Some Properties of Annihilator Graph of a Commutative Ring

Priyanka Pratim Baruah ${ }^{1}$, Kuntala Patra ${ }^{2}$
${ }^{l}$ Department of Mathematics, Girijananda Chowdhury Institute of Management and Technology Guwahati - 781017, India
${ }^{2}$ Department of Mathematics, Gauhati University, Guwahati-781014, India

Abstract

Let R be a commutative ring with unity. Let $Z(R)$ be the set of all zero-divisors of R. For $x \in Z(R)$, let ann $R_{R}(x)=\{y \in R \mid y x=0\}$. We define the annihilator graph of R, denoted by $A N N_{G}(R)$, as the undirected graph whose set of vertices is $Z(R)^{*}=Z(R)-\{0\}$, and two distinct vertices x and y are adjacent if and only if ann $n_{R}(x y) \neq \operatorname{ann}_{R}(x) \cap a n n_{R}(y)$. In this paper, we study the ring-theoretic properties of R and the graph-theoretic properties of $A N N_{G}(R)$. For a commutative ring R, we show that $A N N_{G}(R)$ is connected, the diameter of $A N N_{G}(R)$ is at most two and the girth of $A N N_{G}(R)$ is at most four provided that $A N N_{G}(R)$ has a cycle. For a reduced commutative ring R, we study some characteristics of the annihilator graph $\operatorname{ANNG}(R)$ related to minimal prime ideals of R. Moreover, for a reduced commutative ring R, we establish some equivalent conditions which describe when $A N N_{G}(R)$ is a complete graph or a complete bipartite graph or a star graph.

Keywords: Annihilator graph, diameter, girth, zero-divisor graph.
2010 Mathematics Subject Classification: Primary 13A15; Secondary 05C25, 05C38, 05C40.

1. Introduction

Let R be a commutative ring with unity, and $Z(R)$ be its set of all zero-divisors. For every $X \subseteq R$, we denote $X-\{0\}$ by X^{*}. The concept of a zero-divisor graph of a commutative ring R was first introduced by I . Beck in [6], where all the elements of the ring R were taken as the vertices of the graph. In [2], D. F. Anderson and P. S. Livingston modified this concept by taking the zero-divisor graph $\Gamma(R)$ whose vertices are the nonzero zero-divisors of a commutative ring R and two distinct vertices x and y are adjacent if and only if $x y=0$. In [2], for a commutative ring R it was shown that $\Gamma(R)$ is connected with $\operatorname{diam}(\Gamma(R)) \leq 3$ and that $g r(\Gamma(R)) \leq 4$ if $\Gamma(R)$ contains a cycle (This was proved for commutative artinian rings in [2]) In general, if $\Gamma(R)$ contains a cycle it was shown that $\operatorname{gr}(\Gamma(R)) \leq 4$ in [11] and [7] and a simple proof is given in [4]. Thus $\operatorname{diam}(\Gamma(R)) \in\{0,1,2,3\}$ and $\operatorname{gr}(\Gamma(R)) \in\{3,4, \infty\}$. For $x \in Z(R)$, let $a n n_{R}(x)=\{y \in R \mid y x=0\}$. In [5], A. Badawi defined and studied the annihilator graph $A G(R)$ of a commutative ring R, where the set of vertices of $A G(R)$ is $\mathrm{Z}(R)^{*}=\mathrm{Z}(R)-\{0\}$, and two distinct vertices x and y are adjacent if and only if $a n n_{R}(x y) \neq a n n_{R}(x) \cup a n n_{R}(y)$. In [5], it was shown that $\operatorname{diam}(A G(R)) \in\{0,1,2\}$ and $\operatorname{gr}(A G(R)) \in$ $\{3,4, \infty\}$. In this paper, we give the definition of the annihilator graph in another way. In this paper, we define the annihilator graph of R, denoted by $A N N_{G}(R)$, as the undirected graph whose set of vertices is $\mathrm{Z}(R)^{*}=$ $Z(R)-\{0\}$, and two distinct vertices x and y are adjacent if and only if $a n n_{R}(x y) \neq a n n_{R}(x) \cap a n n_{R}(y)$. It follows that each edge (path) of the zero-divisor graph $\Gamma(R)$ and the annihilator graph $A G(R)(A G(R)$ was defined by A. Badawi in [5]) is an edge (path) of $A N N_{G}(R)$, but converse may not be true. We show that $A N N_{G}(R)$ is connected with diameter at most two. If $A N N_{G}(R)$ contains a cycle, we show that girth of $A N N_{G}(R)$ is at most four. For a reduced commutative ring R, we show that the annihilator graph $A N N_{G}(R)$ is identical to the zero-divisor graph $\Gamma(R)$ if and only if R has exactly two minimal prime ideals. Then for a reduced commutative ring R, we show that the annihilator graph $A N N_{G}(R)$ is identical to the zero-divisor graph $\Gamma(R)$, as well as to the annihilator graph $A G(R)(A G(R)$ was defined by A. Badawi in [5]) if and only if R has exactly two minimal prime ideals. Moreover, for a reduced commutative ring R, we establish some equivalent conditions which describe when $A N N_{G}(R)$ is a complete graph or a complete bipartite graph or a star graph.

For the sake of completeness, we state some definitions and notations used throughout this paper. Let G be an undirected graph. We denote the vertex set and the edge set of G by $V(G)$ and $E(G)$. We say that G is connected if there exists a path between any two distinct vertices. A subgraph of G is a graph having all of its points and lines in G. A spanning subgraph is a subgraph containing all the vertices of G. The distance between two vertices x and y of G, denoted by $d(x, y)$, is the length of a shortest path connecting them $(d(x, x)=0$ and if such a path does not exist, then $d(x, y)=\infty)$. The diameter of G is $\operatorname{diam}(G)=\sup \{d(x, y) \mid x$ and y are vertices of $G\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in G (if G contains no cycle,
then $\operatorname{gr}(G)=\infty)$. We denote by C^{n} the graph consisting of a cycle with n vertices. A graph G is complete if any two distinct vertices are adjacent. The complete graph with n vertices will be denoted by K^{n} (we allow n to be an infinite cardinal). A complete bipartite graph is a graph G which may be partitioned into two disjoint nonempty vertex sets A and B such that two distinct vertices are adjacent if and only if they are in distinct vertex sets. If one of the vertex set is singleton, we call G is a star graph. We denote the complete bipartite graph by $K^{m, n}$, where $|A|=m$ and $|B|=n$ (we allow m and n to be an infinite cardinal); hence a star graph is a $K^{1, n}$.

Throughout this paper, R is a commutative ring with unity, $\mathrm{Z}(R)$ is the set of all zero-divisors of R, $\operatorname{Nil}(R)$ is the set of all nilpotent elements of $R, U(R)$ is the group of units, $T(R)$ is the total quotient ring of R and $\operatorname{Min}(R)$ is the set of all minimal prime ideals of R. For every $X \subseteq R$, we denote $X-\{0\}$ by X^{*}. We call R is reduced if $\operatorname{Nil}(R)=\{0\}$. The distance between two distinct vertices x and y of $\Gamma(R)$ will be denoted by $d_{\Gamma(\mathrm{R})}(x, y)$. For any two graphs G and H, if G is identical to H, then we write $G=H$; otherwise, we write $G \neq H$. As usual, the ring of integers and the ring of integers modulo n will be denoted by \mathbb{Z} and \mathbb{Z}_{n}, respectively. Any undefined notation or terminology is standard as in [8] or [9].

2. Some basic properties of $A N N_{G}(R)$

This section provides the study of some basic properties of the annihilator graph $A N N_{G}(R)$. If $\left|\mathrm{Z}(R)^{*}\right|$ $=1$ for a commutative ring R, then R is isomorphic to either \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left\langle X^{2}\right\rangle$. In this case $A N N_{G}(R)=$ $\Gamma(R), A N N_{G}(R)=A G(R)$ and thus $A N N_{G}(R)=A G(R)=\Gamma(R)$. Hence throughout this article, we consider commutative rings with more than one nonzero zero-divisors.

Lemma 2.1. Let R be a commutative ring.
(1) Let x and y be distinct elements of $Z(R)^{*}$. Then $x-y$ is not an edge of $A N N_{G}(R)$ if and only if $a n n_{R}(x)=a n n_{R}(x y)=a n n_{R}(y)$.
(2) If $x-y$ is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $A N N_{G}(R)$. In particular, if P is a path in $\Gamma(R)$, then P is a path in $A N N_{G}(R)$.
(3) If $d_{\Gamma(R)}(x, y)=3$ for some distinct $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $A N N_{G}(R)$.
(4) If $x-y$ is not an edge of $A N N_{G}(R)$ for some distinct $x, y \in Z(R)^{*}$, then there is a $w \in Z(R)^{*}-\{x, y\}$ such that $x-w-y$ is a path in $\Gamma(R)$, and hence $x-w-y$ is also a path in $A N N_{G}(R)$.
(5) If $x-y$ is an edge of $A G(R)$ for some distinct $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $A N N_{G}(R)$. In particular, if P is a path in $A G(R)$, then P is a path in $A N N_{G}(R)$.
(6) If $A N N_{G}(R)=\Gamma(R)$, then $A N N_{G}(R)=A G(R)$.

Proof. (1) Suppose that $x-y$ is not an edge of $A N N_{G}(R)$. Then $a n n_{R}(x y)=a n n_{R}(x) \cap a n n_{R}(y)$ by definition. Thus $\operatorname{ann}_{R}(x y) \subseteq a n n_{R}(x)$ and $a n n_{R}(x y) \subseteq a n n_{R}(y)$. But $a n n_{R}(x) \subseteq a n n_{R}(x y)$ and $a n n_{R}(y) \subseteq a n n_{R}(x y)$. Hence $a n n_{R}(x)=a n n_{R}(x y)=a n n_{R}(y)$. Conversely, suppose that $a n n_{R}(x)=a n n_{R}(x y)=a n n_{R}(y)$. Then $\operatorname{ann}_{R}(x y)=a n n_{R}(x) \cap a n n_{R}(y)$. Hence $x-y$ is not an edge of $A N N_{G}(R)$ by definition.
(2) Suppose that $x-y$ is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$. Then $x y=0$ and $a n n_{R}(x y)=a n n_{R}(0)=R$. Since $x \neq 0, y \neq 0$ we have $a n n_{R}(x) \neq R$ and $a n n_{R}(y) \neq R$. Therefore $a n n_{R}(x y) \neq a n n_{R}(x)$ and $a n n_{R}(x y) \neq a n n_{R}(y)$. Hence $x-y$ is an edge of $A N N_{G}(R)$ by (1). In particular, suppose that $P: x_{0}-x_{1}-x_{2}-\ldots-x_{n-1}$ is a path of length n in $\Gamma(R)$. Then $x_{i}-x_{i+1}$ is an edge of $\Gamma(R)$ for all $i(0 \leq i<n-1)$. This implies $x_{i}-x_{i+1}$ is an edge of $A N N_{G}(R)$ for all $i(0 \leq i<n-1)$. Hence $P: x_{0}-x_{1}-x_{2}-\ldots-x_{n-1}$ is a path of length n in $\operatorname{ANN}_{G}(R)$.
(3) Suppose that $d_{\Gamma(R)}(x, y)=3$ for some distinct $x, y \in Z(R)^{*}$. So assume $x-a-b-y$ is a shortest path connecting x and y in $\Gamma(R)$, where $a, b \in \mathrm{Z}(R)^{*}$ and $a \neq b$. This implies $x a=0, a b=0$, $b y=0, \quad x b \neq 0 \quad$ and $\quad a y \neq 0$. Now $\quad x a=0 \Rightarrow x y a=0 \quad \Rightarrow a \in a n n_{R}(x y) \quad$ and $\quad b y=0$ $\Rightarrow x y b=0 \Rightarrow b \in a n n_{R}(x y)$. Thus $\{a, b\} \subseteq a n n_{R}(x y)$ such that $a \notin a n n_{R}(y)$ and $b \notin a n n_{R}(x)$. Therefore $a n n_{R}(x y) \neq a n n_{R}(x)$ and $a n n_{R}(x y) \neq a n n_{R}(y)$. Hence $x-y$ is an edge of $A N N_{G}(R)$ by (1).
(4) Suppose that $x-y$ is not an edge of $A N N_{G}(R)$ for some distinct $x, y \in \mathrm{Z}(R)^{*}$. Then $\operatorname{ann}_{R}(x)=\operatorname{ann}_{R}(y)=\operatorname{ann}_{R}(x y)$ by (1). Also $x-y$ is not an edge of $\Gamma(R)$ by (2) and hence $x y \neq 0$.

Therefore there is a $w \in a n n_{R}(x)=a n n_{R}(y)$ such that $w \neq 0$. If $w \in\{x, y\}$, then $x y=0$, a contradiction. Thus $w \in Z(R)^{*}-\{x, y\}$ such that $x-w-y$ is a path in $\Gamma(R)$. Hence $x-w-y$ is a path in $A N N_{G}(R)$ by (2).
(5) Suppose that $x-y$ is an edge of $A G(R)$ for some distinct $x, y \in Z(R)^{*}$. Then $\operatorname{ann}_{R}(x y) \neq \operatorname{ann}_{R}(x)$ and $a n n_{R}(x y) \neq \operatorname{ann}_{R}(y)$ by [5, Lemma 2.1 (1)]. Hence $x-y$ is an edge of $A N N_{G}(R)$ by (1). In particular, suppose that $P: x_{0}-x_{1}-x_{2}-\ldots-x_{n-1}$ is a path of length n in $A G(R)$. Then $x_{i}-x_{i+1}$ is an edge of $A G(R)$ for all $i(0 \leq i<n-1)$ This implies $x_{i}-x_{i+1}$ is an edge of $A N N_{G}(R)$ for all $i(0 \leq i<n-1)$. Hence $P: x_{0}-x_{1}-x_{2}-\ldots-x_{n-1}$ is a path of length n in $A N N_{G}(R)$.
(6) Let $A N N_{G}(R)=\Gamma(R)$. If possible, suppose that $A N N_{G}(R) \neq A G(R)$. Then there are some distinct $x, y \in \mathrm{Z}(R)^{*}$ such that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $A G(R)$. So $x-y$ is not an edge of $\Gamma(R)$ by [5, Lemma $2.1(2)]$, and hence $A N N_{G}(R) \neq \Gamma(R)$, a contradiction. Thus $A N N_{G}(R)=$ $A G(R)$.

Remark 2.1. (1) The converse of the Lemma 2.1 (2) may not be true. In $\mathbb{Z}_{8}, 2-6$ is an edge of $A N N_{G}\left(\mathbb{Z}_{8}\right)$, but $2-6$ is not an edge of $\Gamma\left(\mathbb{Z}_{8}\right)$.
(2) The converse of the Lemma 2.1 (5) may not be true. In $\mathbb{Z}_{12}, 2-4$ is an edge of $A N N_{G}\left(\mathbb{Z}_{12}\right)$, but $2-4$ is not an edge of $A G\left(\mathbb{Z}_{12}\right)$.
(3) Every edge of $\Gamma(R)$ is an edge of $A N N_{G}(R)$ by Lemma 2.1 (2) and $V\left(A N N_{G}(R)\right)=V(\Gamma(R))$. So $\Gamma(R)$ is a spanning subgraph of $A N N_{G}(R)$. Again every edge of $A G(R)$ is an edge of $A N N_{G}(R)$ by Lemma $2.1(5)$ and $V\left(A N N_{G}(R)\right)=V(A G(R))$. So $A G(R)$ is also a spanning subgraph of $A N N_{G}(R)$.

In light of Lemma 2.1 (4), we have the Theorem 2.1
Theorem 2.1. Let R be a commutative ring with $|Z(R) *| \geq 2$. Then $A N N_{G}(R)$ is connected and $\operatorname{diam}\left(A N N_{G}(R)\right) \leq 2$.
Proof. Let x and y be two distinct elements of $Z(R)^{*}$. If $x-y$ is an edge of $A N N_{G}(R)$, then $d(x, y)=1$. Suppose that $x-y$ is not an edge of $A N N_{G}(R)$. Then there is a $w \in Z(R)^{*}-\{x, y\}$ such that $x-w-y$ is a path in $\Gamma(R)$, and hence $x-w-y$ is also a path in $A N N_{G}(R)$ by Lemma 2.1 (4). Thus $d(x, y)=2$. Hence $A N N_{G}(R)$ is connected and $\operatorname{diam}\left(A N N_{G}(R)\right) \leq 2$.

Lemma 2.2. Let R be a commutative ring. Suppose that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R) *$. If there is a $w \in \operatorname{ann}_{R}(x y)-\{x, y\}$ such that $w x \neq 0$ or $w y \neq 0$, then $x-w-y$ is a path in $A N N_{G}(R)$ that is not a path in $\Gamma(R)$ and $A N N_{G}(R)$ contains a cycle C of length 3 such that at least two edges of C are not the edges of $\Gamma(R)$.
Proof. Suppose that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in \mathrm{Z}(R)^{*}$. Then $x y \neq 0$. Assume there is a $w \in a n n_{R}(x y)-\{x, y\}$ such that $w x \neq 0$ or $w y \neq 0$. Then we have $y \in a n n_{R}(x w)-\left\{a n n_{R}(x) \cap a n n_{R}(w)\right\} \quad$ and $\quad x \in a n n_{R}(y w)-\left\{a n n_{R}(y) \cap a n n_{R}(w)\right\} . \quad$ Therefore $a n n_{R}(x w) \neq \operatorname{ann}_{R}(x) \cap a n n_{R}(w)$ and $a n n_{R}(y w) \neq a n n_{R}(y) \cap a n n_{R}(w)$. So $x-w$ and $y-w$ are the two edges of $A N N_{G}(R)$. Thus $x-w-y$ is a path in $A N N_{G}(R)$. Since $x w \neq 0$ or $w y \neq 0$, we have x - $w-y$ is not a path in $\Gamma(R)$. Hence $C: x-w-y-x$ is a cycle of length 3 in $A N N_{G}(R)$ and at least two edges C are not the edges of $\Gamma(R)$.

Theorem 2.2. Let R be a commutative ring. Suppose that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$. If $x^{2} y \neq 0$ and $x y^{2} \neq 0$, then there is a $w \in Z(R)^{*}-\{x, y\}$ such that $x-w-y$ is a path in $A N N_{G}(R)$ that is not a path in $\Gamma(R)$ and $A N N_{G}(R)$ contains a cycle C of length 3 such that at least two edges of C are not the edges of $\Gamma(R)$.
Proof. Suppose that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in \mathrm{Z}(R)^{*}$. Then $x y \neq 0$ and there is a $w \in a n n_{R}(x y)-\left\{a n n_{R}(x) \cap a n n_{R}(y)\right\}$ such that $w \neq 0$. This implies $w \in \mathrm{Z}(R)^{*}$ such that $w x \neq 0$ or $w y \neq 0$. If $w \in\{x, y\}$, then either $x^{2} y=0$ or $x y^{2}=0$, a contradiction. Therefore $w \in \operatorname{ann}_{R}(x y)-\{x, y\}$ such that $w x \neq 0$ or $w y \neq 0$. Thus $x-w-y$ is a path in
$A N N_{G}(R)$ that is not a path in $\Gamma(R)$ and $A N N_{G}(R)$ contains a cycle C of length 3 such that at least two edges of C are not the edges of $\Gamma(R)$ by Lemma 2.2.

Corollary 2.2.1. Let R be a reduced commutative ring. Suppose that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$. Then there is a $w \in a n n_{R}(x y)-\{x, y\}$ such that $x-w-y$ is a path in $A N N_{G}(R)$ that is not a path in $\Gamma(R)$ and $A N N_{G}(R)$ contains a cycle C of length 3 such that at least two edges of C are not the edges of $\Gamma(R)$.
Proof. Suppose that $x-y$ is an edge of $\operatorname{ANN}_{G}(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in \mathrm{Z}(R)^{*}$. Since R is reduced, we have $(x y)^{2} \neq 0$. This implies $x^{2} y \neq 0$ and $x y^{2} \neq 0$. Thus the claim is now clear by Theorem 2.2.

Corollary 2.2.2. Let R be a reduced commutative ring and suppose that $A N N_{G}(R) \neq \Gamma(R)$. Then $\operatorname{gr}\left(A N N_{G}(R)\right)$ $=3$. Moreover, there is a cycle C of length 3 in $A N N_{G}(R)$ such that at least two edges of C are not the edges of $\Gamma(R)$.
Proof. Since $A N N_{G}(R) \neq \Gamma(R)$, there are some distinct $x, y \in Z(R)^{*}$ such that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$. Since R is reduced, we have $(x y)^{2} \neq 0$. This implies $x^{2} y \neq 0$ and $x y^{2} \neq 0$. Thus the claim is now clear by Theorem 2.2.

Theorem 2.3. Let R be a commutative ring. Suppose that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $A G(R)$ for some distinct $x, y \in Z(R)^{*}$. Then there is a $w \in Z(R)^{*}-\{x, y\}$ such that $x-w-y$ is a path in $A N N_{G}(R)$ and $A N N_{G}(R)$ contains a cycle C of length 3 such that exactly one edge of C is not an edge of $A G(R)$.
Proof. Suppose that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $A G(R)$ for some distinct $x, y \in$ $\mathrm{Z}(R)^{*}$. Then $\operatorname{ann}_{R}(x) \subseteq \operatorname{ann}_{R}(y)$ or $\operatorname{ann}_{R}(y) \subseteq \operatorname{ann}_{R}(x)$ by [5, Lemma 2.1 (3)], and there is a $w \in$ $\mathrm{Z}(R)^{*}-\{x, y\}$ such that $x-w-y$ is a path in $\Gamma(R)[5$, Lemma 2.1 (6)]. Thus $x-w-y$ is a path in $A N N_{G}(R)$ by Lemma 2.1 (2). Hence $C: x-w-y-x$ is a cycle of length 3 in $A N N_{G}(R)$. We have $x-w-y$ is a path in $A G(R)$ by [5, Lemma 2.1 (2)] and thus exactly one edge of C is not an edge of $A G(R)$.

Corollary 2.3.1. Let R be a commutative ring. Suppose that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $A G(R)$ for some distinct $x, y \in Z(R)^{*}$. Then there is a $w \in \operatorname{ann}_{R}(x y)-\{x, y\}$ such that $x-w-y$ is a path in $A N N_{G}(R)$ and $A N N_{G}(R)$ contains a cycle C of length 3 such that exactly one edge of C is not an edge of $A G(R)$.
Proof. It follows directly from Theorem 2.3.
Corollary 2.3.2. Let R be a commutative ring and suppose that $A N N_{G}(R) \neq A G(R)$. Then $\operatorname{gr}\left(A N N_{G}(R)\right)=3$. Moreover, there is a cycle C of length 3 in $A N N G(R)$ such that exactly one edge of C is not an edge of $A G(R)$. Proof. Since $A N N_{G}(R) \neq A G(R)$, there are some distinct $x, y \in Z(R)^{*}$ such that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $A G(R)$. Thus the claim is now clear by Theorem 2.3.

Theorem 2.4. Let R be a commutative ring with $|Z(R) *| \geq 2$. Then $\operatorname{gr}\left(A N N_{G}(R)\right) \neq 3$ if and only if $\operatorname{gr}\left(A N N_{G}(R)\right) \in\{4, \infty\}$.
Proof. If $g r\left(A N N_{G}(R)\right) \neq 3$, then $A N N_{G}(R)=A G(R)$ by Corollary 2.3.2. Then we have the following two cases.
Case 1: If $A N N_{G}(R)=A G(R)=\Gamma(R)$, then $\operatorname{gr}\left(A N N_{G}(R)\right)=\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))$. We know that $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R)) \in\{3,4, \infty\}$. Thus $\operatorname{gr}\left(A N N_{G}(R)\right) \in\{3,4, \infty\}$. Since $\operatorname{gr}\left(A N N_{G}(R)\right) \neq 3$, we have $\operatorname{gr}\left(A N N_{G}(R)\right) \in\{4, \infty\}$.

Case 2: If $A N N_{G}(R)=A G(R) \neq \Gamma(R)$, then $\operatorname{gr}(A G(R)) \in\{3,4\}$ by [5, Corollary 2.11]. Thus $\operatorname{gr}\left(A N N_{G}(R)\right) \in\{3,4\}$. Since $\operatorname{gr}\left(A N N_{G}(R)\right) \neq 3$, we have $\operatorname{gr}\left(A N N_{G}(R)\right)=4$.

Thus combining both the cases, we have $\operatorname{gr}\left(\operatorname{ANN}_{G}(R)\right) \in\{4, \infty\}$.
Conversely, if $\operatorname{gr}\left(\operatorname{ANN}_{G}(R)\right) \in\{4, \infty\}$, then clearly $\operatorname{gr}\left(A N N_{G}(R)\right) \neq 3$.
Corollary 2.4.1. Let R be a commutative ring with $|Z(R) *| \geq 2$. Then $\operatorname{gr}\left(A N N_{G}(R)\right) \in\{3,4, \infty\}$.
Proof. It is a direct implication of Theorem 2.4.
Theorem 2.5. Let R be a commutative ring and suppose that $A N N_{G}(R) \neq \Gamma(R)$. Then $\operatorname{gr}\left(A N N_{G}(R)\right) \in\{3,4\}$.

Proof. Since $A N N_{G}(R) \neq \Gamma(R)$, there are some distinct $x, y \in Z(R)^{*}$ such that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$. Since $\Gamma(R)$ is connected, we have $\left|Z(R)^{*}\right| \geq 3$. Again, since $\operatorname{diam}(\Gamma(R)) \in\{0,1$, $2,3\}$, we have $d_{\Gamma(\mathrm{R})}(x, y) \in\{2,3\}$.

Case 1: If $d_{\Gamma(\mathrm{R})}(x, y)=2$, then there exists a path of length 2 from x to y in $A N N_{G}(R)$ by Lemma 2.1(2). Since $x-y$ is an edge of $A N N_{G}(R)$, we have $A N N_{G}(R)$ contains a cycle of length 3. Hence $\operatorname{gr}\left(A N N_{G}(R)\right)=3$.

Case 2: If $d_{\Gamma(\mathrm{R})}(x, y)=3$, then there exists a path of length 3 from x to y in $A N N_{G}(R)$ by Lemma 2.1(2). Since $x-y$ is an edge of $A N N_{G}(R)$, we have $A N N_{G}(R)$ contains a cycle of length 4. In this case, $\left|\mathrm{Z}(R)^{*}\right| \geq 5$ by [2, Example 2.1 (b)]. Hence $\operatorname{gr}\left(A N N_{G}(R)\right) \in\{3,4\}$.

Thus combining both the cases, we have $\operatorname{gr}\left(A N N_{G}(R)\right) \in\{3,4\}$.
Theorem 2.6. Let R be a commutative ring and suppose that $A N N_{G}(R) \neq \Gamma(R)$ with $\operatorname{gr}\left(A N N_{G}(R)\right) \neq 3$. Then there are some distinct $x, y \in Z(R)^{*}$ such that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$ and there is no path of length 2 from x to y in $\Gamma(R)$.
Proof. Since $A N N_{G}(R) \neq \Gamma(R)$, there are some distinct $x, y \in \mathrm{Z}(R)^{*}$ such that $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$. If possible, suppose that $x-w-y$ is a path of length 2 in $\Gamma(R)$. Then $x-w-y$ is a path of length 2 in $A N N_{G}(R)$ by Lemma $2.1(2)$. Therefore $x-w-y-x$ is a cycle of length 3 in $A N N_{G}(R)$ and hence $\operatorname{gr}\left(A N N_{G}(R)\right)=3$, a contradiction. Thus there is no path of length 2 from x to y in $\Gamma(R)$.

3. When is $A N N_{G}(R)$ identical to $\Gamma(R)$ and $A G(R)$?

Let R be a commutative ring with unity such that $\left|Z(R)^{*}\right| \geq 2$. Then $\operatorname{diam}(\Gamma(R)) \leq 3$ by [2, Theorem 2.3]. Hence if $A N N_{G}(R)=\Gamma(R)$, then $\operatorname{diam}(\Gamma(R)) \leq 2$ by Theorem 2.1.

Lemma 3.1. [2, the proof of Theorem 2.8] Let R be a reduced commutative ring that is not an integral domain. Then $\Gamma(R)$ is complete if and only if R is ring-isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Lemma 3.2. [10, Theorem 2.6(3)] Let R be a commutative ring. Then diam $(\Gamma(R))=2$ if and only if either (i) R is reduced with exactly two minimal primes and at least three nonzero zero-divisors, or $(i i) Z(R)$ is an ideal whose square is not $\{0\}$ and each pair of distinct zero-divisors has a nonzero annihilator.

In this section we study the case when R is a reduced commutative ring.
Lemma 3.3. [5, Lemma 3.2] Let R be a reduced commutative ring that is not an integral domain and let $z \in Z(R)^{*}$. Then
(1) $a n n_{R}(z)=a n n_{R}\left(z^{n}\right)$ for each positive integer $n \geq 2$;
(2) If $c+z \in Z(R)$ for some $c \in a n n_{R}(z)-\{0\}$, then ann $n_{R}(z+c)$ is properly contained in $\operatorname{ann}_{R}(z)$ (i.e., $\operatorname{ann}_{R}(c+z) \subset a n n_{R}(z)$). In particular, if $Z(R)$ is an ideal of R and $c \in$ $a n n_{R}(z)-\{0\}$, then $a n n_{R}(z+c)$ is properly contained in $a n n_{R}(z)$.

Theorem 3.1. Let R be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent:
(1) $A N N_{G}(R)$ is complete;
(2) $A G(R)$ is complete;
(3) $\Gamma(R)$ is complete;
(4) R is ring-isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. (1) $\Rightarrow(2)$: Let $\quad x \in Z(R)^{*}$. If possible, suppose that $x^{2} \neq x$. Since R is reduced, we have $x^{3} \neq 0$. Now $\quad a n n_{R}(x)=a n n_{R}\left(x^{2}\right) \quad$ and $\quad a n n_{R}(x)=a n n_{R}\left(x^{3}\right) \quad$ by Lemma 3.3(1). Therefore $\operatorname{ann}_{R}(x)=\operatorname{ann}_{R}\left(x^{3}\right)=\operatorname{ann}_{R}\left(x^{2}\right)$ and hence $x-x^{2}$ is not an edge of $A N N_{G}(R)$ by Lemma 2.1 (1), a contradiction. Thus $x^{2}=x$ for each $x \in Z(R)$. Since R is reduced, we have $\left|Z(R)^{*}\right| \geq 2$. Let x and y be any two distinct elements of $Z(R)^{*}$. We have to show that $x-y$ is an edge of $A G(R)$. Suppose that $x-y$ is not an edge of $A G(R)$. Therefore $a n n_{R}(x y)=a n n_{R}(x)$ or $a n n_{R}(x y)=a n n_{R}(y)$ by [5, Lemma
2.1(1)]. Without loss of generality assume that $a n n_{R}(x y)=a n n_{R}(x)$. Then we have either $x y=x$ or $x y \neq x$. Clearly $x y \neq 0$. Let $x y=x$. Since $x^{2}=x$, we have $x y=x^{2}$. This implies $x(y-x)=0$. Also we have $x(1-x)=0$ and $y(y-x)=y-x \neq 0$. Now $a n n_{R}(x)$ and $a n n_{R}(y-x)$ are two ideals of R. Then $a n n_{R}(x)+a n n_{R}(y-x)$ is also an ideal of R. Now $1-x \in a n n_{R}(x)$ and $x \in$ $a n n_{R}(y-x)$. This implies $(1-x)+x=1 \in \operatorname{ann}_{R}(x)+a n n_{R}(y-x)$. Therefore $R=$ $a n n_{R}(x)+a n n_{R}(y-x)$. Then $y \in R=a n n_{R}(x)+a n n_{R}(y-x)$. Since $y=y+0=0+y$, we have $y \in a n n_{R}(x)$ or $y \in a n n_{R}(y-x)$, a contradiction. Next, let $x y \neq x$. Then $a n n_{R}(x(x y))=a n n_{R}\left(x^{2} y\right)=a n n_{R}(x y)=a n n_{R}(x)$. Thus $x-x y$ is not an edge of $A N N_{G}(R)$ by Lemma 2.1 (1), a contradiction. Hence $x-y$ is an edge of $A G(R)$.
$(2) \Leftrightarrow(3)$: It is clear by [5, Theorem 3.3].
$(3) \Leftrightarrow$ (4): It is clear by Lemma 3.1.
(4) \Rightarrow (1): It follows directly since R is ring-isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Remark 3.1. If R is a reduced commutative ring, then it has at least two minimal prime ideals. So for a reduced commutative ring R, we have $|\operatorname{Min}(R)| \geq 2$. If $Z(R)$ is an ideal of R, then $\operatorname{Min}(R)$ may be infinite, as $\mathrm{Z}(R)=\cup\{I \mid I \in \operatorname{Min}(R)\}$. Example of a reduced commutative ring R with infinitely many minimal prime ideals such that $\mathrm{Z}(R)$ is an ideal of R is found in [1, Example 3.13] and [10, Section 5 (Examples)].

Theorem 3.2. Let R be a reduced commutative ring that is not an integral domain and suppose that $Z(R)$ is an ideal of R. Then $\Gamma(R) \neq A N N_{G}(R) \neq A G(R)$ and $\operatorname{gr}\left(A N N_{G}(R)\right)=3$.
Proof. Let $z \in \mathrm{Z}(R)^{*}$ and $c \in a n n_{R}(z)-\{0\}$. We have $c \neq z$, as R is reduced. Since $Z(R)$ is an ideal of R, we have $c+z \in \mathrm{Z}(R)^{*}-\{c, z\}$. Since $(c+z) z=c z+z^{2}=z^{2} \neq 0$, we have $(c+z)-z$ is not an edge of $\Gamma(R)$. Now $\operatorname{ann}_{R}((c+z) z)=\operatorname{ann}_{R}\left(z^{2}\right)=a n n_{R}(z)$ by Lemma 3.3(1). But $a n n_{R}(c+z) \subset a n n_{R}(z)=$ $a n n_{R}((c+z) z)$ by Lemma 3.3 (2). Since $a n n_{R}((c+z) z)=a n n_{R}(z)$, we have $(c+z)-z$ is not an edge of $A G(R)$ by [5, Lemma 2.1 (1)]. Again since $a n n_{R}((c+z) z) \neq a n n_{R}(c+z)$, we have $(c+z)-z$ is an edge of $A N N_{G}(R)$ by Lemma 2.1(1). Thus $\Gamma(R) \neq A N N_{G}(R) \neq A G(R)$ and hence $\operatorname{gr}\left(A N N_{G}(R)\right)=3$ by Corollary 2.2.2 or Corollary 2.3.2.

Theorem 3.3. Let R be a reduced commutative ring and $|\operatorname{Min}(R)| \geq 3(\operatorname{Min}(R)$ may be infinite). Then $A N N_{G}(R) \neq \Gamma(R)$ and $g r\left(A N N_{G}(R)\right)=3$.
Proof. If $\mathrm{Z}(R)$ is an ideal of R, then $A N N_{G}(R) \neq \Gamma(R)$ by Theorem 3.2. Hence we assume that $\mathrm{Z}(R)$ is not an ideal of R. Since $|\operatorname{Min}(R)| \geq 3$, we have $\operatorname{diam}(\Gamma(R))=3$ by Lemma 3.2. Thus $A N N_{G}(R) \neq \Gamma(R)$ by Theorem 2.1. Since R is reduced and $A N N_{G}(R) \neq \Gamma(R)$, we have $\operatorname{gr}\left(A N N_{G}(R)\right)=3$ by Corollary 2.2.2.

Theorem 3.4. Let R be a reduced commutative ring that is not an integral domain. Then $A N N_{G}(R)=\Gamma(R)$ if and only if $|\operatorname{Min}(R)|=2$.
Proof. Assume that $A N N_{G}(R)=\Gamma(R)$. Since R is reduced commutative ring that is not an integral domain, we have $|\operatorname{Min}(R)|=2$ by Theorem 3.3. Conversely, suppose that $|\operatorname{Min}(R)|=2$. Let P and Q be the two minimal prime ideals of R. Since R is reduced, we have $\mathrm{Z}(R)=P \cup Q$ and $P \cap Q=\{0\}$. Let $x, y \in \mathrm{Z}(R)^{*}$. Suppose that $x, y \in P$. So neither $x \in Q$ nor $y \in Q$ and thus $x y \neq 0$. Since $P Q \subseteq P \cap Q=\{0\}$, we have $a n n_{R}(x y)=a n n_{R}(x)=a n n_{R}(y)=Q$. Hence $x-y$ is not an edge of $A N N_{G}(R)$ by Lemma 2.1(1). Similarly, if $x, y \in Q$, then also $x-y$ is not an edge of $A N N_{G}(R)$. If $x \in P$ and $y \in Q$, then $x y=0$ and hence $x-y$ is an edge of $A N N_{G}(R)$. Thus each edge of $A N N_{G}(R)$ is an edge of $\Gamma(R)$. Hence $A N N_{G}(R)=$ $\Gamma(R)$.

In light of Theorem 3.4, Lemma 2.1(6) and [5, Theorem 3.6], we have the Theorem 3.5.
Theorem 3.5. Let R be a reduced commutative ring that is not an integral domain. Then $A N N_{G}(R)=A G(R)=$ $\Gamma(R)$ if and only if $|\operatorname{Min}(R)|=2$.

Theorem 3.6. Let R be a reduced commutative ring. Then the following statements are equivalent:
(1) $\operatorname{gr}\left(A N N_{G}(R)\right)=4$;
(2) $A N N_{G}(R)=A G(R)=\Gamma(R)$ and $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=4$;
(3) $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=4$;
(4) $T(R)$ is ring-isomorphic to $K_{1} \times K_{2}$, where each K_{i} is a field with $\left|K_{i}\right| \geq 3$;
(5) $|\operatorname{Min}(R)|=2$ and each minimal prime ideal of R has at least three distinct elements;
(6) $A G(R)=\Gamma(R)=K^{m, n}$ with $m, n \geq 2$;
(7) $A N N_{G}(R)=K^{m, n}$ with $m, n \geq 2$.

Proof. $(1) \Rightarrow(2)$: Since $\operatorname{gr}\left(A N N_{G}(R)\right)=4$, we have $A N N_{G}(R)=\Gamma(R)$ by Corollary 2.2.2 and $A N N_{G}(R)=A G(R)$ by Corollary 2.3.2. Thus $A N N_{G}(R)=A G(R)=\Gamma(R)$ and hence $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=4$.
$(2) \Rightarrow(3)$: It is obvious.
$(3) \Leftrightarrow(4)$: It is clear by [3, Theorem 2.2] and [5, Theorem 3.7].
(4) $\Leftrightarrow(5)$: It is clear by [5, Theorem 3.7].
(5) $\Leftrightarrow(6)$: If $|\operatorname{Min}(R)|=2$ and each minimal prime ideal of R has at least three distinct elements, then $A G(R)=\Gamma(R)$ by [5, Theorem 3.6] and hence $A G(R)=\Gamma(R)=K^{m, n}$ with $m, n \geq 2$ by [5, Theorem 3.7]. Conversely, if $A G(R)=\Gamma(R)=K^{m, n}$ with $m, n \geq 2$, then $|\operatorname{Min}(R)|=2$ and each minimal prime ideal of R has at least three distinct elements by [5, Theorem 3.7].
$(6) \Rightarrow(7)$: Since (6) implies $|\operatorname{Min}(R)|=2$, we have $A N N_{G}(R)=\Gamma(R)$ by Theorem 3.4 and $A N N_{G}(R)=$ $A G(R)=\Gamma(R)$ by Theorem 3.5. But $A G(R)=\Gamma(R)=K^{m, n}$ with $m, n \geq 2$. Hence $A N N_{G}(R)=K^{m, n}$ with $m, n \geq 2$.
(7) $\Rightarrow(1)$: Since $A N N_{G}(R)=K^{m, n}$ with $m, n \geq 2$, we have $\operatorname{gr}\left(A N N_{G}(R)\right)=4$.

Theorem 3.7. Let R be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent:
(1) $\operatorname{gr}\left(A N N_{G}(R)\right)=\infty$;
(2) $A N N_{G}(R)=A G(R)=\Gamma(R)$ and $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=\infty$;
(3) $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=\infty$;
(4) $T(R)$ is ring-isomorphic to $\mathbb{Z}_{2} \times K$, where K is a field;
(5) $|\operatorname{Min}(R)|=2$ and at least one minimal prime ideal of R has exactly two distinct elements;
(6) $A G(R)=\Gamma(R)=K^{1, n}$ for some $n \geq 1$;
(7) $A N N_{G}(R)=K^{1, n}$ for some $n \geq 1$.

Proof. (1) \Rightarrow (2): Since $\operatorname{gr}\left(A N N_{G}(R)\right)=\infty$, we have $A N N_{G}(R)=\Gamma(R)$ by Corollary 2.2.2 and $A N N_{G}(R)=$ $A G(R)$ by Corollary 2.3.2. Thus $A N N_{G}(R)=A G(R)=\Gamma(R)$ and hence $\operatorname{gr}(A G(R))=g r(\Gamma(R))=\infty$.
$(2) \Rightarrow(3)$: It is obvious.
(3) $\Leftrightarrow(4)$: It is clear by [3, Theorem 2.4] and [5, Theorem 3.8].
$(4) \Leftrightarrow(5)$: It is clear by [5, Theorem 3.8].
(5) $\Leftrightarrow(6)$: If $|\operatorname{Min}(R)|=2$ and at least one minimal prime ideal of R has exactly two distinct elements, then $A G(R)=\Gamma(R)$ by [5, Theorem 3.6] and hence $A G(R)=\Gamma(R)=K^{1, n}$ for some $n \geq 1$ by [5, Theorem 3.8]. Conversely, if $A G(R)=\Gamma(R)=K^{1, n}$ for some $n \geq 1$, then $|\operatorname{Min}(R)|=2$ and at least one minimal prime ideal of R has exactly two distinct elements by [5, Theorem 3.8].
$(6) \Rightarrow(7)$: Since (6) implies $|\operatorname{Min}(R)|=2$, we have $A N N_{G}(R)=\Gamma(R)$ by Theorem 3.4 and $A N N_{G}(R)=$ $A G(R)=\Gamma(R)$ by Theorem 3.5. But $A G(R)=\Gamma(R)=K^{1, n}$ for some $n \geq 1$. Hence $A N N_{G}(R)=K^{1, n}$ for some $n \geq 1$.
(7) $\Rightarrow(1)$: Since $\operatorname{ANN}_{G}(R)=K^{1, n}$ for some $n \geq 1$, we have $\operatorname{gr}\left(A N N_{G}(R)\right)=\infty$.

In light of Theorem 3.6 and Theorem 3.7, we have the Theorem 3.8.
Theorem 3.8. Let R be a reduced commutative ring. Then $A N_{G}(R)=A G(R)=\Gamma(R)$ if and only if $\operatorname{gr}\left(A N N_{G}(R)\right)=\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R)) \in\{4, \infty\}$.

4. Conclusion

In view of Theorem 2.2 and Corollary 2.2.1, the following is an example of a nonreduced commutative ring R, where $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in$ $\mathrm{Z}(R)^{*}$, but there is a path in $A N N_{G}(R)$ of length 2 from x to y that is also a path in $\Gamma(R)$.

Example 4.1. Let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. Then $(0,1)-(2,1)$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$. But $(0,1)-(2,0)-(2,1)$ is a path of length 2 from $(0,1)$ to $(2,1)$ in $A N N_{G}(R)$ that is also a path in $\Gamma(R)$.

In view of Theorem 2.2 and Corollary 2.2.1, the following is an example of a nonreduced commutative ring R, where $x-y$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in \mathrm{Z}(R)^{*}$, but every path in $A N N_{G}(R)$ of length 2 from x to y is also a path in $\Gamma(R)$.
Example 4.2. Let $R=\mathbb{Z}_{2}[X] /\left\langle X^{3}\right\rangle$. Then $X+\left\langle X^{3}\right\rangle-X+X^{2}+\left\langle X^{3}\right\rangle$ is an edge of $A N N_{G}(R)$ that is not an edge of $\Gamma(R)$. Now $X+\left\langle X^{3}\right\rangle-X^{2}+\left\langle X^{3}\right\rangle-X+X^{2}+\left\langle X^{3}\right\rangle$ is the only path in $\operatorname{ANN}_{G}(R)$ of length 2 from $X+\left\langle X^{3}\right\rangle$ to $X+X^{2}+\left\langle X^{3}\right\rangle$ and it is also a path in $\Gamma(R)$. Here $A N N_{G}(R)=K^{3}, \Gamma(R)=K^{1,2}$, $g r(\Gamma(R))=\infty, \operatorname{gr}\left(A N N_{G}(R)\right)=3, \operatorname{diam}(\Gamma(R))=2$ and $\operatorname{diam}\left(A N N_{G}(R)\right)=1$.

In view of Theorem 2.2 and Corollary 2.2.2, the following is an example of a nonreduced commutative ring R, where $A N N_{G}(R) \neq \Gamma(R)$, but $\operatorname{gr}\left(A N N_{G}(R)\right)=3$.
Example 4.3. Let $R=\mathbb{Z}_{8}$. Then $A N N_{G}(R)=K^{3}$ and $\Gamma(R)=K^{1,2}$. So $A N N_{G}(R) \neq \Gamma(R)$, but $\operatorname{gr}\left(A N N_{G}(R)\right)$ $=3$.

In view of Theorem 2.3 and Corollary 2.3.2, the following are the examples of nonreduced and reduced commutative ring R, where $A N N_{G}(R)=A G(R)$ with $\operatorname{gr}\left(A N N_{G}(R)\right)=3,4$ or ∞.
Example 4.4. Let $R=\mathbb{Z}_{8}$. Then R is nonreduced and $A N N_{G}(R)=A G(R)=K^{3}$ with $\operatorname{gr}\left(A N N_{G}(R)\right)=3$. Let $R=\mathbb{Z}_{9}$. Then R is nonreduced and $A N N_{G}(R)=A G(R)=K^{1,1}$ with $\operatorname{gr}\left(A N N_{G}(R)\right)=\infty$. Let $R=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Then R is reduced and $A N N_{G}(R)=A G(R)=C^{4}$ with $\operatorname{gr}\left(A N N_{G}(R)\right)=4$. Let $R=\mathbb{Z}_{6}$. Then R is reduced and $A N N_{G}(R)=A G(R)=K^{1,2}$ with $\operatorname{gr}\left(A N N_{G}(R)\right)=\infty$.

References

[1]. D. F. Anderson, On the diameter and girth of a zero-divisor graph II, Houston J. Math. 34, 2008, 361 - 371.
[2]. D. F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, 1999, $434-447$.
[3]. D. F. Anderson, S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210, 2007, 543 - 550.
[4]. M. Axtel, J. Coykendall, J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33(6), 2005, 2043 - 2050.
[5]. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42, 2014, $1-14$.
[6]. I. Beck, Coloring of commutative rings, J. Algebra 116, 1988, 208 - 226.
[7]. F. DeMeyer, K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, Internat. J. Commutative Rings 1 (3), 2002, 93 - 106.
[8]. R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
[9]. I. N. Herstein, Topics in Algebra, 2 ${ }^{\text {nd }}$ Edition, John Wiley \& Sons, (Asia) Pte Ltd, 1999.
[10]. T. G. Lukas, The diameter of a zero-divisor graph, J. Algebra 301, 2006, 174-193.
[11]. S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7), 2002, 3533 - 3558.

