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I. Introduction 
In recent years the subject of fractional calculus gained much momentum and attracted many researchers 

and mathematicians. Considerable interest in field of fractional calculus has been developed by the applications to 

different areas of applied science and engineering like physics, biophysics, aerodynamics, control theory, 

viscoelasticity, capacitor theory, electrical circuit, description of memory and hereditary properties etc. See 

[1]-[5]. 

Anti periodic boundary value problems constitute an important class of boundary value problems and 

have recently received considerable attention. Anti periodic boundary conditions occur in mathematical modeling 

of many physical processes, see [6]-[10] and references therein. 

The Banach fixed point theorem is used [11] to investigate existence and uniqueness of for integro 

differential equations of fractional order (1,2)  with antiperiodic boundary conditions. In [7] the author 

investigated existence problem of an anti periodic boundary value problem to fractional differential equation for 

(2,3)  by using Banach fixed point. Motivated by these works we study in this paper the existence of 

solution to fractional differential equation when (0,3]  with anti periodic boundary conditions. 

Precisely we consider the following problem;  
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 where nc D


 denotes the Caputo’s fractional derivative of order n  and f  is a continuous function. 

 

II. Preliminaries 

Definition 2.1 A real function )(tf  is said to be in the space C , R  if there exists a real number 

>p , such that )(=)( 1 tfttf p
,where ][0,1 Cf , and it is said to be in the space 

nC  if and only if 

Cf n )(
, Nn .  

 

Definition 2.2 A function Cf  , 1  is said to be fractional integrable of order 0>  if  
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and if 0=n  then ).(=)(0 tftfI  

 

Next we introduce the Caputo fractional derivative.  
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Definition 2.3 Caputo fractional derivative is defined as  
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Lemma 2.4 [3].  For 0>  the solution of fractional differential equation 0=)(txDc 
 is given by  
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 where 1)][=1(.,0,1,2,....=,  nnici  where ][  denotes the integer part of 0> .  

 

To study the nonlinear problem (1)  we need following lemma. 

 

Lemma 2.5 For any ][0,TC  the unique solution of bounded value problem. 
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where ),( stGn  is Green’s function corresponding to n .  
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Proof. By using Lemma 2.4 for some constants 210 ,, ccc  we have for 1<0   
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at 0=t  we have (0)1x  at Tt =  
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by using boundary condition )(=(0) Txx   we have  
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The the Green’s function is:  
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 Similarly for 2<1   
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By using boundary conditions  
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Finally for 3<2 3   
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III. Existence result 
The existence problem to the given fractional nonlinear differential system with anti-periodic boundary 

conditions is investigated in this section by using well known Banach fixed point theorem. 

Let )([0,1],= RCC  denote the Banach space of all continuous functions from R[0,1]  endowed with 

the norm defined by |[0,1]),(|= ttxsupx ||||
.
. 

Now we state some known results to prove the existence of solution of (1).  

Theorem 3.1 Let X  be a Banach space and   is an open and bounded subset of X  and let XT :  

and | 𝑇𝑢 | ||u||,  for all u . Then T  has a fixed point in  .  

 

 

Theorem 3.2 Define an operator 

CCgn :  as 1,2,3=n  and [0,1]t  for 1<1,0= 1 n .  
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 for 2<2,1= 2 n . 

 

 dssxs
sT

dssxs
st

txg
Tt

))(,(
)(

2

1
))(,(

)(
=))(( 2

2

1
2

0
2

2

1
2

0
2 


















  



Existence of solution of anti periodic boundary value problems of fractional order 3<<0   

www.iosrjournals.org                              5 | Page 

 dssxs
sTtTT

))(,(
1)(4

))(2(
2

2

2
2

0













       (12) 

 for 3,=n 3<2 3  . 
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Observe that problem (1) has a solution if and only if the operator ng  has a fixed point.  

 

Lemma 3.3 The operator CCgn :  is completely continuous.  

 

Proof. Let C  be bounded then  xt [0,1], , there exists a positive contant nL  such that  

 1,2,3.=,|),(| nLxt nn   

Thus for 1<0 1  , we have 

 

 dssxs
sT

dssxs
st

txg
Tt

|))(,(|
)(

2

1
|))(,(|

)(
|))((| 1

1

1
1

0
1

1

1
1

0
1 




















  

 ])(
2

1
)(

1
[

1
1

0
1

1
1

0
1

dssTdsst
Tt 







 



 

 ]
)(21)(

[
1

1

1

1
1












TT
L  

 
1

1

1

.
1)(2

3
= L

T

 



 

 11= LM  

 where 
1)(2

3
=

1

1

1
 


T

M  which implies that  

 .)( 11LMxg ||||         (14) 

 

Furthermore  

 dssxs
sT

dssxs
st

txg
Tt

|))(,(|
1)(

)(

2

1
|))(,(|

1

)(
|=)()(| 2

1

2
1

0
2

1

2
1

0
1 




















  

 ]
1)(

)(

2

1

1)(

)(
[

1

1
1

0
1

2
1

0
1 ds

sT
ds

st
L

Tt













 



 

 ]
2

3
[

1

1
1

1








T

L  

 11= LM   



Existence of solution of anti periodic boundary value problems of fractional order 3<<0   

www.iosrjournals.org                              6 | Page 

 where 

1

1
1

1
2

3
=









T

M  which implies that  

 .)()( 111 LMtxg  ||||         (15) 

 Hence for ][0,, 21 Ttt  , we have  

 dssxgtxgtxg
t

t
|)()(||))(())((| 1

2

1
2111

   

 ).( 2111 ttLM          (16) 

 This implies that 1g  is equicontinuous on [0,1] . By Arzela Ascoli theorem we can say that 

CCg :1  is completely continuous. 

In the similar manner we can prove that CCg :2  and CCg :3  are completely continuous for 

2<1 2   and 3<2 3   respectively. 

Hence we can say CCgn :  is completely continuous for 3<0 n  where 1,2,3.=n  

 

Now we prove existence and uniqueness result by means of Banach fixed point theorem. 
 

Theorem 3.4  Assume XX [0,1]:  is a continuous function satisfying the condition  
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Thus conclusion of the theorem follows by Contraction mapping principle or Banach fixed point theorem.  
 

IV. Example 
Example 4.1 Now consider a fractional system of equation with anti periodic boundary conditions  
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where [0,2]t .  

Solution 4.2 Here 2=T  in each case 
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In all cases 1<,,
n

TLi  . 

Hence by Banach fixed point theorem and Theorem 3.4 the system of differential equations of fractional order 

3<0 n  with anti periodic boundary conditions has a unique solution.  

 

V. Conclusion 
An esxistence result is given for system of fractional differential equation involving Caputo derivative 

with anti periodic boundary conditions of order (0,3)  by using Banach fixed point theorem. 
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