On Intuitionistic Fuzzy *T*² **–Spaces**

EstiaqAhmed¹, M. S.Hossain², D.M. Ali²

¹Department of Mathematics, Meherpur Government College, Meherpur-7100, Bangladesh ²Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh

Abstract: The purpose of this paper is to introduce and study the intuitionistic fuzzy T_2 -spaces. We investigate some relations among them. We also investigate the relationship between intuitionistic fuzzy topological spaces and intuitionistic topological spaces.

Keywords: Intuitionistic set, Intuitionistic fuzzy set, Intuitionistic topological space, Intuitionistic fuzzy topological space, Intuitionistic fuzzy T_2 -spaces

I. Introduction

The fundamental concepts of a fuzzy set was introduced by L. A. Zadeh[15] in1965. In 1968, Chang [10] introduced the concepts of the fuzzy topological spaces by using the fuzzy sets. As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [3, 7]. Coker [1, 2, 4, 6, 11] and his colleagues introduced intuitionistic fuzzy topological spaces by using intuitionistic fuzzy sets. In this paper, we investigate the properties of T_2 -spaces.

Definition 1.1[1, 2, 8]An intuitionistic set A is an object having the form $A = (x, A_1, A_2)$ where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \phi$. The set A_1 is called the set of member of A while A_2 is called the set of non-member of A.

Throughout this paper, we use the simpler notation $A = (A_1, A_2)$ for an intuitionistic set.

Remark 1.2[1, 2, 8] Every subset A on a nonempty set X may obviously be regarded as an intuitionistic set having the form $A' = (A, A^C)$, where $A^C = X \setminus A$ is the complement of A inX.

Definition 1.3[1, 2, 8] Let the intuitionistic sets A and B on X be of the form $A = (A_1, A_2)$ and $B = (B_1, B_2)$ respectively. Furthermore, let $\{A_j: j \in J\}$ be an arbitrary family of intuitionistic sets in X where $A_j = (A_j^{(1)}, A_i^{(2)})$ Then

- (a) $A \subseteq Bif and only if A_1 \subseteq B_1 and A_2 \supseteq B_2$.
- (b) $A = Bif and only if A \subseteq BandB \subseteq A$.
- (c) $\overline{A} = (A_2, A_1)$, denotes the complement of A.
- (d) $\bigcap A_j = (\bigcap A_j^{(1)}, \bigcup A_j^{(2)}).$
- (e) $\bigcup A_{i} = (\bigcup A_{i}^{(1)}, \bigcap A_{i}^{(2)}).$
- (f) $\phi_{\sim} = (\phi, X) \text{ and } X_{\sim} = (X, \phi).$

Definition: 1.4[2, 8]An intuitionistic topology on a setX is a family τ of intuitionistic sets in X satisfying the following axioms:

(1) $\phi_{\sim}, X_{\sim} \in \tau$.

(2) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$.

(3) $\cup G_i \in \tau$ for any arbitrary family $G_i \in \tau$.

In this case, the pair (X, τ) is called an intuitionistic topological space (ITS, in short) and any intuitionistic set in τ is known as an intuitionistic open set (IOS, in short) in X.

Definition 1.5[3, 4, 6, 9] Let X be a non empty set and I be the unit interval [0, 1]. An intuitionistic fuzzy set A (IFS, in short) in X is an object having the form $A = \{(x, \mu_A(x), \nu_A(x)), x \in X\}$, where $\mu_A : X \to I$ and $\nu_A : X \to I$ denote the degree of membership and the degree of non-membership respectively, and $\mu_A(x) + \nu_A(x) \le 1$. Let I(X) denote the set of all intuitionistic fuzzy sets inX. Obviously every fuzzy set μ_A in X is an intuitionistic fuzzy set of the form $(\mu_A, 1 - \mu_A)$.

Throughout this paper, we use the simpler notation $A=(\mu_A, \nu_A)$ instead of $A=\{(x, \mu_A(x), \nu_A(x)), x \in X\}$.

Definition 1.6[3, 4, 6, 9] Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be intuitionistic fuzzy sets in X. Then (1) $A \subseteq$ Bif and only if $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$. (2) A = Bif and only if $A \subseteq B$ and $B \subseteq A$. (3) $A^c = (\nu_A, \mu_A)$. (4) $A \cap B = (\mu_A \cap \mu_B; \nu_A \cup \nu_B)$. (5) $A \cup B = (\mu_A \cup \mu_B; \nu_A \cap \nu_B)$.

(6) $0_{\sim} = (0^{\sim}, 1^{\sim})$ and $1_{\sim} = (1^{\sim}, 0^{\sim})$.

Definition 1.7[4, 6, 9]An intuitionistic fuzzy topology (IFT, in short) on X is a family t of IFSs in X which satisfies the following properties: (1) $0 - 1 - 5 + 5 = 10^{-10}$

 $(1)0_{\sim}, 1_{\sim} \in t.$

(2) if A_1 , $A_2 \in t$, then $A_1 \cap A_2 \in t$.

(3) if $A_i \in t$ for each i, then $\bigcup A_i \in t$.

The pair (X, t) is called an intuitionistic fuzzy topological space (IFTS, in short). Let (X, t) be an IFTS. Then any member of t is called an intuitionistic fuzzy open set (IFOS, in short) inX. The complement of an IFOS inX is called an intuitionistic fuzzy closed set (IFCS, in short) in X.

II. Intuitionistic fuzzy T₂ –spaces

Definition2.1 An intuitionistic fuzzy topological space (X, t) is called

(1) IF-T₂(i) if for allx, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1$, $\nu_A(x) = 0$; $\mu_B(y) = 1$, $\nu_B(y) = 0$ and $A \cap B = 0_{\sim}$.

(2) IF $-T_2(ii)$ if for all x, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1$, $\nu_A(x) = 0$; $\mu_B(y) > 0, \nu_B(y) = 0$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1]$.

(3) IF-T₂(iii) if for all x, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) > 0$, $\nu_A(x) = 0$; $\mu_B(y) = 1, \nu_B(y) = 0$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1]$.

(4) IF-T₂(iv) if for allx, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) > 0$, $\nu_A(x) = 0$; $\mu_B(y) > 0, \nu_B(y) = 0$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1]$.

Definition2.2Let $\alpha \in (0, 1)$. An intuitionistic fuzzy topological space (X, t) is called

(a) α -IF-T₂(i) iffor all x, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1$, $\nu_A(x) = 0$; $\mu_B(y) \ge \alpha$, $\nu_B(y) = 0$ and $A \cap B = 0_{\sim}$.

(b) $\alpha - IF - T_2(ii)$ if for all x, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) \ge \alpha$, $\nu_A(x) = 0; \ \mu_B(y) \ge \alpha, \nu_B(y) = 0$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1]$.

(c) $\alpha - IF - T_2(iii)$ if for all x, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) > 0$, $\nu_A(x) = 0$; $\mu_B(y) \ge \alpha$, $\nu_B(y) = 0$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1]$.

Theorem 2.3 Let (X, t) be an intuitionistic fuzzy topological space. Then we have the following implications:

$$\underbrace{\mathbb{H}}_{-T_2(i)} \xrightarrow{\mathbb{H}}_{-T_2(ii)} \mathbb{H}_{-T_2(iv)}$$

Proof: Suppose (X, t) is IF-T₂(i) space. We shall prove that(X, t) is IF-T₂(ii).Since (X, t) is IF-T₂(i), then for all x, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1$, $\nu_A(x) = 0$; $\mu_B(y) = 1$, $\nu_B(y) = 0$ and $A \cap B = 0$. $\Rightarrow \mu_A(x) = 1$, $\nu_A(x) = 0$; $\mu_B(y) > 0$, $\nu_B(y) = 0$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1]$. Which is IF-T₂(i) space. Hence IF-T₂(i) \Rightarrow IF-T₂(i).

Again, suppose(X, t) is IF-T₂(i) space. We shall prove that (X, t) is IF-T₂(ii). Since (X, t) is IF-T₂(i), then for all x, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in \text{tsuch that } \mu_A(x) = 1, \nu_A(x) = 0; \ \mu_B(y) = 1, \nu_B(y) = 0$ and $A \cap B = 0_{\sim} \implies \mu_A(x) > 0, \nu_A(x) = 0; \ \mu_B(y) = 1, \nu_B(y) = 0 \text{ and } A \cap B = (0^{\sim}, \gamma^{\sim}) \text{ where } \gamma \in (0, 1].$ Which is IF-T₂(iii) space. Hence IF-T₂(i) \implies IF-T₂(iii).

Furthermore, it can easily verify that $IF - T_2(i) \Rightarrow IF - T_2(iv)$, $IF - T_2(ii) \Rightarrow IF - T_2(iv)$ and $IF - T_2(iii) \Rightarrow IF - T_2(iv)$. None of the reverse implications is true in general as can be seen from the following examples.

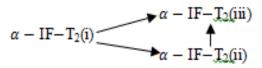
Example 2.3.1 Let $X = \{x, y\}$ and the the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{x, 1, 0\}$ and $B = \{y, 0.5, 0\}$. We see that the IFTS (X, t) is IF-T₂(ii) but not IF-T₂(i).

Example 2.3.2Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{x, 0.3, 0\}$ and $B = \{y, 1, 0\}$. We see that the IFTS (X, t) is IF-T₂(iii) but not IF-T₂(i).

Example 2.3.3LetX = {x, y}andtbe the intuitionistic fuzzy topology onXgenerated by{A, B}whereA= {x, 1, 0} and B = {y, 0.7, 0}.We see that the IFTS (X, t) is IF- $T_2(ii)$ but not IF- $T_2(iii)$.

Example 2.3.4LetX = {x, y} and the intuitionistic fuzzy topology on X generated by {A, B} where A= {x, 0.6, 0} and B= {y, 1, 0}. We see that the IFTS (X, t) is IF- $T_2(ii)$ but not IF- $T_2(ii)$.

Theorem 2.4 Let (X, t) be an intuitionistic fuzzy topological space. Then we have the following implication:



Proof:Suppose (X, t) is $\alpha - IF - T_2$ (i) space. We shall prove that (X, t) is $\alpha - IF - T_2$ (ii).Since (X, t) is $\alpha - IF - T_2$ (ii), then for all x, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1$, $\nu_A(x) = 0$; $\mu_B(y) \ge \alpha$, $\nu_B(y) = 0$ and $A \cap B = 0$, $\Rightarrow \mu_A(x) \ge \alpha$, $\nu_A(x) = 0$; $\mu_B(y) \ge \alpha$, $\nu_B(y) = 0$ for any $\alpha \in (0, 1)$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1]$. Which is $\alpha - IF - T_2$ (ii) space. Hence $\alpha - IF - T_2$ (i) $\Rightarrow \alpha - IF - T_2$ (ii).

Again, suppose (X, t) is $\alpha - IF - T_2$ (ii) space. We shall prove that (X, t) is $\alpha - IF - T_2$ (iii). Since (X, t) is $\alpha - IF - T_2$ (iii), then for all x, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) \ge \alpha$, $\nu_A(x) = 0$; $\mu_B(y) \ge \alpha$, $\nu_B(y) = 0$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1] \implies \mu_A(x) > 0$, $\nu_A(x) = 0$; $\mu_B(y) \ge \alpha$, $\nu_B(y) = 0$ for any $\alpha \in (0, 1)$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1]$. Which is $\alpha - IF - T_2$ (iii) space. Hence $\alpha - IF - T_2$ (iii) $\implies \alpha - IF - T_2$ (iii).

Furthermore, one can easily verify that $\alpha -IF - T_2(i) \Rightarrow \alpha -IF - T_2(iii)$.

None of the reverse implications is true in general as can be seen from the following examples.

Example 2.4.1 Let X = {x, y}andtbe the intuitionistic fuzzy topology on X generated by {A, B} where A = {x, 0.3, 0} and B = {y, 0.4, 0}. For $\alpha = 0.3$, we see that the IFTS (X, t) is $\alpha - IF - T_2(i)$ but not $\alpha - IF - T_2(i)$.

Examples 2.4.2Let X = {x, y} and the intuitionistic fuzzy topology on Xgenerated by {A, B} where A = {x, 0.2, 0} and B = {y, 0.6, 0}. For $\alpha = 0.4$, we see that the IFTS (X, t) is $\alpha - IF - T_2(iii)$ but not $\alpha - IF - T_2(ii)$.

Theorem2.5Let (X, t) be an intuitionistic fuzzy topological space and $0 < \alpha \le \beta < 1$, then

- (a) $\beta IF T_2(i) \Longrightarrow \alpha IF T_2(i)$.
- (b) $\beta IF T_2(ii) \Longrightarrow \alpha IF T_2(ii)$.
- (c) $\beta IF T_2(iii) \Rightarrow \alpha IF T_2(iii).$

Proof (a):Suppose the intuitionistic fuzzy topological space (X, t) is $\beta - IF - T_2(i)$. We shall prove that (X, t) is $\alpha - IF - T_2(i)$. Since (X, t) is $\beta - IF - T_2(i)$, then for allx, $y \in X$, $x \neq y$ with $\beta \in (0, 1)$ there exist $A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1$, $\nu_A(x) = 0$; $\mu_B(y) \ge \beta$, $\nu_B(y) = 0$ and $A \cap B = 0$, $\Rightarrow \mu_A(x) = 1$, $\nu_A(x) = 0$; $\mu_B(y) \ge \alpha$, $\nu_B(y) \ge \alpha$, $\nu_B(y) = 0$ and $A \cap B = 0$, as $0 < \alpha \le \beta < 1$. Which is $\alpha - IF - T_2(i)$. Hence $\beta - IF - T_2(i) \Rightarrow \alpha - IF - T_2(i)$. The proofs that $\beta - IF - T_2(i) \Rightarrow \alpha - IF - T_2(i)$ and $\beta - IF - T_2(i) \Rightarrow \alpha - IF - T_2(i)$. The proofs that $\beta - IF - T_2(i) \Rightarrow \alpha - IF - T_$

Example 2.5.1 Let X = {x, y} and let be the intuitionistic fuzzy topology on X generated by {A, B} where A = {x, 1, 0} and B = {y, 0.6, 0}. For $\alpha = 0.5$ and $\beta = 0.7$, it is clear that the IFTS (X,t) is $\alpha - IF - T_2(i)$ but not $\beta - IF - T_2(i)$.

Example 2.5.2 Let X = {x, y}and lettbe the intuitionistic fuzzy topology onXgenerated by {A, B} whereA= {x, 0.5, 0} and B = {y, 0.4, 0}. For $\alpha = 0.4$ and $\beta = 0.8$, it is clear that the IFTS (X, t) is $\alpha - IF - T_2(ii)$ but not $\beta - IF - T_2(ii)$.

Example 2.5.3 Let X = {x, y} and lett be the intuitionistic fuzzy topology onXgenerated by {A, B} whereA = {x, 0.4, 0}andB= {y, 0.5, 0}. For $\alpha = 0.5$ and $\beta = 0.6$, it is clear that the IFTS (X,t) is $\alpha - IF - T_2(iii)$ but not $\beta - IF - T_2(iii)$.

Theorem2.6Let (X, t) be an intuitionistic fuzzy topological space, $U \subseteq X$ and $t_U = \{A | U : A \in t\}$ and $\alpha \in (0, 1)$, then

(a) (X, t) is IF- $T_2(i) \Longrightarrow (U, t_U)$ is IF- $T_2(i)$.

(b) (X, t) is IF- $T_2(ii) \Rightarrow (U, t_U)$ is IF- $T_2(ii)$.

(c) (X, t) is IF-T₂(iii) \Rightarrow (U, t_U) is IF-T₂(iii).

(d) (X, t) is IF- $T_2(iv) \Rightarrow (U, t_U)$ is IF- $T_2(iv)$.

- (e) (X, t) is $\alpha IF T_2(i) \Longrightarrow (U, t_U)$ is $\alpha IF T_2(i)$.
- (f) (X, t) is $\alpha IF T_2(ii) \Rightarrow (U, t_U)$ is $\alpha IF T_2(ii)$.

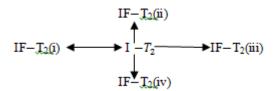
(g) (X, t) is $\alpha - IF - T_2(iii) \Longrightarrow (U, t_U)$ is $\alpha - IF - T_2(iii)$.

The proofs (a), (b), (c), (d), (e), (f), (g) are similar. As an example we proved (e).

Proof(e): Suppose (X, t) is the intuitionistic fuzzy topological space and is also $\alpha - IF - T_2(i)$. We shall prove that (U, t_U) is $\alpha - IF - T_2(i)$. Let x, $y \in U$ with $x \neq y$, then x, $y \in X$ with $x \neq y$ as $U \subseteq X$. Since (X, t) is $\alpha - IF - T_2(i)$, then there exists $A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1, \nu_A(x) = 0$; $\mu_B(y) \ge \alpha$, $\nu_B(y) = 0$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1] \Rightarrow \mu_A | U(x) = 1, \nu_A | U(x) = 0$; $\mu_B | U(y) \ge \alpha, \nu_B | U(y) = 0$ and $A \cap B = (0^{\sim}, \gamma^{\sim})$ where $\gamma \in (0, 1]$.Since $\{(\mu_A | U, \nu_A | U), (\mu_B | U, \nu_B | U)\} \in t_U \Rightarrow \{B | U, C | U\} \in t_U$. Hence, it is clear that the intuitionistic fuzzy topological space (U, t_U) is $\alpha - IF - T_2(i)$.

Definition2.7 An intuitionistic topological space (ITS, in short) (X, τ) is called intuitionistic T_2 -space (I $-T_2$ space) if for allx, $y \in X$, $x \neq y$ there exists $C = (C_1, C_2)$, $D = (D_1, D_2) \in \tau$ such that $x \in C_1$, $y \in D_1$ and $C \cap D = \varphi_{\sim}$.

Theorem2.8Let (X, τ) be an intuitionistic topological space and let (X, t) be an intuitionistic fuzzy topological space. Then we have the following implications:



Proof:Suppose (X, τ) is $I - T_2$ space. We shall prove that (X, t) is $IF - T_2(i)$. Since (X, τ) is $I - T_2$, thenfor allx, $y \in X, x \neq y$ there exists $C = (C_1, C_2)$, $D = (D_1, D_2) \in \tau$ such that $x \in C_1, y \in D_1$ and $C \cap D = \varphi_{\sim} \Rightarrow 1_{C_1}(x) = 1$, $1_{D_1}(y) = 1$ and $C \cap D = \varphi_{\sim} \Rightarrow 1_{C_1}(x) = 1$, $1_{C_2}(x) = 0$; $1_{D_1}(y) = 1$, $1_{D_2}(y) = 0$ and $C \cap D = \varphi_{\sim}$. Let $1_{C_1} = \mu_A$, $1_{C_2} = \upsilon_A$, $1_{D_1} = \mu_B$, $1_{D_2} = \upsilon_B$ then $\mu_A(x) = 1$, $\upsilon_A(x) = 0$; $\mu_B(y) = 1$, $\upsilon_B(y) = 0$ and $A \cap B = 0_{\sim}$. Since $\{(\mu_A, \upsilon_A), (\mu_B, \upsilon_B)\} \in t \Rightarrow (X, t)$ is $IF - T_2(i)$. Hence $I - T_2 \Rightarrow IF - T_2(i)$.

Conversely, suppose (X,t) is IF-T₂(i). We shall show that (X, τ) is I-T₂. Since (X,t) is IF-T₂(i), then for allx, $y \in X$, $x \neq y$ there exists $A = (\mu_A, \upsilon_A)$, $B = (\mu_B, \upsilon_B) \in t$ such that $\mu_A(x) = 1, \upsilon_A(x) = 0; \mu_B(y) = 1, \upsilon_B(y) = 0$ and $A \cap B = 0_{\sim}$. Let $C_1 = \mu_A^{-1}\{1\}$, $D_1 = \mu_B^{-1}\{1\} \Longrightarrow x \in C_1$, $y \in D_1$ and $C \cap D = \varphi_{\sim}$. Since $\{(C_1, C_2), (D_1, D_2)\} \in \tau \Longrightarrow (X, \tau)$ is I-T₂. Hence IF-T₂(i) $\Longrightarrow I - T_2$. Therefore I -T₂ \Leftrightarrow IF-T₂(i)

Furthermore, it can be shown that $I - T_2 \Rightarrow IF - T_2(ii)$, $I - T_2 \Rightarrow IF - T_2(iii)$ and $I - T_2 \Rightarrow IF - T_2(iv)$.

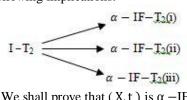
None of the reverse implications is true in general as can be seen from the following examples.

Examples 2.8.1 Let $X = \{x, y\}$ and the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{x, 1, 0\}$ and $B = \{y, 0.3, 0\}$, it is clear that the IFTS (X, t) is IF $-T_2(ii)$ but not corresponding I $-T_2$.

Examples2.8.2Let $X = \{x, y\}$ and the intuitionistic fuzzytopology on X generated by $\{A, B\}$ where $A = \{x, 0.5, 0\}$ and $B = \{y, 1, 0\}$, it is clear that the IFTS (X, t) is IF $-T_2(iii)$ but not corresponding I $-T_2$.

Examples 2.8.3 Let $X = \{x, y\}$ and the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{x, y\}$ o.2, 0} and B = {y, 0.6, 0}, it is clear that the IFTS (X, t) is IF- $T_2(iv)$ but not corresponding I- T_2 .

Theorem2.9 Let (X, τ) be an intuitionistic topological space and let (X, τ) be the intuitionistic fuzzy topological space. Then we have the following implications:



Proof: Suppose (X, τ) is I – T₂ space. We shall prove that (X, t) is α –IF–T₂(i). Since (X, τ) is I – T₂, then for allx, $y \in X$, $x \neq y$ there exists $C = (C_1, C_2), D = (D_1, D_2) \in \tau$ such that $x \in C_1, y \in D_1$ and $C \cap D = \varphi_{\sim} \Rightarrow$ $1_{C_1}(x) = 1, 1_{D_1}(y) = 1 \text{ and } C \cap D = \varphi_{\sim} \Longrightarrow 1_{C_1}(x) = 1, 1_{D_1}(y) \ge \alpha \text{ for any } \alpha \in (0, 1) \text{ and } C \cap D = \varphi_{\sim} \Longrightarrow 0$ $\begin{array}{l} 1_{C_{1}}(x) = 1, 1_{C_{2}}(x) = 0, 1_{D_{1}}(y) \geq \alpha, 1_{D_{2}}(y) = 0 \text{ for any } \alpha \in (0, 1) \text{ and } C \cap D = \phi_{\sim}. \text{Let} 1_{C_{1}} = \mu_{A}, 1_{C_{2}} = \upsilon_{A}, \\ 1_{D_{1}} = \mu_{B}, 1_{D_{2}} = \upsilon_{B} \text{ then} \mu_{A}(x) = 1, \upsilon_{A}(x) = 0; \mu_{B}(y) \geq \alpha, \upsilon_{B}(y) = 0 \text{ for any } \alpha \in (0, 1) \text{ and } A \cap B = 0_{\sim}. \text{Since } \{(\mu_{A}, \upsilon_{A}), (\mu_{B}, \upsilon_{B})\} \in t \Longrightarrow (X, t) \text{ is } \alpha - \text{IF} - \text{T}_{2}(i). \text{ Hence } I - \text{T}_{2} \Longrightarrow \alpha - \text{IF} - \text{T}_{2}(i). \end{array}$

Furthermore, it can be easily shown that $I-T_2 \Rightarrow \alpha -IF-T_2(ii)$ and $I-T_2 \Rightarrow \alpha -IF-T_2(iii)$.

None of the reverse implications is true in general as can be seen from the following examples.

Example 2.9.1 Let $X = \{x, y\}$ and lettbe the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{x, y\}$ and lettbe the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{x, y\}$ and $A = \{x,$ 1, 0} and B= {y, 0.8, 0}. For $\alpha = 0.7$, it is clear that the IFTS (X, t) is $\alpha - IF - T_2(i)$ but not corresponding I - T₂.

Example 2.9.2 Let $X = \{x, y\}$ and lettbe the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where A ={x, 0.5, 0} and B = {y, 0.6, 0}. For $\alpha = 0.4$, it is clear that the IFTS (X, t) is $\alpha - IF - T_2(ii)$ but not corresponding $I-T_2$.

Example 2.9.3 Let $X = \{x, y\}$ and let be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where A ={x, 0.3, 0} and B ={y, 0.4, 0}. For α =0.4, it is clear that the IFTS (X, t) is α -IF-T₂(iii) but not corresponding $I-T_2$.

References

- D. Coker, A note on intuitionistic sets and intuitionistic points, TU J. Math. 20(3)1996, 343-351. [1].
- [2]. D. Coker, An introduction to intuitionistic topological space, BUSEFAL 81(2000), 51-56.
- [3]. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems20 (1986), 87 - 96.
- D. Coker, An introduction to intuitionistic fuzzy topological space, Fuzzy sets and Systems, 88(1997), 81-89. [4].
- [5]. S. Bayhan and D. Coker, OnT₁ and T₂ separation axioms in intuitionistic fuzzy topological space, J.Fuzzy Mathematics 11(3) 2003, 581-592.
- [6]. D. Coker, An introduction to fuzzy subspace in intuitionistic fuzzy topological space, J. Fuzzy Math. 4(1996), 749-764.
- [7]. [8]. K. T. Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS-1-88, Sofia, (1988), 1-8.
- S. Bayhan and D. Coker, On separation axioms in intuitionistic topological space, Int. J. of Math. Sci. 27(10) 2001, 621-630.
- S. Bayhan and D. Coker, On fuzzy separation axioms in intuitionistic fuzzy topological space, BUSEFAL 67(1996), 77-87. [9].
- [10]. C. L. Chang, Fuzzy topological space, J. Math. Anal. Appl. 24 (1968), 182-190.
- D. Coker and M. Demirci, On intuitionistic Fuzzy Points. Notes on IFS: 1(2)1995, 79-84. [11].
- [12]. S. J. Lee and E. P. Lee, The category of intuitionistic fuzzy topological space, Bull. Korean Math. Soc. 37(1)2000, 63-76.
- D. Coker and A. Es. Hyder, On Fuzzy compactness in intuitionistic fuzzy topological space, J. Fuzzy Math. 3(4)1995, 899-909. [13].
- [14]. S. j. Lee and E. P. Lee, Intuitionistic Fuzzy proximity Spaces, IJMMS 49(2004), 2617-2628.
- [15]. L. A. Zadeh. Fuzzy Sets, Information and Control, 8 (1965) 338-353.