R) is ring-isomorphic to $K_1 \times K_2$, where each K_i is a field with $|K_i| \ge 3$;

(5) |Min(R)| = 2 and each minimal prime ideal of R has at least three distinct elements;

(6) $AG(R) = \Gamma(R) = K^{m,n}$ with $m, n \ge 2$;

(7) $ANN_G(R) = K^{m,n}$ with $m, n \ge 2$.

Proof. (1) \Rightarrow (2): Since $gr(ANN_G(R)) = 4$, we have $ANN_G(R) = \Gamma(R)$ by Corollary 2.2.2 and $ANN_G(R) = AG(R)$ by Corollary 2.3.2. Thus $ANN_G(R) = AG(R) = \Gamma(R)$ and hence $gr(AG(R)) = gr(\Gamma(R)) = 4$.

(2) \Rightarrow (3): It is obvious.

(3) \Leftrightarrow (4): It is clear by [3, Theorem 2.2] and [5, Theorem 3.7].

(4) \Leftrightarrow (5): It is clear by [5, Theorem 3.7].

(5) \Leftrightarrow (6): If |Min(R)| = 2 and each minimal prime ideal of *R* has at least three distinct elements, then $AG(R) = \Gamma(R)$ by [5, Theorem 3.6] and hence $AG(R) = \Gamma(R) = K^{m,n}$ with $m, n \ge 2$ by [5, Theorem 3.7]. Conversely, if $AG(R) = \Gamma(R) = K^{m,n}$ with $m, n \ge 2$, then |Min(R)| = 2 and each minimal prime ideal of *R* has at least three distinct elements by [5, Theorem 3.7].

(6) \Rightarrow (7): Since (6) implies |Min(R)| = 2, we have $ANN_G(R) = \Gamma(R)$ by Theorem 3.4 and $ANN_G(R) = AG(R) = \Gamma(R)$ by Theorem 3.5. But $AG(R) = \Gamma(R) = K^{m,n}$ with $m, n \ge 2$. Hence $ANN_G(R) = K^{m,n}$ with $m, n \ge 2$.

(7) \Rightarrow (1): Since $ANN_G(R) = K^{m,n}$ with $m, n \ge 2$, we have $gr(ANN_G(R)) = 4$.

Theorem 3.7. Let R be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent:

(1) $gr(ANN_G(R)) = \infty$;

(2) $ANN_G(R) = AG(R) = \Gamma(R)$ and $gr(AG(R)) = gr(\Gamma(R)) = \infty$;

(3) $gr(AG(R)) = gr(\Gamma(R)) = \infty;$

(4) T(R) is ring-isomorphic to $\mathbb{Z}_2 \times K$, where K is a field;

(5) |Min(R)| = 2 and at least one minimal prime ideal of R has exactly two distinct elements;

(6) $AG(R) = \Gamma(R) = K^{1,n}$ for some $n \ge 1$;

(7) $ANN_G(R) = K^{1,n}$ for some $n \ge l$.

Proof. (1) \Rightarrow (2): Since $gr(ANN_G(R)) = \infty$, we have $ANN_G(R) = \Gamma(R)$ by Corollary 2.2.2 and $ANN_G(R) = AG(R)$ by Corollary 2.3.2. Thus $ANN_G(R) = AG(R) = \Gamma(R)$ and hence $gr(AG(R)) = gr(\Gamma(R)) = \infty$.

(2) \Rightarrow (3): It is obvious.

(3) \Leftrightarrow (4): It is clear by [3, Theorem 2.4] and [5, Theorem 3.8].

(4) \Leftrightarrow (5): It is clear by [5, Theorem 3.8].

(5) \Leftrightarrow (6): If |Min(R)| = 2 and at least one minimal prime ideal of *R* has exactly two distinct elements, then $AG(R) = \Gamma(R)$ by [5, Theorem 3.6] and hence $AG(R) = \Gamma(R) = K^{1,n}$ for some $n \ge 1$ by [5, Theorem 3.8]. Conversely, if $AG(R) = \Gamma(R) = K^{1,n}$ for some $n \ge 1$, then |Min(R)| = 2 and at least one minimal prime ideal of *R* has exactly two distinct elements by [5, Theorem 3.8].

(6) \Rightarrow (7): Since (6) implies |Min(R)| = 2, we have $ANN_G(R) = \Gamma(R)$ by Theorem 3.4 and $ANN_G(R) = AG(R) = \Gamma(R)$ by Theorem 3.5. But $AG(R) = \Gamma(R) = K^{1,n}$ for some $n \ge 1$. Hence $ANN_G(R) = K^{1,n}$ for some $n \ge 1$.

(7)
$$\Rightarrow$$
 (1): Since $ANN_G(R) = K^{1,n}$ for some $n \ge 1$, we have $gr(ANN_G(R)) = \infty$.

In light of Theorem 3.6 and Theorem 3.7, we have the Theorem 3.8.

Theorem 3.8. Let *R* be a reduced commutative ring. Then $ANN_G(R) = AG(R) = \Gamma(R)$ if and only if $gr(ANN_G(R)) = gr(AG(R)) = gr(\Gamma(R)) \in \{4, \infty\}.$

4. Conclusion

In view of Theorem 2.2 and Corollary 2.2.1, the following is an example of a nonreduced commutative ring R, where x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$, but there is a path in $ANN_G(R)$ of length 2 from x to y that is also a path in $\Gamma(R)$.

Example 4.1. Let $R = \mathbb{Z}_4 \times \mathbb{Z}_2$. Then (0, 1) - (2, 1) is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$. But (0, 1) - (2, 0) - (2, 1) is a path of length 2 from (0, 1) to (2, 1) in $ANN_G(R)$ that is also a path in $\Gamma(R)$.

In view of Theorem 2.2 and Corollary 2.2.1, the following is an example of a nonreduced commutative ring *R*, where x - y is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$, but every path in $ANN_G(R)$ of length 2 from x to y is also a path in $\Gamma(R)$.

Example 4.2. Let $R = \mathbb{Z}_2[X] / \langle X^3 \rangle$. Then $X + \langle X^3 \rangle - X + X^2 + \langle X^3 \rangle$ is an edge of $ANN_G(R)$ that is not an edge of $\Gamma(R)$. Now $X + \langle X^3 \rangle - X^2 + \langle X^3 \rangle - X + X^2 + \langle X^3 \rangle$ is the only path in $ANN_G(R)$ of length 2 from $X + \langle X^3 \rangle$ to $X + X^2 + \langle X^3 \rangle$ and it is also a path in $\Gamma(R)$. Here $ANN_G(R) = K^3$, $\Gamma(R) = K^{1,2}$, $gr(\Gamma(R)) = \infty$, $gr(ANN_G(R)) = 3$, $diam(\Gamma(R)) = 2$ and $diam(ANN_G(R)) = 1$.

In view of Theorem 2.2 and Corollary 2.2.2, the following is an example of a nonreduced commutative ring *R*, where $ANN_G(R) \neq \Gamma(R)$, but $gr(ANN_G(R)) = 3$.

Example 4.3. Let $R = \mathbb{Z}_8$. Then $ANN_G(R) = K^3$ and $\Gamma(R) = K^{1,2}$. So $ANN_G(R) \neq \Gamma(R)$, but $gr(ANN_G(R)) = 3$.

In view of Theorem 2.3 and Corollary 2.3.2, the following are the examples of nonreduced and reduced commutative ring *R*, where $ANN_G(R) = AG(R)$ with $gr(ANN_G(R)) = 3$, 4 or ∞ .

Example 4.4. Let $R = \mathbb{Z}_8$. Then R is nonreduced and $ANN_G(R) = AG(R) = K^3$ with $gr(ANN_G(R)) = 3$. Let

 $R = \mathbb{Z}_9$. Then *R* is nonreduced and $ANN_G(R) = AG(R) = K^{1,1}$ with $gr(ANN_G(R)) = \infty$. Let $R = \mathbb{Z}_3 \times \mathbb{Z}_3$.

Then *R* is reduced and $ANN_G(R) = AG(R) = C^4$ with $gr(ANN_G(R)) = 4$. Let $R = \mathbb{Z}_6$. Then *R* is reduced and

 $ANN_G(R) = AG(R) = K^{1,2}$ with $gr(ANN_G(R)) = \infty$.

References

- [1]. D. F. Anderson, On the diameter and girth of a zero-divisor graph II, *Houston J. Math.* 34, 2008, 361 371.
- [2]. D. F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, 1999, 434 447.
- [3]. D. F. Anderson, S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210, 2007, 543 550.
- [4]. M. Axtel, J. Coykendall, J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, *Comm. Algebra* 33(6), 2005, 2043 2050.
- [5]. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42, 2014, 1–14.
- [6]. I. Beck, Coloring of commutative rings, J. Algebra 116, 1988, 208 226.
- [7]. F. DeMeyer, K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, *Internat. J. Commutative Rings 1 (3)*, 2002, 93 106.
- [8]. R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
- [9]. I. N. Herstein, Topics in Algebra, 2nd Edition, John Wiley & Sons, (Asia) Pte Ltd, 1999.
- [10]. T. G. Lukas, The diameter of a zero-divisor graph, J. Algebra 301, 2006, 174 193.
- [11]. S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7), 2002, 3533 3558.