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I. Introduction: 
The Laplace transform method is normally used to find the response of a linear system at any time t to 

the initial data at t = 0 and disturbance f(t) acting for t > 0. If the disturbance is f(t) = 
2ate , for a > 0, the usual 

Laplace transform cannot be used to find the solution of an initial value problem because Laplace transform of 

f(t) does not exist. It is often true that the solution at times later than t would not affect the state at time t. This 

leads to define Finite Laplace transform. 
The finite Laplace transform of a continuous or an almost piecewise continuous function f(t) in (0,T) is denoted 

by LT (f(t)) = F(p,T), and is defined by 

LT (f(t)) = F(p,T) = 
T

0 f(t)e-ptdt                                                                   (1.1) 

Where p is a real or complex number and T be a finite number which may be positive or negative. 

Note : Above definition is defined for any bounded interval (-T1, T2). 

Finite Laplace transform motivate us to define RAM Finite Sine Hyperbolic transform and RAM Finite Cosine 

Hyperbolic transform in 0 < t < T in order to extend the power and usefulness of usual Laplace transform in 0 < 

t < . In section 2, the concept of RAM Finite Hyperbolic Transforms is introduced. Section 3 is devoted to 

explain existence conditions for these transforms. Sections 4 and 5 are devoted to obtain these transforms of 

some standard functions. Some properties like Linearity, Scalar Multiplication, and Scaling are proved in 

sections 6 and 7. Section 8 is devoted to Discussion and Conclusion. 

 

II. RAM Finite Hyperbolic Transforms: 
Definition 2.1: Let p   C and T be a finite number which may be positive or negative and f(t) is a continuous  

or an almost piecewise continuous function defined over the interval (0,T). Then RAM Finite Sine Hyperbolic 

transform of f(t) is denoted by Rsh (f(t)) = FS(p,T), and defined by 

Rsh(f(t)) = FS(p,T)= 

T

0  sinh(pt)f(t)dt, 

where sinh(pt) is a Kernel of Rsh. 

Here Rsh is called RAM Finite Sine Hyperbolic transformation operator.  

Definition 2.2: Let p   C and T be a finite number which may be positive or negative and f(t) is a continuous  

or an almost piecewise continuous function defined over the interval (0,T). Then RAM Finite Cosine Hyperbolic 

transform of f(t) is denoted by Rch(f(t))= FC(p,T), and defined by 

Rch (f(t)) = FC(p,T)= 
T

0 cosh(pt ) f(t)dt, 

where cosh(pt) is a Kernel of Rch. 

Here Rch is called RAM Finite Cosine Hyperbolic transformation operator. 

Note : sinht, cosht are bounded for any bounded interval (-T1,T2). 

 

III. Existence of Rsh and Rch. 
Theorem 3.1 If f(t) is a piecewise continuous and absolutely integrable function on (0,T), then Rsh(f(t)) exists. 
Proof:   As sinht is bounded on (0,T),  there exist K  [0,  ) such that | sinh(pt)|  < K on   (0,T).   Since f(t) is 

absolutely integrable, there exist M    [0,  ) such that 

T

0   | f ( t ) | d t  < M.  
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Consider 

   |Rsh (f (t))| = | 

T

0 sinh(pt) f (t)dt| 

     < 

T

0  |sinh(pt)| | f (t)||dt| 

     < 

T

0  K | f (t) dt| 

     <  K

T

0 | f (t) dt | 

      |Rsh (f(t)|  <  K.M. 

Thus Rsh (f(t)) exists. Hence proved.  

Theorem 3.2 If f(t) is a piecewise continuous and absolutely integrable function on (0, T), then Rch (f(t)) exists. 

Proof: Consider 

 |Rch (f(t))|  = | 

T

0 cosh(pt) f(t)dt | 

   < 

T

0 |cosh(pt)| |f(t)||dt | 

   < 

T

0 K| f (t)dt  |        ( since |cosh(pt)| < K on (0, T), 0 < K <  ) 

   < K

T

0 | f (t)dt | 

  | Rch (f (t))| <  M.K. (since  

T

0 | f (t)| dt < M, 0 < M <  )  

Thus Rch (f (t)) exists. Hence proved. 
Theorem 3.3: If f (t) is a piecewise continuous and bounded function on (0, T), then                                      

                        Rsh (f (t)) exists. 

Proof: Consider 

   |Rsh (f(t)) | =  | 

T

0  sinh(pt) f (t) dt | 

    <  

T

0  |sinh(pt)| | f (t)| | dt | 

    <

T

0  M.K. |dt |   (since |f (t)| < M on (0, T), 0 <  K, M <  ) 

   |Rsh (f (t))| <M.K.T. 

Thus Rsh exists. Hence proved. 

Theorem 3.4: If f(t) is a piecewise continuous and bounded function on (0, T), then Rch(f (t)) exists. 

Proof : consider 

 |Rsh (f(t))| = |

T

0  cosh(pt) f(t) dt| 

   < 

T

0  |cosh(pt)| | f(t) dt| 

   < MK 
0

T

 |dt| (since |cosh (pt)| < K, | f (t)| < M on (0,T), 0 < K,M <  )  

   |Rch (f(t))|   <  M.K.T. 

Thus Rch (f(t)) exists. Hence Proved. 

 

IV. RAM Finite Sine Hyperbolic transform of some standard functions: 



On RAM Finite Hyperbolic Transforms 

www.iosrjournals.org                                                    65 | Page 

1. Rsh(1) = 
cosh( ) 1pT

p


 

Proof: 

Rsh(1)  = 

T

0   sinh(pt)dt 

 = 
cosh( ) 1pT

p


 

2. Rsh(t) = 
cosh( T)T p

p
 - 

2

sinh( T)p

p
 

Proof: 

Rsh (t) = 

T

0   t sinh(pt)dt 

 = 
cosh( T)T p

p
 - 

2

sinh( T)p

p
 

3. Rsh (t
2) = 

2 cosh( T)T p

p
 - 

2

2 sinh( T)T p

p
 + 

3

(2cosh( ) 2)

p

pT 
. 

Proof: 

 Rsh (t
2)  = 

T

0  t2 sinh (pt)dt 

   = 

2 cosh( T)T p

p
 - 

2

2 sinh( T)T p

p
+

3

(2cosh( ) 2)

p

pT 
. 

4. Rsh (t
k) = 

1

2

1

2

T cosh( ) sinh( ) !( 1) [cosh( ) 1]
.... ,  k is even

T cosh( ) sinh( ) !( 1) sinh( )
.... ,  k is odd

k k k

k

k k k

k

pT kT pT k pT
if

p P p

pT kT pT k pT
if

p P p





  
  




   


 

Proof: 

 Rsh (t
k) = 

T

0   tk sinh(pt)dt 

= 

1

2

0 0 0

1

2

0 0 0

cosh( ) sinh( ) !( 1) cosh( )
....... , if k is even,

cosh( ) sinh( ) !( 1) sinh( )
....... , if k is odd.

T T T
k k k

k

T T T
k k k

k

t pt kt pt k pt

p p p

t pt kt pt k pt

p p p





     
       

     

      

       
     

 

 = 

1

2

1

2

T cosh( ) sinh( ) !( 1) [cosh( ) 1]
.... ,  k is even

T cosh( ) sinh( ) !( 1) sinh( )
.... ,  k is odd

k k k

k

k k k

k

pT kT pT k pT
if

p P p

pT kT pT k pT
if

p P p





  
  




   


 

5. Rsh (sin(at)) = 
2 2

a

p a

 
 

 
 sinh(pT) cos(aT) + 

2 2

p

p a

 
 

 
 cosh(pT) sin(aT). 

 

 

Proof: 
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Rsh (sin(at)) =   

T

0   sin(at) sinh (pt) dt 

  = 
sinh( )cos( )pT aT

a
 + 

2

cos( )sin( )p pT aT

a
 - 

2

2

(sin( )shp R at

a
. 

  

2

2
1

p

a

 
 

 
 Rsh (sin(at))  =  

sinh( ).cos( )pT aT

a
+

2

.cos( ).sin( )p pT aT

a
.  

i.e. Rsh (sin(at))  = 
2 2

a

p a

 
 

 
 sinh(pT). cos(aT) + 

2 2

p

p a

 
 

 
 cosh(pT) sin(aT). 

6. Rsh (cos(at)) = 
2 2

a

p a

 
 

 
 sinh (pT). sin (aT) + 

2 2

p

p a

 
 

 
 [cosh(pT). cos(aT) – 1]. 

Proof: 

 Rsh (cos(at))  =  

T

0   cos(at) sinh (pt) dt 

 = 
sinh( ).sin( )pT aT

a
 +

2

[ .cosh( ).cos( ) ]p pT aT p

a


 -

2

2

. (cos( ))shp R at

a
  

  

2

2
1

p

a

 
 

 
 Rsh (cos(at)) = 

sinh( )sin( )pT aT

a
 + 

2

[ .cosh( ).cos( ) ]p pT aT p

a


 

i.e. Rsh (cos(at)) = 
2 2

a

p a

 
 

 
 sinh(pT). sin (aT) + 

2 2

p

p a

 
 

 
 [cosh (pT). cos (aT) – 1]. 

7. Rsh(e
at) = 

2 2

a

p a

 
 

 
 sinh(pT). eaT + 

2 2

p

p a

 
 

 
 [cosh (pT). eaT – 1], provided p2   a2. 

Proof: 

 Rsh (e
at) = 

T

0   eat  sinh (pt) dt 

   = 
sinh( ). aTpT e

a
 -  

2

[ .cos( ) ]aTp pT e p

a


 + 

2

2

. ( )at

shp R e

a
 

   Rsh (e
at) = 

2 2

a

p a

 
 

 
 -sinh(pT). eaT + 

2 2

p

p a

 
 

 
 [cosh(pT). eaT – 1], provided p2   a2. 

8.  Rsh (e
-at) = 

2 2

a

p a

 
 

 
 sinh(pT). e-aT + 

2 2

p

p a

 
 

 
 [1-cosh (pT). e-aT], Provided P2   a2. 

Proof: 

  Rsh (e
-at)  = 

T

0   e-at  sinh (pt) dt 

    = 
sinh( ). aTpT e

a




  - 

2

[ .cosh( ). ]aTp pT e p

a

 
 + 

2

2

( )at

shp R e

a



  


2

2
1

p

a

 
 

 
 Rsh (e

-at)  =  
sinh( ). aTpT e

a




 - 

2

[ .cosh( ). ]aTp pT e p

a

 
 

i.e. Rsh (e
-at) = 

2 2

a

p a

 
 

 
 sinh(pT).e-aT + 

2 2

p

p a

 
 

 
 [1-cosh(pT). e-aT], provided p2   a2. 
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V. RAM Finite Cosine Hyperbolic Transform of some standard functions: 

1. Rch (1) = 
sinh( )pT

p
. 

Proof: 

  Rch(t)  = 

T

0   cosh (pt) dt 

   = 
sinh( )pT

p
 

2. Rch (t) = 
2

Tsinh(pT) cosh( ) 1pT

p p

 
 
 

 

Proof: 

  Rch(t)  = 

T

0   t cosh (pt) dt 

   = 
2

Tsinh(pT) cosh( ) 1pT

p p

 
 
 

 

3. Rch(t
2) = 

2

2 3

.sinh( ) 2. .cosh( ) 2.sinh( )T pT T pT pT

p P p
  . 

Proof: 

  Rch(t)  = 

T

0   t2 . cosh (pt) dt 

= 

2

2 3

.sinh( ) 2. .cosh( ) 2.sinh( )T pT T pT pT

p P p
  . 

4. Rch(t
k) = 

1

2

1

2

T sinh( ) cosh( ) !( 1) sinh( )
....... ,if k is even,

sinh( ) cosh( ) !( 1) [cosh( ) 1]
....... ,if k is odd.

k k k

k

k k k

k

pT kT pT k pT

p p p

T pT kT pT k pT

p p p





 
  




    


 . 

Proof: 

Rch(t
k)  = 

T

0   tk  cosh (pt) dt 

=

1

2

0 0 0

1

2

0 0 0

t sinh( ) cosh( ) !( 1) sinh( )
.... ,  k is even

t .sinh( ) cosh( ) !( 1) cosh( )
.... ,  k is odd

T T T
k k k

k

T T T
k k k

k

pt kt pT k pt
if

p P p

pt kt pt k pt
if

p P p





     
       

     

      

       
     

 

=

 

1

2

1

2

T sinh( ) cosh( ) !( 1) sinh( )
....... ,if k is even,

sinh( ) cosh( ) !( 1) [cosh( ) 1]
....... ,if k is odd.

k k k

k

k k k

k

pT kT pT k pT

p p p

T pT kT pT k pT

p p p





 
  




    


. 

5. Rch (Sin(at)) = 
2 2

a

p a

 
 

 
 [1 – cosh(pT) cos(aT)] + 

2 2

p

p a

 
 

 
 sinh(pT) sin(aT). 
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Proof: 

Rch (sin(at)) = 

T

0   sin(at) cosh(pt) dt 

  = 
[cos( )cos( ) 1]pT aT

a




 +

2

2 2

sinh( )sin( ) (sin( ))chp pT aT p R at

a a
  


2

2
1

p

a

 
 

 
 Rch (sin(at)) =  

2

[cos( )cos( ) 1] sinh( )sin( )pT aT p pT aT

a a





 

i.e. Rch (Sin(at))  = 
2 2

a

p a

 
 

 
 [1 – cosh(pT) cos(aT)] + 

2 2

p

p a

 
 

 
 sinh(pT) sin(aT). 

6.    Rch (cos(at))  =  
2 2

a

p a

 
 

 
 cosh(pT) sin(aT) + 

2 2

p

p a

 
 

 
  sinh(pT) cos(aT). 

Proof: 

       Rch cos(at) = 

T

0   cos(at) cosh(pt) dt 

  = 
cosh( )sin( )pT aT

a
 + 

2

sinh( )cos( )p pT aT

a
 - 

2

2

(cos( ))chp R at

a
 . 

   

2

2
1

p

a

 
 

 
Rch(cos(at)) = 

cosh( )sin( )pT aT

a
 + 

2

sinh( )cos( )p pT aT

a
 

i.e. Rch (cos(at))  =  
2 2

a

p a

 
 

 
 cosh(pT) sin(aT) + 

2 2

p

p a

 
 

 
  sinh(pT) cos(aT). 

7.    Rch(e
at) = 

2 2

a

p a

 
 

 
 [cosh(pT) eaT – 1] + 

2 2

p

p a

 
 

 
 sinh(pT) eaT, Provided p2   a2. 

Proof: 

  Rch (e
at)  = 

T

0   eat cosh(pt) dt 

   = 
[cosh( ) 1]aTpT e

a


  - 

2

.sinh( ) aTp pT e

a
 + 

2

2

( )at

chp R e

a
 . 

   

2

2
1

p

a

 
 

 
Rch(e

at)  =
[cosh( ) 1]aTpT e

a


  - 

2

.sinh( ) aTp pT e

a
 

                               i.e. Rch(e
at) = 

2 2

a

p a

 
 

 
 [cosh(pT) eaT – 1] + 

2 2

p

p a

 
 

 
 sinh(pT) eaT, Provided p2   a2. 

8. Rch (e
-at)  = 

2 2

a

p a

 
 

 
 cosh(pT) e-aT + 

2 2

p

p a

 
 

 
 [1-sinh(pT) e-aT], provided p2   a2. 

Proof : 

 Rch (e
-at)  = 

T

0   e-at cosh(pt) dt 

  = 
[cosh( ) 1]aTpT e

a

 


  - 

2

sinh( ) aTp pT e

a



 + 

2

2

( )at

chp R e

a



 

   

2

2
1

p

a

 
 

 
Rch(e

-at)  = 
[cosh( ) 1]aTpT e

a

 


  - 

2

sinh( ) aTp pT e

a
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i.e. Rch (e
-at)  = 

2 2

a

p a

 
 

 
 (cosh(pT) e-aT – 1) + 

2 2

p

p a

 
 

 
 [sinh(pT) e-aT] ; provided p2   a2. 

 

VI. Some Properties of RAM Finite Sine Hyperbolic transform: 
1. Linearity: Rsh (f1(t) + f2 (t)) = Rsh (f1 (t)) + Rsh (f2 (t)). 

Proof: Let 0 < t < T, then by definition 

 Rsh (f1 (t) + f2 (t))  = 

T

0  ( f1(t) + f2 (t)) sinh(pt) dt 

   =  

T

0   f1(t) sinh (pt)dt + 

T

0   f2 (t) sinh(pt) dt 

   = Rsh ( f1(t)) + Rsh ( f2 (t)). 

2. Scalar Multiplication: If c be any constant, then Rsh (cf (t)) = cRsh ( f (t)). 

Proof: Let c be any constant, then by definition 

 Rsh (c f (t)) = 

T

0  c f (t) sinh (pt)dt 

   = c

T

0   f (t) sinh (pt)dt 

   = cRsh ( f (t)). 

3. Scaling:  If Rsh ( f(t)) = FS (p, T) then Rsh ( f (at)) = 

,S

p
F aT

a

a

 
 
 

 

Proof: Let Rsh ( f (t)) = FS (p, T), then by definition 

 Rsh ( f (at)) = 

T

0   f (at) sinh (pt)dt 

   = 

T

0  

( )sinh
xp

f x
a

dx
a

 
 
 

  

               = 

,S

p
F aT

a

a

 
 
 

 
 

VII. Some Properties of RAM Finite Cosine Hyperbolic transform: 
1. Linearity : Rch (f1 (t) + f2 (t)) = Rch (f1(t)) + Rch(f2 (t)) 

Proof: Let 0 < t < T, then by definition  

 Rch ( f1 (t) + f2 (t))  =  
0

T

 ( f1 (t) + f2 (t)) cosh(pt)dt 

    =  
0

T

  f1 (t) cosh (pt) dt + 
0

T

  f2 (t) cosh(pt)dt 

    =  Rch (f1 (t)) + Rch (f2 (t)). 

2. Scalar Multiplication: If c is any constant, then Rch (c. f (t)) = c. Rch (f(t)) 

Proof: Let c be any constant, then by definition 

 Rch (c f(t)) =  
0

T

  (c f (t)) cosh (pt) dt 

   = c 
0

T

   f (t) cosh (pt) dt 

   = c Rch ( f (t)). 
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3. Scaling: If Rch (f(t)) = FC(p, T), then Rch (f (at))  = 

,C

p
F aT

a

a

 
 
 

  

Proof: Let Rch(f(t)) = FC (p, T), then  

 Rch (f(at))  = 
0

T

  f (at) cosh (pt) dt 

   =  
0

( ( ))cosh
T xp

f x
a

dx
a

 
 
 


 

   =  

,C

p
F aT

a

a

 
 
 

   

 

VIII. Discussion and Conclusion: 
Unlike the usual Laplace transform of a function f(t), there is no restriction needed on the transform 

variable p for the existence of Rch(f(t)) and Rsh(f(t)). Further, the existence of Rch(f(t)) and Rsh(f(t))does not 

require exponential order property of a function f(t) . If a function f(t) has the usual Laplace transform, then it 

also has the RAM Finite Sine Hyperbolic transform and RAM Finite Cosine Hyperbolic transform. In other 

words, if L(f(t)) exists, then Rch(f(t)) and Rsh(f(t))exists as shown below. We have 

L(f (t))  = 
0



 f (t) e-pt dt 

 = 
0

T

 f(t) cosh (pt) dt - 
0

T

  f(t) sin (pt) dt + 
T



 f (t) e-pt dt 

 = Rch (f (t)) – Rsh (f(t)) + 
T



 f (t) e-pt dt . 

Since L(f(t)) exists, all the three integrals on R.H.S. exist. Hence, if L(f(t)) exists then Rch (f(t)) and 

Rsh(f(t))exists but converse is not necessarily true. This can be shown by an example. It is well known that the 

usual Laplace transform of f(t) = eat , for a > 0, does not exist but Rch(e
at ) and Rsh(e

at ) both exists. 

 

References: 
[1]. Chandrasenkharan K., Classical Fourier Transform, Springer-Verlag, New York (1989). 

[2]. Debnath L.and Thomas J., On Finite Laplace Transformation with Application, Z.Angrew.Math.und meth.56(1976),559-593. 

[3]. S.B.Chavan, V.C.Borkar., “Canonical Sine transform and their Unitary Representation”, Int. J. Contemp. Math. Science, Vol.7, 

2012, No. 15,717-725. 

[4]. S.B.Chavan, V.C.Borkar., “Operation Calculus of Canonical Cosine transform”, IAENG   International Journal of Applied 

Mathematics, 2012. 

[5]. S.B.Chavan, V.C.Borkar., “Some aspect of Canonical Cosine transform of generalised function”, Bulletin of Pure and Applied 

Sciences.Vol.29E(No.1),2010. 

[6]. S.B.Chavan, V.C.Borkar., “Analyticity and Inversion for Generalised Canonical Sine transforms”, Applied Science Periodical 

Vol.XIV, (No 2), May 2012. 

[7]. Lokenath debnath, Dombaru Bhatta, Integral Transfer and there application, Chapman and Hall/CRC, Taylor and Francis group, 

(2007). 

[8]. Watson E.J., Laplace Transformation and Application, Van Nostrand, Reinhold, New York(1981). 

[9]. S.B.Chavan, V.C.Borkar., “Some properties and Applications of Generalised Canonical Transforms”, Inter National Journal of 

Applied Sciences, Vol. 5, No.7, 309-314, 2011. 

[10]. Wyman     M.,      The     method     of     the     Laplace     Transformation, Roy.Soc.Canada,(2)(1964),227-256. 

[11]. Zemanian A.H., Generalised Integral Transformation, John Wiley and Son, New York, (1969). 

[12]. Zemanian A.H., Distribution Theory and Transform Analysis, John Wiley and Son, New York, (1969). 


