Combinatorial Theory of a Complete Graph \mathbf{K}_{5}

Geetha N. K.
Assistant Professor (S.G), Department of Mathematics, Saveetha School of Engineering Saveetha University, Chennai, India

Abstract

For two given graphs G and H, the Ramsey number $R(G, H)$ is the positive integer N such that for every graph F of order N, either F contains G as a subgraph. The Ramsey number $R\left(F_{l}, K_{4}\right)$ where F_{l} is the graph of every triangle. The aim of this paper is to prove that $R\left(F_{1}, K_{n}\right)=2 l(n-1)+1$ for $n=4 \& I=3$ and $R\left(F_{l}\right.$, $\left.K_{n}\right)=2 l(n-1)+1$ for $I \geq n \geq 5$.

Keywords: Fan, Graph, Ramsey number, Tree, Wheel.

I. Introduction

A complete graph is a graph with an edge between every pair of vertices. A tree is a connected graph T that does not contain any cycles. The complete graph on n vertices is denoted by K_{n}. The graph \square is the compliment of G which is obtained from the complete graph on $|V(G)|$ vertices by deleting the edges of G. A graph G is complete p - particle if its vertices can be partitioned into p non empty independent sets $V_{1}, V_{2} V_{3} V_{4}$ $\ldots . ., V_{p}$ such that its edge set E is formed by all edges that have one end vertex in V_{i} and the other one in V_{j} for $1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{p}$. A complete 2-partite graph is called a complete m by n bipartite graph and denoted by $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ if $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. A star S_{n} is a complete 2-partite graph with independent sets $V_{1}=\{r\}$ and $V_{2}=n$. the vertex r is called the root and the vertices in V_{2} are called the leaves of $S_{n . .}$ A wheel W_{m} is a graph on $m+1$ vertices obtained from a cycle on m vertices by adding a new vertex and edges joining it to all the vertices of the cycle (W_{m} is the join of K_{1} and C_{m}). A kipas \square_{m} is a graph on $\mathrm{m}+1$ vertices obtained from the join of K_{1} and P_{m}. A fan F_{m} is a graph on $2 m+1$ vertices obtained from m disjoint triangles $\left(K_{3} s\right)$ by identifying precisely one vertex of every triangle (F_{m} is the join of K_{1} and mK_{2}).

Let $V(G)$ is the vertex set and $E(G)$ is the edge set for the graph $G=(V(G), E(G))$ and \square is the compliment of G. $G(S)$ denotes the subgraph for $S \leq V(G)$, induced by S in G and $G-S=G[V(G)-S] . N_{s}(V)$ is the set of neighbours of vertex V in S and $d_{s}(V)=\left|N_{s}(V)\right|$. when $S=V(G)$, then $N_{v}=N_{G}(V), N_{[v]}=N_{(v)} U$ $\{V\}$ and $d(V)=d_{G}(V)$. let the graph of order n is k_{n} and $m k_{n}$ is the union of m vertex. F_{\square} is the fan of order (2 \square +1) and the join of k_{1} and $\square \mathrm{k}_{2}$, which is \square triangles sharing exactly one vertex. Where k_{1} is the center of F_{1}. The Ramsey number $R(F, H)$ is the simplest integer for two given graphs F and H such that for any graph G of order N , either the compliment of G contains H or G contains F . Burr[1] formulated a lower bound for a connected graph F of the order P, that is $R(F, H) \geq(P-1)(X(H)-1)+S(H)$, if $P \geq S(H)$, where $X(H)$ is the chromatic number of H and the minimum count of vertices in class under vertex coloring is $S(H)$ by $X(H)$ colors. Noting that $X\left(K_{n}\right)=n$ and $S\left(K_{n}\right)=1$ for the pair F_{1} and K_{n}.

By Burr's lower bound, $\mathrm{R}\left(\mathrm{F}_{\square}, \mathrm{K}_{\mathrm{n}}\right) \geq 2 \square(\mathrm{n}-1)+1$.For $\mathrm{n}=3$, Gupta [2] showed that, $\mathrm{R}\left(\mathrm{F}_{\square}, \mathrm{K}_{3}\right)=4 \square+1$ for $\square \geq 2$
For $n=4$, Surahmat [3] showed that, $R\left(F_{\square}, K_{4}\right)=6 \square+1$ for $\square \geq 3$

The conjecture for $\mathrm{n}=5$ is to be confined in this paper.
G is a graph of order $8 \square+1, \square \geq 5$, let us show that G contains an F_{\square} or \square contains K_{5}. let us assume that G does not contain an F_{\square} or \square does not contains K_{5}. Let $\square € V(G), d(v) \leq 2 \square-1$ then $G-N[v]$ is a graph of order at least $6 \square+1$ for $\square \geq 3, \square-N[v]$ contains a k_{4}, it means that \square contains a k_{5} which is a contradiction. If $\mathrm{d}[\mathrm{v}] \geq 2 \square+3$, then the maximum matching M of $\mathrm{G}[\mathrm{N}(\mathrm{v})]$ contains at least \square edges for otherwise $\square[\mathrm{N}(\mathrm{v})-$ $\mathrm{V}(\mathrm{M})$] will be a complete graph of order S , which means that G has an F_{\square} which is-a contradiction. So , $2 \square \leq$ $\mathrm{d}(\mathrm{v}) \leq 2 \square+2$.

Let us assume G contains a sub graph $H=K_{2 \square-1}$. Let $V_{0} € \mathrm{~V}(\mathrm{G})-\mathrm{V}(\mathrm{H})$ such that $\mathrm{d}_{\mathrm{H}}\left(\mathrm{V}_{0}\right)=\max \{$ $\left.\mathrm{d}_{\mathrm{H}}(\mathrm{v}) / \mathrm{V} € \mathrm{~V}(\mathrm{G})-\mathrm{V}(\mathrm{H})\right\}$. Then $\mathrm{G}-\left(\mathrm{V}(\mathrm{H}) \mathrm{U}\left\{\mathrm{V}_{0}\right\}\right)$ is a graph of order $6 \square+1$.

As \square has no K_{5},
$\mathrm{V}(\mathrm{H}) \mathrm{U}\left\{\mathrm{V}_{0}\right\} \leq \mathrm{U}_{\mathrm{i}=1}^{4} \mathrm{~N}\left(\mathrm{U}_{\mathrm{i}}\right)$
It means that $\max \left\{\mathrm{d}_{\mathrm{H}}\left(\mathrm{V}_{\mathrm{i}}\right) / 1 \leq \mathrm{i} \leq 4\right\} \geq[(2 \square-1) / 4] \geq 3$.
If $\mathrm{d}_{\mathrm{H}}\left(\mathrm{V}_{0}\right) \geq 4$, the V_{i} has two adjacent values in $\mathrm{N}_{\mathrm{H}}\left(\mathrm{V}_{0}\right) \mathrm{U}\left\{\mathrm{V}_{0}\right\}$,

If $d_{H}\left(V_{0}\right)=3$, then $d_{H}\left(V_{i}\right) \leq d_{H}\left(V_{0}\right)=3$ for $1 \leq i \leq 4$, which means that $d_{H}\left(V_{i}\right) \geq 2$ and $N_{H}\left(V_{i}\right) \cap N_{H}\left(V_{0}\right) \neq \phi$. In either cases, $G\left[V(H) U\left\{V_{0}, V_{i}\right\}\right]$ contains an F_{\square}, a contradiction. So G does not contain $K_{2 \square-1}$.

For $1 \leq \mathrm{i} \leq 4$, set $\mathrm{X}_{\mathrm{i}}=\left\{\mathrm{V} / \mathrm{d}_{\mathrm{v}}(\mathrm{v})=\mathrm{I}, \mathrm{V} € \mathrm{~V}(\mathrm{G})\right\}$
$\sum_{i=1}^{4}\left|X_{i}\right|=8 \square-3$
$\sum_{i=1}^{4} i\left|X_{i}\right|=\sum_{i=1}^{4} d\left(U_{i}\right)$
$\left|X_{i}\right| \geq 8 \square-14+\left|X_{3}\right|+2\left|X_{4}\right| \geq 8 \square-14$.
$\mathrm{X}_{1 \mathrm{i}}=\mathrm{N}_{\mathrm{X} 1}\left(\mathrm{~V}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq 4$
As \square has no $\mathrm{K}_{5}, \mathrm{G}\left[\mathrm{X}_{1 \mathrm{i}} \mathrm{U}\left\{\mathrm{U}_{\mathrm{i}}\right\}\right]$ is a complete graph.
And as G has no $\mathrm{K}_{2 \square-1},\left|\mathrm{X}_{1 \mathrm{i}} \mathrm{U}\left\{\mathrm{U}_{\mathrm{i}}\right\}\right| \leq 2 \square-2$ which means $\left|\mathrm{X}_{1 \mathrm{i}}\right| \leq 2 \square-3$ for $1 \leq \mathrm{i} \leq 4$.
Hence $\left|\mathrm{X}_{1 \mathrm{i}}\right|=\sum_{\mathrm{i}=1}^{4}\left|\mathrm{X}_{\mathrm{i}}\right|=8 \square-12$ and $\left|\mathrm{X}_{3}\right|+2\left|\mathrm{X}_{4}\right| \leq 2$
So $\left|X_{2}\right| \geq 7$.
As G contains no $K_{2 \square-1}, U_{i}-N_{(y)} \neq \phi$. Then $G\left[U_{i} U U_{j}-N_{(y)}\right]$ is a complete graph.
G has no F_{\square}, V_{i} and U_{j} are complete graphs. And $d_{u j}(U) \leq 3$ for any $U € V_{i}$, Such that $\left|V_{j}\right| \geq 2 \square-4$ and $\square \geq 5 . \mathrm{dV}_{\mathrm{j}}(\mathrm{y}) \geq\left|\mathrm{U}_{\mathrm{j}}\right|,\left|\mathrm{U}_{\mathrm{j}}-\mathrm{N}_{(\mathrm{y})}\right| \geq(2 \square-4)-3 \geq 3$.

Where U_{j} is pair wise vertex-disjoint.
If $\left|\mathrm{U}_{4}\right|=2 \square-2$, then, $\mathrm{X}_{2}=\mathrm{U}_{1} \leq \mathrm{i} \leq \mathrm{j} \leq 4$ and $\mathrm{Y}_{\mathrm{ij}}=\phi$ which contradicts $\left|\mathrm{X}_{2}\right| \geq 7$.
So, $2 \square-4 \leq\left|U_{4}\right| \leq 2 \square-3$.
$\left|U_{3}\right|+\left|U_{4}\right| \geq 4 \square-6$ and $\left|U_{4}\right| \leq 2 \square-3$
$\sum_{i=1}^{4} d\left(U_{i}\right)=8 \square+8, d_{X 2}\left(U_{4}\right)=6$
Assume $\mathrm{N}_{\mathrm{x} 2}\left(\mathrm{U}_{4}\right)=\left\{\mathrm{y}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq 6\right\}$ and \square contains no $\mathrm{K}_{5}, \mathrm{G}\left\{\mathrm{N}_{\mathrm{X} 2}\left(\mathrm{U}_{4}\right)\right\}$ contains at least one edge.
$\mathrm{Y}_{1}, \mathrm{Y}_{2} \in \mathrm{E}(\mathrm{G})$
And as G has no F_{\square}, $\mathrm{G}\left[\left\{\mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{y}_{6}\right\}\right]$ contains no edge. As \square has no K_{5}
$\left|\left\{\mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{y}_{6}\right\} \cap\left(\mathrm{N}\left(\mathrm{U}_{1}\right) \mathrm{UN}\left(\mathrm{U}_{2}\right)\right)\right| \geq 2$
Let us assume $\left\{\mathrm{y}_{3}, \mathrm{y}_{4}\right\} \leq \mathrm{N}\left(\mathrm{U}_{1}\right) \mathrm{U} \mathrm{N}\left(\mathrm{U}_{2}\right)$
$\mathrm{dU}_{4}\left(\mathrm{y}_{3}\right) \geq 3$ and $\mathrm{dU}_{4}\left(\mathrm{y}_{4}\right) \geq 3$,
which means that $\mathrm{d}_{\mathrm{X} 14}\left(\mathrm{y}_{3}\right) \geq 2$ and $\mathrm{d}_{\mathrm{X} 14}\left(\mathrm{y}_{4}\right) \geq 2$
This shows that there exists U^{\prime} and $U € X_{14}$ such that $U^{\prime} y_{3}, U " y_{4} € E(G)$ and shows that $G\left[U_{4} U\left\{y_{1} y_{2}\right.\right.$ $\left.\left.y_{3} y_{4}\right\}\right]$ has an F_{\square} having U_{4} as center, which is a contradiction.

This proves that $R\left(F_{\square}, K_{5}\right)=8 \square+1$ for $\square \geq 5$.

References

[1] S.A. Burr, Ramsey numbers involving graphs with long suspended paths, Journal of London Mathematical Society 24 (1981), 405413.
[2] S.K. Gupta, L. Gupta and A. Sudan, On Ramsey numbers for fan-fan graphs, Journal of Combinatorics, Information \& System Sciences 22 (1997), 85-93.
[3] Surahmat, E.T. Baskoro and H.J. Broersma, The Ramsey numbers of fans versus K4, Bulletin of the Institute of Combinatorics and its Applications 43 (2005), 96-102.
[4] S.P. Radziszowski, Small Ramsey numbers, The Electronic Journal of Combinatorics, (2011), DS1.13.
[5] Yanbo Zhang, Yaojun Chen, The Ramsey numbers of fans versus a complete graph of order five, Electronic journal of graph theory and Applications 2 (1) (2014), 66-69.
[6] D. Li, H. Lai, M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005), 422-428.
[7] H. Fleischner, The square of every two-connected graph is hamiltonian, J. Combin. Theory Ser. B 16 (1974), 29-34.
[8] B. Li, H.J. Broersma and S. Zhang, Pairs of forbidden induced subgraphs for homogeneously traceable graphs, Discrete Math. 312 (2012), 2800-2818.
[9] M. Miller and J. Sir'an, Moore graphs and beyond: A survey of the degree/diameter problem, Electron. J. Combin. 20(2) (2013), DS14v2.
[10] P. Morillo, M.A. Fiol, J. F abrega, The diameter of directed graphs associated to plane tesselations, Ars Combin. 20A(4) (1985), 17-27.
[11] J.L.A. Yebra, M.A. Fiol, P. Morillo, and I. Alegre, The diameter of undirected graphs associated to plane tesselations, Ars Combin. 20B(4) (1985), 159-171.

