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Abstract: In this paper, we implement Adomian decomposition method for solving numerically non-linear 

delay differential equations of fractional order. The fractional derivative will be in the Caputo sense. In this 

approach, the solutions are found in the form of a convergent power series with easily computed components. 

Some numerical examples are presented to illustrate the accuracy and ability of the proposed method. 
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I.      Introduction 

The subject of fractional calculus (that is calculus of integrals and derivatives of any arbitrary real or 

complex order) has gained considerable popularity and importance during the past three decades or so, due 
mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and 

engineering. It does indeed provide several potentially useful tools for solving differential and integral 

equations, and various other problem involving special functions of mathematical physics as well as their 

extensions and generalizations in one and more variables [1]. 

In real world systems, delays can be recognized everywhere and there has been widespread interest in 

the study of delay differential equations for many years. 

However, fractional delay differential equations(FDDES) are a very recent topic.Although it seems 

natural to model certain processes and systems in engineering and other science (with memory and heritage 

properties) with this kind of equations, only in the last few years has the attention of the scientific community 

been devoted to them [2].  

Concerning the existence of solutions of (FDDES) we refer [3-5]. In [3] Lakshmikantham provides 

sufficient conditions for the existence of solutions to initial value problems to single term nonlinear delay 
fractional differential equations, with the fractional derivative defined in the Riemann-Liouville sense. In 

[4],Yeetal. investigate the existence of positive solutions for a class of single term delay fractional differential 

equations.Later in [5], for the same class of equations, sufficient condition for the uniqueness of the solution are 

reported [2]. 

For the stability issues of the (FDDES) we refer the references [6-9]. 

In this paper we shall use the Adomian decomposition method to find the approximate solution of the 

(FDDES) with variable delays. 

At the beginning of 1980 Adomian proposed new method to solve some functional equations 

[10,11].The Adomian decomposition method has the advantage of converging to the exact solution, and can 

easily handle a wide class of both linear and nonlinear differential and integral equations. It decomposes the 

solution into the series with easily computed components which converges rapidly to the exact solution.The 
theoretical treatment of the convergence of the Adomian decomposition method has been considered in 

[12,13,14,15]. 

 

The structure of this paper is organized as follows: 

In section 2, we recall the definitions of fractional derivatives and fractional integration in section 3 the 

basic concept of the Adomian decomposition method will be given in section 4 we present our approach to solve 

the delay differential equation of fractional order in section 5 numerical examples are given followed by 

conclusions in section 6. 

 

II.    Fractional Derivative and Integration 
In this section we shall review the basic definitions and properties of fractional integral and derivatives, 

which are used further in this paper[16].  

 

Definition(1):The Riemann-Liouville fractional integral operator of order ˃0 is defined as: 
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It
α f t =

1

Γ α 
  t − x α−1f x dx, α > 0, x > 0 

t

0

 

It
0f t = f t  

 

Definition(2):The Riemann-Liouville fractional derivative operator of order ˃0 is defined as: 

Dt
α f t =

1

Γ n − α 

dn

dtn
  t − x n−α−1

t

0

f x dx  

where n is an integer and n − 1 < α ≤ n. 
 

Definition(3):The Caputo fractional derivative operator of order  is defined as: 

Dt
αc f t =

1

Γ n − α 
  t − x n−α−1

t

0

dn

dtn
f t dt 

where n is an integer and n − 1 < α ≤ n. 
 

Caputo fractional derivative has a useful property: 

It
α Dt

αc f t = f t − f  k  0+ 
tk

k!

n−1

k=0

 

where n is an integer and n − 1 < α ≤ n. 
And similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation: 

Dt
αc  λf t + μg t  = λ Dt

αc f t + μ Dx
αc g t  

where and  are constants. For the Caputo’s derivative, also we have: 

Dt
αc C = 0, C is constant  

Dt
αc tn =  

0, for n ∈ N0 and n ≥  α 

Γ n + 1 

Γ n + 1 − α 
tn−α  for n ∈ N and n ≥  α 

  

We use the ceiling function [] to denote the smallest integer greater than or equal to  and N{0,1,2,3,…}. 
 

III.    The Adomian Decomposition Method (ADM) 

To introduce the basic idea of the ADM, we consider the operator equation FyG, where F represents a 
general nonlinear ordinary differential operator and G is a given function. Then F can be decomposed as: 

Ly + Ry + NyG (1) 
whereN is a nonlinear operator, L is the highest-order derivative which is assumed to be invertible, R is 

a linear differential operator of order less than L and G is the nonhomogeneous term. 

The method is based by applying the operator L1 formally to the expression: 

LyGRyNy (2) 
so by using the given conditions, we obtain: 

yh + L
1

GL
1

RyL
1

Ny (3) 

where h is the solution of the homogeneous equation Ly 0, with the initial-boundary conditions. The 
problem now is the decomposition of the nonlinear term Ny. To do this, Adomian developed a very elegant 

technique as follows: 

Define the decomposition parameter as: 

y =  λnyn

∞

n=0

 

thenN(y) will be a function of ,y0,y1…. Next expanding N(y) in Maclurian series with respect to we 

obtain N y =  λn An
∞
n=0 , where: 

An =
1

n!

dn

dλn
 N  λk yk

n
k=0   

λ=0
 (4) 

where the components of An are the so called Adomian polynomials they are generated for each nonlinearity, for 

example, for N(y) f(y)the Adomian polynomials, are given as:  
A0 = f (y0) 

A1 = y1f′(y0) 

A𝟐 = y2f ′ y0 + 
y1

2

2
f ′′  y0  

A3 = y3f ′ y0 + y1y2f ′′  y0 +
y1

3

3!
f ′′′  y0  
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⋮ 
Now, we parameterize eq.(3) in the form: 

yh + L1G – 𝜆L1Ry – 𝜆L1Ny (5) 

where𝜆 is just an identifier for collecting terms in a suitable way such that yn depends on y0,y1,…,yn and we will 

later set 𝜆1. 
 λnyn = h + L−1G− λL−1R λnyn − λL−1  λnAn

∞
n=0

∞
n=0

∞
n=0  (6) 

Equating the coefficients of equal powers of , we obtain: 

 

y0 = h + L−1G                        

y1 = −L−1 Ry0 − L−1 A0 

y2 = −L−1 Ry1 − L−1 A1 
⋮

  (7) 

and in general: 

ynL1(Ryn1) – L1(An1), n1 
Finally, an N-terms that approximate solution is given by: 

ΦN T =  yn T  , N ≥ 1

N−1

n=0

 

and the exact solution is y t = limN→∞ ΦN (t). 

 

IV.    The Approach 
In this section we shall approximate the solution of the following FDDEs: 

Dt
αy(t) = N(t, y t , y(Φc (t))  (8) 

y t = ѱ t , −τ ≤ t ≤ 0 (9) 

yi 0 = y0
i   i = 0,1, . . , n − 1  

where n − 1 < α ≤ n. 

Operating I α
t
 to the both sides of eq.(8), we have: 

y t = It
αN t, y t , y  Φ t   +  y 0+ 

tk

k!

n−1
k=0  (10) 

Adomian’s method defined the solution y(t) by the series: 

y t =  yn t 
∞
n=0  (11) 

So that, the Components yn  will be determined recursively. Moreover,the method defines the nonlinear 

term N(t, y t , y ϕ t   by the Adomian polynomials: 

N t, y t , y ϕ t   =  An
∞
n=0  (12) 

whereAn are Adomian polynomials that can be generated for all forms of nonlinearity as: 

An =
1

n!

dn

dλn
 N t, λjyj t 

∞
j=0 ,  λjyj ϕ t  

∞
j=0   

λ=0
 (13) 

Substituting eqs.(11) and (12) into eq. (10) gives: 

 yn t 
∞
n=0 =   y k  0+ n−1

k=0
tk

k!
+ It

α  An
∞
n=0   (14) 

To determine the componentsyn x , n ≥ 0. First we identify the zero component y0(x) by the terms 

 y k  0+ n−1
k=0  and ψ(t) and It

α f(t) where f(t) represents the non-homogenous term of 

N t, y t , y ϕ t   .Second, the remaining components ofy(x) can be determined in a way such that each 

component is determined by using the preceding components.In other words, the method introduces the 

recursive relation: 

y0 t = ѱ t +  y 0+ 
tk

k!

n−1
k=0 + It

α f(t) (15) 

yn+1 t = It
αAn  ,   n ≥ 0 (16) 

 

V.      Numerical Examples 
In this section we shall use the ADM to solve the non-linear fractional differential equations with delay 

and the results obtained using this scheme will be compare with the analytical solution  
 

Example (1): Consider the FDDES: 

Dt
αc y t =

1

2
e

t

2y  
t

2
 + 

1

2
y t ,   0 ≤ t ≤ 1  ,   0 < α ≤ 1 (17) 

y o = 1 

The exact solution of equation (17) when  1 was given in [17] as y t = et . According to equations (15) and 
(16), thus we have: 
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y0 t = 1 

yn+1 t = It
α  

1

2
e

t

2yn  
t

2
 +

1

2
yn t   (18) 

And upon taking the Maclurian series expansion to e
t

2  up to three terms . One can get y1 , y2 , y3 , …, 
respectively. Following Table (1) represent the approximate solution of example (1) using ADM up to three 

terms for different values of  with a comparison with the exact solution when  1. 
 

Table (1) The approximate solution of example (1) using different values of  with a  

comparison with the exact solution when  1. 

t 
ADM 

 0.5 

ADM 

0.75 

ADM 

1 
Exact 

0 1 1 1 1 

0.1 1.45 1.216 1.105 1.105 

0.2 1.701 1.391 1.221 1.221 

0.3 1.926 1.565 1.347 1.35 

0.4 2.142 1.745 1.485 1.492 

0.5 2.356 1.932 1.636 1.649 

0.6 2.573 2.128 1.799 1.822 

0.7 2.794 2.334 1.976 2.014 

0.8 3.022 2.553 2.167 2.226 

0.9 3.26 2.784 2.374 2.46 

1 3.508 3.029 2.598 2.718 

 

Example (2): Consider the FDDES: 

Dt
αc y t =

3

4
y t + y  

t

2
 − t2 + 2 , 0 ≤ t ≤ 1 ,  1 < α ≤ 2 (19) 

y 0 = 0 

The exact solution of equation (17) when 2 was given in [17] as y t = t2. According to equations (15) and 
(16), thus we have: 

y0 t =
2

Γ(α+ 1)
tα −

2

Γ α + 3 
tα+2 

yn+1 t = It
α  

3

4
yn t + yn  

t

2
   (20) 

Following Table(2) represent the approximate solution of example (2) using ADM up to three terms for 

different values of α with a comparison with the exact solution when  2. 
 

Table (2) The approximate solution of example (2) using different values of  with a comparison 

with the exact solution when  2. 

t 
ADM 

1.5 

ADM 

 1.75 

ADM 

2 
Exact 

0 0 0 0 0 

0.1 0.048 0.022 0.01 0.01 

0.2 0.137 0.075 0.04 0.04 

0.3 0.255 0.153 0.09 0.09 

0.4 0.398 0.254 0.16 0.16 

0.5 0.564 0.377 0.25 0.25 

0.6 0.753 0.521 0.36 0.36 

0.7 0.963 0.687 0.49 0.49 

0.8 1.195 0.873 0.64 0.64 

0.9 1.1448 1.08 0.809 0.81 

1 1.723 1.307 0.999 1 

 

Example (3): Consider the FDDES: 

Dt
αc y t = 1 − 2y2  

t

2
  ,   0 ≤ t ≤ 1 , 0 < α ≤ 1 (21) 

y 0 = 0 

The exact solution of equation (19) when  1 was given in [17] as y t = sin t. 
According to eqs. (15) and (16) thus we have: 

y0 t =
1

Γ(α + 1)
tα  

yn+1 t = −2It
αAn  (22) 

whereAn, n0 are Adomian polynomials that represent the nonlinear term. We list the set of Adomian 
polynomial as: 
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A0 t = y0
2  

t

2
  , A1 t = 2y0  

t

2
 y1  

t

2
  

A2 t = y1
2  

t

2
 + 2y0  

t

2
 y2  

t

2
  

A3 t = 2y1  
t

2
 y2  

t

2
 + 2y0  

t

2
 y3  

t

2
  

Following Table(3) represent the approximate solution of example (3) using ADM up to three terms for 

different values of  with a comparison with the exact solution when  1. 
 

Table (3) The approximate solution of example (3) using different values of  with a comparison  

with the exact solution when  = 1. 

t 
ADM 

α  0.5 

ADM 

α  0.75 

ADM 

α  1 
Exact 

0 0 0 0 0 

0.1 0.329 0.191 0.1 0.1 

0.2 0.431 0.314 0.199 0.199 

0.3 0.493 0.413 0.296 0.296 

0.4 0.537 0.494 0.389 0.389 

0.5 0.574 0.562 0.479 0.479 

0.6 0.61 0.616 0.565 0.565 

0.7 0.65 0.66 0.644 0.644 

0.8 0.696 0.693 0.717 0.717 

0.9 0.752 0.719 0.783 0.783 

1 0.821 0.737 0.842 0.841 

 

VI.    Conclusions 

In this paper we have been used the ADM for solving variable order delay differential equations of 

fractional order. Three examples were solved in the view of the ADM with good approximation and agreement 

with the exact solution. The results presented in this paper shows that this method gave us rapidly and 

acceptable solution. 
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