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Abstract: The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular 

duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized 

Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by 

applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized 

Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. 

Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical 

illustrations. 
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I. Introduction 

The study of non-Newtonian fluid plays an important role in technological applications compared with 

Newtonian fluids because of their behavior. Several models have been proposed and examined to explain this 

non- linear behavior. One of the most popular subclasses of differential type fluids is the Oldryod- B fluid.  

It has been found that the viscoelastic generalized Oldroyd- B fluid can be used to approximate the 

response of many dilute polymeric liquids successfully, and this approach has been widely applied to flow 

problems with small relaxation and retardation times, with classical Newtonian and Maxwell fluid being 

included as special cases [6]. 

In recent years, the study of non-Newtonian fluid flow has increased dramatically, and many of the 

researchers involved in obtaining exact solutions of the approach through the introduction of fractional calculus 

in various rheological problems [2,3,6,7,11]. 

Among these, Khan et al. [7] constructed the exact solutions for the accelerated flows of generalized 
Oldroyd- B fluid using the fractional calculus approach established constitutive relationship of a viscoelastic 

fluid model.  Zheng et al. [6] deals with the 3D flow of a generalized Oldroyd- B fluid due to a constant pressure 

gradient between two side walls perpendicular to a plane. Hyder et al. [11] discussed the exact solutions for a 

viscoelastic fluid with generalized Oldroyd- B fluid. 

In addition, some problems concerning unsteady flows through an oscillating rectangular duct have 

already been investigated. Johri, A. K. and Singh, M.[1] deals with an oscillating flow of a viscous liquid in a 

porous rectangular duct. Nazar, M. et al. [8] presented an analysis for the unsteady flow of incompressible 

Maxwell fluid in an oscillating rectangular cross section. Sultan, Q. et al. [10] discussed the analytic solution for 

the unsteady magnetohydrodynamic (MHD) flow of Oldroyd- B fluid in long porous rectangular cross- section. 

Nazar, M. et al. [9] determined the velocity filed and the shear stresses corresponding to the unsteady flow of 

generalized Maxwell fluid on oscillating rectangular duct. Nadeem et al. [12] discussed the Rayleigh Stokes 
problem for rectangular pipe in Maxwell and second grade fluids.   

The purpose of this work is to present analytic solutions for generalized Oldroyd- B fluid on oscillating 

rectangular duct by means of double finite Fourier sine and discrete Laplace transforms for fractional calculus 

approach.  Finally, the influences of the various parameters on the motion of generalized Oldroyd- B fluid are 

underlined by graphical illustrations. 

 

II. Governing Equations 

The constitutive equations for an incompressible fractional Oldroyd- B fluid given by 

 SIT  p ,        
1 t r t(1+ D ) = (1+ D )     S A                                                                     (1)  

  where T  denoted the cauchy stress, Ip  is the indeterminate spherical stress, S is the extra stress 

tensor, 
T

LLA   is the first Rivlin- Ericksen tensor with the velocity gradient where VL  grad ,   is the 

dynamic viscosity of the fluid, 
1
  and r  (<

1
 ) are the relaxation and retardation times, respectively,  and   

the fractional calculus parameters such that 10    and  p

tD
~

the upper convected fractional derivative 

define by 
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in which 
tD  and 

tD  are the fractional differentiation operators of order  and   based on the Caputo’s 

definition, defined as 

0

1 ( )
( )

(1 ) ( )

t

t

f
D f t d

t








 



                                                                                                                (4) 

here (.)  denotes the Gamma function and 

If 1   the ordinary Oldroyd- B model will be obtained. 

Consider an incompressible generalized Oldroyd- B fluid at rest of rectangular cross- section whose sides are at 

0, , 0 andx x d y y h    . At time t 0  the duct begin to oscillate along z- axis. 

The velocity field is 

( , , ) ( , , )x y t w x y t V V k                                                                                                                      (5) 

and the shear stress as the form 

( , , )x y tS S                                                                                                                                            (6) 

where w  is the velocity and k   is the unit vector in the z- direction .Substituting equations (5) and (6) into (1) 

and taking account of the initial condition  

  ( , ,0) 0 , ( , ,0) 0x y w x y S                                                                                                            (7) 

we obtain 

1 t 1 3 t x

1 t 2 r t y

1 t 1 1 2

(1+ D ) = (1+ D ) ( , , )

(1+ D ) = (1+ D ) ( , , )

(1+ D ) =2

w x y t

w x y t

w w

x y

   

   

  

   

   

    





  
 

  

                                                                                                  (8) 

where xz 1 yz 2 zz xx xy yyS , S , S , S S S 0        and xz zx yz zyS S , S S  . Then the equation of motion 

yields the following scalar equation: 

1 2dw

dt x y z

  


  
  
  

                                                                                                                        (9) 

where   is the constant density of the fluid. Eliminating 1 2, and    between Eqs. in (8) and (9), we obtain 

the following fractional differential equation   
2 2

1 t r t 2 2
(1+ D ) (1+ D )

t

w w w
v

x y

    
   

  
   

                                                                                           (10)         

where 



v   is the kinematic viscosity.  

We consider the following initial and boundary conditions 

( , ,0)
( , ,0) 0

w x y
w x y

t


 


                                                                                                                 (11a) 

(0, , ) ( , , ) ( ,0, ) ( , , ) cos( )w y t w d y t w x t w x h t U t                                                                       (11b) 

or 

( , ,0)
( , ,0) 0

w x y
w x y

t


 


                                                                                                                 (12a) 

(0, , ) ( , , ) ( ,0, ) ( , , ) sin( )w y t w d y t w x t w x h t U t                                                                        (12b) 

We denote by ( , , )u x y t  the solution of problem (10), (11a),(11b) and by ( , , )v x y t  the solution of problem (10), 

(12a),(12b) and define the complex velocity field 

( , , ) ( , , ) ( , , )F x y t u x y t iv x y t   

which is the solution of the following problem: 
2 2

1 t r t 2 2

( , , ) ( , , ) ( , , )
(1+ D ) (1+ D )

t

F x y t F x y t F x y t
v

x y

    
   

  
   

                                                         (13) 
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( , ,0)
( , ,0) 0

F x y
F x y

t


 


                                                                                                                  (14) 

(0, , ) ( , , ) ( ,0, ) ( , , ) i tF y t F d y t F x t F x h t Ue                                                                                 (15) 

 

III. Calculation of Velocity Field 

Consider an incompressible generalized Oldroyd- B fluid at rest of rectangular cross- section whose 

sides are at 0, , 0 andx x d y y h    . At time t 0  the duct begins to oscillate along z- axis. The 

fractional differential Eq. (13) with the initial and boundary conditions (14) and (15) will be solved by means of 
the double finite Fourier sine and discrete Laplace transforms.   

Multiplying both sides of Eq. (13) by sin( )m x  and sin( )n y , integrating with respect to x and y over 

[0, ] [0, ]d h  and using Eq. (15), we find that 

2 2
2 2

1 t r t r t

( )
(1+ D ) (1+ D )( ) ( ) (1+ D ) 1 ( 1) 1 ( 1)

t

m n i tmn m n
m n mn

m n

F t
F t Ue       

      
 

 
            

 (16) 

where m

m

d


  ,  n

n

h


   and the double finite Fourier sine transforms 

0 0

( ) ( , , )sin( )sin( ) , , 1,2,3,

d h

mn m nF t F x y t x y dxdy m n                                                            (17) 

With the initial condition  

(0)
(0) 0, 0, , 1,2,3,mn

mn

F
F m n

t


  


                                                                                     (18) 

Referring to Eq. (16), the corresponding fractional partial differential equation that described such flow takes the 

form 

1 1

1

2 2

1 t r t

2 2

r 1, 1

( )
(1+ D ) ( )(1+ D ) ( )

t

1 ( 1) 1 ( 1) ( ) ( )

mn
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n nm n i tm n
n

m n

F t
F t

Ue U i t E i t

   

 


    

 
   

 



 


  




             

              (19) 

where ,

0

( )! !
( )

! ( )

m

j

j m z
E z

j j m
 

  








  
  is the generalized Mittag- Leffler function [4] and 1n  is integer no. 

By applying the discrete Laplace transform of Eq.(19) with the initial conditions (18), we get 
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where
1

1 ( 1) 1 ( 1)m n

mn

m n

a
 

           , 2 2

mn m n     and 
0

( ) ( ) st

mn mnF s F t e dt



   is the Laplace transform of 

( )mnF t . 

Now, rewriting Eq. (19) in series form as  

 
 

 
1 1
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(21) 

where   
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                                                                 (22) 

and 2 k l j q p b             

Applying double inverse Fourier sine transform, we obtain 

 

 

1 1

, 1 , 1
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                                                                                                                                                              (23) 
Using the formula [5] 

, 1

4
1 sin( )sin( )mn m n

m n

a x y
d h

 




                                                                                                          (24) 

we obtain for ( , , )F x y s  the expression 
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or  
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(26) 

where 2 1M m  , 2 1N n  , 
(2 1)

M

m

d





  and 

(2 1)
N

n

h





 . 

By applying the inverse Laplace transform to Eq. (26), using (22) and the formula [4] 
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                                                           (27) 

we obtain for the complex velocity field ( , , )F x y t , the following expression: 
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(28) 

Setting 1 12 , 2d a h b   and changing the origin of the coordinate system (taking *

1x x a  , *

1y y b   and 

dropping out the star notation), the complex velocity can be written in the form 
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(29) 

The velocity field corresponding to the cosine oscillation of the ducts, respectively to the sine oscillation of the 

duct is given by 
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Special Cases: 

1- If 1   , we can get similar solution of complex velocity distribution for unsteady flows of an 

Ordinary Oldroyd- B fluid, as obtained in Ref[10]. Thus the complex velocity field reduces to 
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2- If  0r  , we can get similar solution of complex velocity distribution for unsteady flows of  generalized 

Maxwell fluid with fractional derivatives, as obtained in Ref[9]. Thus the complex velocity field reduces to 
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where , , ( , )a b cG d t is the generalized G- functions defined by [4] 
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IV. Numerical results and discussion: 

In this work, we have discussed the flow of generalized Oldroyd-B fluid with fractional derivatives 

within an oscillating rectangular duct. Both cases of cosine and sine oscillations of the duct have been analyzed 

and the solutions have been determined by means of discrete Lplace and double finite Fourier sine transforms. 

The solutions corresponding to the generalized Maxwell fluid and the ordinary Oldroyd-B fluid have been 

determined as particular cases. Finally, the effects of various parameters on the velocity distribution 

characteristics are revealed by graphical illustrations.  

Figures are sketched to show the profiles of the velocity field of generalized Oldroyd-B fluid with 

fractional derivatives in the case of cosine oscillations of the duct, Eq.(30) (Panel a),  and the case of sine 

oscillations of the duct, Eq.(31) (Panel b).  
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Figs. 1 and 2 prepared to show the variations of the non- integer fractional parameters  and  , 

respectively, as well as a comparison between the velocity in the case of cosine oscillation of the duct (Panel a) 

and the velocity in the case of sine oscillation of the duct (Panel b) for fixed values of other parameters. It is 

clearly seen that the smaller the values of  , the more rapidly the velocity decays for both cases. However, one 

sees a opposite trend for the variation of  . 

Figs. 3 and 4 provide the graphically illustrations for effects of relaxation and retardation parameters 

1  and r  on the velocity field. The velocity is decreasing with the increased the 1  and r  for both cases, 

cosine and sine oscillations. 

Fig. 5 demonstrates the influence of frequency of oscillation   on the velocity profile for two cases 

cosine and sine oscillations. The velocity is increasing with the increase of the values of  . 

Fig. 6 represents the variation of velocity profiles for two cases cosine and sine oscillations for different value 

of y . It is seen that the amplitude of oscillation decreases as y  increases. Fig. 7 represents the variation of 

velocity profile for different values of t . It is seen that effect of t  on transient velocity is opposite to that of y .   

Comparison shows that the velocity profile in the case of cosine oscillation are greater in magnitude when 

compared to those of the case of sine oscillation.  

 

 

  
Fig. 1. The velocity for different value of  when keeping other parameters fixed a) cosine oscillation b) sine 

oscillation 

 

  
Fig. 2. The velocity for different value of  when keeping other parameters fixed a) cosine oscillation b) sine 

oscillation 
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Fig. 3. The velocity for different value of 
1 when keeping other parameters fixed a) cosine oscillation b) sine 

oscillation 

 

  
Fig. 4. The velocity for different value of 

r when keeping other parameters fixed a) cosine oscillation b) sine 

oscillation 

  
Fig. 5. The velocity for different value of  when keeping other parameters fixed a) cosine oscillation b) sine 

oscillation 

        
Fig. 6. The velocity for different value of y when keeping other parameters fixed a) cosine oscillation b) sine 

oscillation 

         
Fig. 7. The velocity for different value of t when keeping other parameters fixed a) cosine oscillation b) sine 

oscillation 
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