
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 10, Issue 6 Ver. V (Nov - Dec. 2014), PP 01-11 
www.iosrjournals.org 

www.iosrjournals.org                                                    1 | Page 

 

Euclidean and Function Space Null-Controllability of Nonlinear 

Delay Systems with Restrained Controls 
 

Dr. Musa T. Y. Kadzai 
Department of Mathematics, Modibbo Adama University of Technology, Yola, Nigeria 

 

Abstract:The basic tool we use in our investigation is the nonlinear variation of constants formula for delay 

systems whilst we determine the controllability of nonlinear functional differential systems. This paper also 
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I. Introduction 
Hermes and Lasalle [1] investigated the controllability of the system: 

 

 x  t = A t x t + B t u t      (1) 

 x 0 = x0 
 

where xϵEn , A ∙ and B ∙  are  nxn- and nxm-matrix valued functions, respectively, with components 

summable over finite real interval and u ∙  is vector valued function which is constrained to lie in a compact set 

𝕌 of Em . They showed that if: 

  

 x  t = A t x t        (2) 

 

is uniformly asymptotically stable and if (1) is controllable with L2  ς,∞ , Em  controls then (1) is null – 

controllable with controls in 𝕌. Chukwu [2] examined the nonlinear retarded system: 
 

 x  t = L t, xt + B t u t + f t, xt , u t  , t ≥ ς   (3) 

 xς = φ in [−r, 0] 
 

where B(t) is a continuous nxm-matrix, and for each tϵE the linear operator φ → L t,φ , φϵW2
(1)

 has the form: 

 

 L t,φ =  dsη t, s φ s 
0

−r
     (4) 

 

where the integral is in the Lebesque-Stieljes sense and  t,θ → η t, θ ,  t,θ ϵExE is a mapping with values in 

Lnn , the space of continuous nxn-matrices. It is assumed that t → η t,θ is continuous for each fixed θϵ[−r, 0] 
and θ → η t, θ  is of bounded variation on [-r,0] for each fixed tϵE. Moreover, η t, θ = 0, θ ≥ 0, η t,θ =
η t, −r , θ ≤ r and θ → η t,θ  is left continuous on [-r,0] satisfying: 
 

 η t, s ≤ ρ t ,    tϵEsϵE
Var       (5) 

 

where ρ t  is locally integrable. The function: 

 

 f:  ς,∞ xW2
(1)

xEm → En       (6) 

 

is continuous and uniformly Lipschitzian in the last two arguments. He showed that if: 

 

(i) the system: 

 

 x  t = L t, xt + B t u t     (7) 

 xς = φ ϵ W2
(1)  −r, 0 , En  

 

where u ϵ 𝕌 ⊆  L2
loc   ς,∞ , U , U ⊆ Em , 0 ϵ Int U is complete; that is, zero is in the interior of the reachable set 

of (7), and 
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(ii) the free system: 

 

 x  t = L t, xt       (8) 
 

is uniformly asymptotically stable so that there exist some constants k ≥ 1,α > 0 such that every solution of (8) 

satisfies the boundedness condition: 

 

  xt ς, φ  ≤ k φ e−α t−ς , t ≥ ς    (9) 
 

and if: 

 

(iii)  f t, 0,0 = 0      (10) 

 f t,φ, 0 = f1 t,φ + f2 t,φ  
 

where 

 

  f1 t,φ  ≤ π t  φ ,      f2 t,φ  ≤ ε φ    (11) 
 

with 

 

  π t dt
∞

ς
≤ ∞,   ε =  

α

2k
, t ≥ ς, φ ϵ W2

(1)
 

 

 Chukwu [3] investigated controllability under unpredictable disturbances whose state space is the 

Sobolev space, W2
(1)  ς,∞ , En ,with dynamical equation; 

 

 x  t = L t, xt − p t + q t , t ϵ [ς,∞)    (12) 

  

where p ∙  ϵ L2  ς, t , P , P ⊆ Em , q ∙  ϵ L2  ς, t , Q , Q ⊆ Em , L t, φ  satisfies the conditions in (3). Here q is 

the quarry control and p is the control strategy for the pursuer. The target is either a subset of W2
(1)

, a point in 

W2
(1)

, a subset of En , or a point of En . There is capture if the initial function can be forced to the target by the 

pursuer no matter what the quarry does. He showed that the associated linear retarded functional differential 

equation: 
 

 x  t = L t, xt − u t ,   t ≥ ς     (13) 

 xς = φ ϵ W2
(1)  −r, 0 , En  

 u t  ϵ 𝕌 
 

 

 

 P−
∗Q =  𝕌 =   x: x + Q ⊆ P      (14) 

 

is controllable if and only if there is capture for game (12). 

 

 Shanholt [4] examined the system: 

 

 y  t = f t, yt + g t, yt       (15) 

 

where f, g: Γ → En  are continuous in Γ =  τ, ∞  x Λ, Λ is open in C  −r, 0 , En   and f t, φ  has continuous 

Frechet derivative f′ t, φ  with respect to φ ϵ Λ. By examining the linear variational equation: 
 

 z  t = f′ t, xt ς,φ  zt , t ϵ [ς,∞]     (16) 

 

with respect to x ς,φ , the solution of the nonlinear system: 

 

 x  t = f t, xt , t ≥ ς      (17) 

 xς = φ 
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he developed a nonlinear Alekseev like variation of constants formula for the nonlinear retarded system. He 

showed that the solution of the perturbed nonlinear retarded system (15) is given by: 

 

 yt ς, φ = xt ς, φ +  T t, s Y0g s, ys ς,φ  ds
t

ς
   (18) 

 

where x ς, φ  is the solution of the nonlinear system: 

 

 x  t = f t, xt        (19) 
 

and Y0is the nxn- matrix function defined by the relation: 

 

 Y0 θ =  
0, −r ≤ θ < 0
I,   θ = 0         

       (20) 

 

(I – identity matrix). 

 In this paper we use the variation of constants formula for nonlinear systems as developed in Shanholt 

[4] to investigate the controllability of a retarded system: 

 

 x  t = g t, xt + B t u t      (21) 

 

where g t, φ  is nonlinear. We employ the method developed in Chukwu [5] to establish function space 
null-controllability with constraints of the nonlinear retarded system. This paper is in four sections. The first 

section is introduces the subject and the second section establishes notations and definitions. Section three 

establishes Euclidean and Function space null-controllability while section four studies both Euclidean and 

Function space capture in nonlinear retarded differential games of pursuit. 

 

II. Notations and Definitions 
Let En  denote the n-dimensional Euclidean space. For ς, t1  ϵ E, the symbol L2  ς, t1 , En  denotes the 

space of square integrable functions from the interval [ς, t1] into En . We shall denote the Sobolev space of all 

absolutely continuous functions x: [ς, t1] → En  whose derivative x  ∙  ϵ L2  ς, t1 , En by W2
(1)  ς, t1 , En . Let 

r > 0 be given. For functions x:  ς − r, t1 → En  and t ϵ [ς, t1] we use xt  to denote the function on [-r,0] defined 

by: 

 

 xt θ = x t + θ ,−r ≤ θ ≤ 0.     (22) 

 

 Consider the nonlinear delay functional differential system of the form: 

 

 x  t = g t, xt , t ≥ ς      (23) 

 xς = φ ϵ W2
(1)  −r, 0 , En  

 

where we assume as basic that g: E x W2
(1)

→ En  is continuous and has continuous Frechet derivative 

with respect to xt ς,φ  and where g t,φ  is locally Lipschitzian in φin each compact set of E x W2
(1)

.  Let x  t  

denote the right-hand derivative of x(u) at u = t. For any ς ϵ E, and φ ϵ W2
(1)

we say that x ς, φ  is a solution of 

(22) with initialt function φ at σ if there exists an a > 0 such that x ς,φ  ϵ W2
(1)  ς − r, a + ς , En , xς =

φ and x ς,φ  satisfies (22) for t ϵ  ς,ς + a . From the above assumptions (22) has a unique solution x ς,φ  
which depends continuously on ς,φ  and on  t ϵ E. We also assume as basic that: 

 

 g t, 0 = 0 for t ≥ ς      (24) 

 

and that the solution x ς,φ  of (22) satisfies x ς, φ = 0 if, and only if φ ≡ 0. 
 

 In the system: 

 

 x  t = g t, xt + B t u t      (25) 

 

let g satisfy the conditions of (23) and let B(t) be a continuous function such that: 
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  B t  ≤ ρ t        (26 

 

where ρ t is a continuous function on [0,∞) satisfying: 

 

  ρ t dt < ∞
∞

0
       (27) 

 

and where  ∙  denotes a matrix norm. Let u ϵ 𝕌 = L2  ς,∞ , Cm  where Cm =  u ϵEm :  uj ≤ 1, j = 1,⋯ , m . 

Corresponding to each solution x ς,φ  of (23) we define a linear delay functional differential system: 

 

 z  t = f′ t, xt ς,φ  zt       (28) 

 

For each t ϵ J ς, x , the maximal interval of existence of x ς, φ . The system (28) is called the linear 

variational equation of (23) with respect to x ς, φ . For any fixed ς and t ≥ ς, z ς, ∙   t  is a continuous linear 

operator from  W2
(1)

into  En. Thus, throughout this work, to the linear system (28), we shall associate a family of 

linear operatorsT t, ς  ∙ : W2
(1)

→ W2
(1)

, t ≥ ς, by defining for each φϵ W2
(1)

: 
 

 T t, ς φ = zt ς,φ .      (29) 
 

For any initial function φ ϵ W2
(1)  −r, 0 , En  we may define a solution of (28) with initial function 

φ at ς by z ς, φ . Therefore, if the n x n matrix function Y0 is defined by: 

 

 Y0 θ =  
0, −r ≤ θ < 0
I,             θ = 0

       (30) 

 

where I is the identity matrix, then the operator  T t,ς  may be defined on the columns of Y0. If 

B t , u t  satisfy the conditions in (25), then x ς,φ, u  is the solution of (25) with initial function 

φ ϵ W2
(1)

at ς ϵ E, if and only if x ς,φ, u  satisfies the integral equation: 

 

 xt ς, φ, u = xt ς,φ +  T t, s Y0B s u s ds,    t ≥ ς
t

ς
  (31) 

 

where xt ς, φ  is the solution of (23).  
 

Definition 2.1 

 The system (23) is globally exponentially asymptotically stable if there exists an L > 0, c > 0 such that 

the solution  x ς,φ  of (23) satisfies, xς ς,φ = φ and: 

 

  xt ς, φ  ≤ L e−c t−ς  φ ,    tϵ ς,∞ .     (32) 
 

 

Definition 2.2 

 The system (25) is proper on an interval (ς, t] if CTT t, s IB s = 0   a. e.  s ϵ  ς, t ,  for each φ ϵ W2
(1)

 

implies C = 0, where CT denotes the transpose of C inEn . If (23) is proper on each interval  ς, t , t ≥ ς we say 
the system is proper. 

 

Definition 2.3 

The system (25) is null-controllable with constraints if given any initial state φ ϵ W2
(1)

, there exists 

t1 ≥ ς and an admissible control u ϵ 𝕌 such that the solution x ς, φ, u  satisfies 

xς ς,φ, u = φ and x t1 ,ς,φ, u = 0. 
 

Definition 2.4 

The system (25) is null-controllable if given any initial state φ ϵ W2
(1)  −r, 0 , En , there existst1 ≥ ς 

And an admissible control u ϵ L2  ς,∞ , Em  such that the solution x ς, φ, u  satisfies xς ς,φ, u =
φ and x t1 ,ς,φ, u = 0. 
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III. Controllability Results 
The Euclidean space reachable set of (25) is the set: 

 

 ℝ t, ς =   T t, s B s u s ds: u 
t

ς
ϵ 𝕌     (33) 

 

Respectively, the function space reachable set is given by: 
 

 𝔸 t,ς =   T t, s Y0B s u s ds: u ϵ 𝕌
t

ς
     (34) 

 

where u ϵ 𝕌is as given in (25) and Y0 is as defined by (30), t ≥ ς and φ ϵ W2
 1 

  −r, 0 , En . 
 

Theorem 3.1 

 The system (25) is proper on [ς, t] if, and only if 0 ϵ Int ℝ t,ς . 
 
Proof: 

 Given that 𝕌 = L2  ς,∞ , Cm where Cm =  u ϵ Em :  uj ≤ 1,   j = 1,⋯ , m .𝕌 is weak* compact. Let 

Y(s) = T(t, s)B(s) and for the sequence  ui 1
∞ ⊆ 𝕌 let  

 

 si =  Y s ui s ds ϵ ℝ t,ς ,   i = 1,2,⋯
t

ς
     (35) 

 

We may extract a convergent subsequence,  uk 1
∞  say, such that uk → u ϵ 𝕌, and  

 limi→∞  Y s uk s ds →   Y s u s ds
t

ς

t

ς
     (36) 

 

then  

 

 limi→∞ si = s ϵ ℝ t, ς .       (37) 

Hence ℝ t, ς   is closed. Furthermore, consider the controls u1 , u2  ϵ 𝕌, 0 < α < 1, we find that 

 

 α Y s u1 s ds +  1 − α  Y s u2 s ds
t

ς

t

ς
    (38) 

 

 =  Y s  αu1 s +  1 − α u2 s  ds
t

σ
. 

 

But for each j satisfying  1 ≤ j ≤ m, 
 

  αu1j s +  1 − α u2j s  ≤ α u1j s  +  1 − α  u2j s  = 1.  (39) 

 

It follows that αu1 s +  1 − α u2 s  ϵ 𝕌 so that: 

 

  Y s  αu1 s +  1 − α u2 s  ds ϵ ℝ t, σ 
t

σ
    (40) 

 

Hence, ℝ t, σ  is convex, so ℝ t, σ is closed and convex. 

 Consider a point x1 on the boundary of ℝ t, σ . Since the reachable set is closed and convex, there is a 

support plane π through x1. That is CT x − x1 ≤ 0 for each x ϵ ℝ t, σ ,  where C ≠ 0 is an outward normal to π. 
If u1 is the corresponding control to x1 then we have: 

 

 CT  Y s u s ds ≤ CT  Y s u1 s ds,   for each u ϵ 𝕌.
t

σ

t

σ
   (41) 

 

Since Cm  is unit cube, this last inequality will hold for each u ϵ Cm  if, and only if 

 

 CT  Y s u s ds ≤   CTY s u1 s  ds =   CTY s  ds
t

σ

t

σ

t

σ
.   (42) 

 

And u1 s = sgn CTY s . Since we always have 0 ϵ ℝ t, σ , if 0 is not in the interior, then it is on the boundary. 
This is equivalent to: 
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 0 =   CTY s  ds
t

σ
 so that CTY s = 0 a. e. s ϵ  σ, t .    (43) 

 

Contradiction. Hence, the system is proper. This completes the proof. 

 

Theorem 3.2: Suppose, 

i) The solution x σ, φ  of (23) is globally exponentially asymptotically stable and 

ii) The system (25) is proper, 

then the system (25) is Euclidean space null-controllable with constraints. 

 

Proof: 
By the variation of constants formula, the solution of (25) is given as: 

 

 x t, σ, φ, u = x t, σ, φ +  T t, s B s u s ds: t ≥ σ
t

σ
   (44) 

 

 

 

 x t1 , σ, φ, u = x t1 , σ, φ +  T t1 , s B s u s ds
t1

σ
    (45) 

 

and 

 

 x t1 , σ, φ = − T t1 , s B s u s ds
t1

σ
.     (46) 

 

Now define H as follows: 
 

 H t1 =  x t1 , σ, φ +  T t1 , s B s u s ds: u ϵ 𝕌,   φ ϵ W2
(1)t1

σ
, xσ = φ  (47) 

 

Clearly, H t1  is a sum of two sets, the first of which is contained in the second part, the Euclidean space 

reachable set.  

 By definition the domain 𝒞 of null-controllability is the collection φ ϵ W2
(1)

 such that for any initial 

state φ there exists a t1 and some u ϵ 𝕌 such that the solution x σ, φ, u  of (25) satisfies xσ = φ and 

x t1 , σ, φ, u = 0.  Hence 𝒞 is the subset of W2
(1)

 such that: 

 

 x t1 , σ,𝒞 =  x t, σ, φ : φ ϵ 𝒞,   x σ, φ is a solution of (23)   (48) 

 

Since (25) is proper o ϵ ℝ t, σ  for each t. Hence 0 ϵ Int 𝒞. Indeed, suppose not, since 0 ϵ 𝒞 there is a sequence 

 φ
m
 

1

∞
⊆ W2

(1)
 such that φ

m
→ 0 as m → ∞ and no φ

m 
is in 𝒞 so that φ

m
≠ 0. Suppose x t, σ, φ

m
 = xm. Then 

xm ≠ 0, and by continuity xm → x t, σ, 0 = 0 as m → ∞. Hence 0 is not in the interior of the reachable set, a 

contradiction. Hence 0 is in the interior of 𝒞. Since the 0 function is in the interior of  , there is an open ball 

𝒫 ⊆ W2
(1)

around 0 which is contained in 𝒞. 

 In (25) set u = 0 on  σ,∞ . Then the solution x σ, φ, u  of (25) with initial state φ is the solution of (23). 

By condition (i) of Theorem 3.2 every solution of (23) satisfies: 

 

 xσ = φ and  xt σ, φ  ≤ Le−c t−σ  φ       (49) 

 

 

ϵ 𝒫 ⊆ 𝒞. With xt1
 σ, φ  ϵ 𝒞 as an initial function there are a t2and control u ϵ 𝕌 such that the solution satisfies: 

 

 xt2
 σ, xt1

 =  xt1
and xt2

 ς, xt1
, u = 0.      (50) 

 

This completes the proof. 

 

Definition 2.3 

 The system (25) is said to be complete on [ς, t] if, and only if: 

 

 0 ϵ A t,ς , t ≥ ς + r.       (51) 
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The system (25) is complete if it is complete on each interval  ς, t , t ≥ ς + r. It is complete with constraints if 

0 ϵ Int A t,ς , u ϵ 𝕌, t ≥ ς + r where 𝕌 is as defined in (25). 
 

 Let g′ t, xt  be the Frechet derivative of g t, xt  with respect to xt ς,φ , where x ς,φ  is the solution 

of (23). Consider the linear control system: 

 

 z  t = g ′ t, xt ς,φ  zt + B t u t      (52) 

 

where B(t) and u(t) are as given in (25). Consider also the free system: 

 

 z  t = g′ t, xt ς,φ  zt .       (53) 

 

The solution of (52) is given by: 
 

 zt ς, φ, u = zt ς,φ +  T t, s Y0B s u s ds
t

ς
    (54) 

 

for t ≥ ς, φ ϵ W2
 1 

, Y0 as in (30) and T t, ς  is the family of linear operators associated with (53); where the 

integral equation (54) is an integral equation in Enand is to be interpreted as: 

 

 zt θ =  T t,ς φ  θ +  [T t, s Y0] θ B s u s ds
t

ς
   (55) 

 

for  t ≥ ς,−r ≤ θ ≤ 0.For a derivation of (54) see Hale [6, pp 80-86]. Consequently, the function space 

reachable set of (52) is given by: 

 

 A t, ς =   T t, s Y0B s u s ds: u ϵ L2  ς,∞ , Em 
t

ς
 .   (56) 

 

Theorem 3.4 

 The system (52) is complete on  ς, t , t ≥ ς + r if, and only if (52) is controllable on  ς, t , t ≥ ς + r. 
 

Proof: 

 We note that A t,ς  is a subspace of W2
(1)

. Assume (52) is controllable on [ς, t]. Then A t,ς =

W2
(1)

, t ≥ ς + r. So that 0 ϵ Int A t, ς for each t ≥ ς + r. 
 Conversely, assume that (52) is complete on  ς, t , t ≥ ς + r. Then 0 ϵ Int A t,ς . Since A t,ς  is a 

subspace this implies that: 

 A t, ς = W2
(1)

, t ≥ ς + r       (57) 

This completes the proof. 

 

Theorem 3.5 
 The system (25) is complete if, and only if, the system (52) is complete. 

 

Proof: 

 Assume he system (52) is complete. This is equivalent to 0 ϵ Int A t,ς , t ≥ ς + r. Since the function 

space reachable set of (25) is the same as the function space reachable set of (52), it follows that the system (25) 

is complete. This observation completes the proof. 

 

Corollary 3.6 

 Let B+ t  denote the Moore-Penrose generalized inverse, as in Luenberger [7], of B t , t ϵ E. Suppose 

that the map t → B+ t , t ϵ E is essentially bounded on each interval  t − r, t and rank B t = n on each interval 

[t − r, t]. Then (52) is complete on each interval  ς, t , t ≥ ς + r. 
 

Proof: 

 By theorem 3.1 of Luenberger [7], (52) is controllable on each interval 
 ς, t , t ≥ ς + r if, and only if rank B = n on each interval  t − r, t . By theorem 3.4 the system (52) is complete 

on  ς, t , t ≥ ς + r if, and only if (52) is controllable on  ς, t , t ≥ ς + r. This completes the proof. 

 

Remark 3.7 
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 As a consequence of Corollary 3.6,  (52) is complete if, and only if rank B = n, when B is a constant 

matrix 
Theorem 3.8: Suppose 

(i) the solution x ς, φ of (23) is globally exponentially asymptotically stable; 

 

(ii) the system (25) is complete; 

 

then the system (25) is function space null-controllable with constraints. 

 

Proof: 

 The proof is skipped as it is similar to that of theorem 3.2. 

 

Example 3.8 
We consider the homogeneous nonlinear differential difference equation: 

 

 x  t = Ax t + B[x t − r ]2 ≔ g t, xt       (58) 

 xς = φ ϵ W2
(1)

 

 

has a nontrivial solution if, and only if 

 

 λ − A − Be−λr = 0.         (59) 
 

However, we are interested in the equation defined by the Frechet derivative given by 

 

 z  t = g′ t, xt zt         (60) 

 

And the controlled equation 

 

 z  t = g′ t, xt zt + Cu t        (61) 

 

We assume that there are constants k > 0,α > 0 such that for all ς ϵ E 

 

  T t, ς  ≤ ke−α t−ς , t ≥ ς       (62) 

 

We apply Theorem 3.4 and Corollary 3.5 to conclude that (61) is complete. Since the solution operator of (60)  

apply satisfies relation (62), we apply Theorem 3.4 to show that (61) is Euclidean space null-controllable. 
 

IV. Game of  Pursuit Results: 

We investigate a game whose state space is the Sobolev space, W2
(1)

,  with dynamical equation: 

 

 x  t = g t, xt − p t + q t ,   t ϵ [ς,∞)      (63) 

 

where p ϵ L2  ς, t , P , P ⊆ Em , q ϵ L2  ς,∞ , Q , Q ⊆ Em . With the aabove assumptions, given ς, t ϵ E and 

φ ϵ W2
(1)

there exist an absolutely continuous function x ∙, ς,φ, p, q : [ς − r, t1] → En  which satisfies (63) a.e. on 

[ς, t1] with initial condition xς = φ. The solution to (63) is given by: 

 

 xt ς, φ, p, q = xt ς, φ −  T t, s Y0 p s − q s  ds
t

ς
    (64) 

 

where t ≥ ς,φ ϵ W2
 1 

 and x ς,φ is the solution of (23). 

 

Definition 4.1 

 There is complete Euclidean space capture everywhere at time t1 for game (63) if for each 

φ ϵ W2
(1)

, x1  ϵ En and for quarry control q ϵ L2 there exist pursuer strategy p ϵ L2 subject to the following 

 

i) foreach t ϵ  ς, t1 , p t  depends on q t , t1 ,φ and g t, xt ; 
 

ii) the pair of controls so obtained is such that the solution of (63) satisfies x t1 = x1and xς = φ. 



Euclidean and Function Space Null-Controllability of Nonlinear Delay Systems with ….. 

www.iosrjournals.org                                                    9 | Page 

 There is Euclidean space capture in zero at time t1 or game (63) if the assumptions in Definition 4.1 are 

met with x1 = 0. Assosiated with our game is a nonlinear control equation: 
 

 x  t = g t, xt − u t         (65) 

 

where u ϵ L2  −r, 0 , U  and the control set is the Pontryagin difference of sets as given in Hajek [8],  

 

 U = P ∗ Q =  x: x + Q ⊆ P .       (66) 

 

Theorem 4.2 

 Assume 0 ϵ Q and P compact. There is complete Euclidean space capture everywhere at time t1 for 

game (63) if, and only if the associated nonlinear control system  
 

 x  t = g t, xt − u t         (67) 

 u t  ϵ U =  P + ker T t, s  ∗ Q 

 

is Euclidean space controllable at time t1 . Furthermore, α q, t = u t + q modulo ker T t, s  for all q ϵ Q and 

t ϵ [ς, t1] can be used to determine a suitable strategy u ϵ L2  ς, t1 , U  in (67) and vice versa. 

Remark 4.3 

 In (67) φ is the initial function that is forced to the target by α and q. 
 

Proof of Theorem 4.2 

 Assume there is complete Euclidean space capture everywhere at time t1 for game (63). There is a 

mapping α: Q x [ς, t1] → Psuch that for any quarry control q ϵ L2 the map p t = α q t , t  is a pursuer 

strategy; p and q steer arbitrary φ ϵ W2
(1)

 to any x1  ϵ En  in time t1 . 
 

 x t1 ,ς, φ, p, q = x1 = x t1 ,ς,φ −  T t1 , s Y0 p s − q s  ds
t1

ς
   (68) 

 

or 

 

 x t1 ,ς, φ = x1 +  T t1 , s Y0 p s − q s  ds.
t1

ς
     (69)  

 

For quarry control 0 ϵ Q, 
 

 x t1 ,ς, φ = x1 +  T t1 , s Y0u s ds
t1

ς
      (70) 

 

where u s = α 0, s . 
 Now take any point q ϵ Q and time t ϵ [ς, t1], consider the piecewise constant quarry control such that 

it is zero on the interval  ς, t  and q on the interval  t, t1 .We apply these values in equation (69) to obtain 

 

 x t1 ,ς, φ = x1 +   T t1 , s Y0u s ds +  T t1 , s Y0 α q, s − q ds
t1

t

t

ς
.  (71) 

 

Subtact (71) from (70) to obtain 

 

  T t1 , s Y0 u s + q − α q, s  ds = 0
t1

t
      (72) 

 

 T t1 , s Y0 u s + q − α q, s  = 0       (73) 

 

for almost all s ϵ  ς, t1 .We use the kernel to interprete this as 
 

 u s + q ϵ [α q, s + ker T t1 , s Y0]      (74) 

 

Because α has values in P,u s + q ϵ [P + ker T t1 , s Y0]. Since the right side of (74) is closed, we use Hajek’s 

lemma [8, p.59] to obtain 

 

 u s + Q ⊆ [P + ker T t1 , s Y0] a.e.      (75) 
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or  

 

 u s  ϵ  P + T t1 , s Y0 ∗ Q ≡ U s  a. e.      (76) 

 

So that u ϵ L2  ς, t1 , U . Hence u is an admissible control for (67) and (70)to yield 

 

 x t1 ,ς, φ = x1 +  T t1 , s Y0u s ds
t1

ς
      (77) 

or 

 x1 = x t1 ,ς, φ −  T t1 , s Y0u s ds
t1

ς
.      (78) 

 

Note that xς = φand (74) proves (67). 

 Conversely, assume that (67) is Euclidean space controllable at time t1, let φ ϵ W2
(1)

and x1 ϵ En  be 

given. Let u be the appropriate control in L2 such that xς = φ, x t1 = x1 . Then 
 

 x1 = x t1 ,ς, φ −  T t1 , s Y0u s ds
t1

ς
      (79) 

 

where u s ϵ U yields u s + q ϵ [P + ker T t1 , s Y0]. We now apply Fillipov’s lemma [8, p.110] to construct 

pursuer control: there exist measurable mappings 

 

 α ∶ Q x [ς, t1] → P,   l ∶ Q x [ς, t1] → ker T t1 , s Y0     (80) 
 

such that  

 

 u s + q ≡ α q, s + l q, s .       (81) 

 

Because α takes values in a compact set P, α ϵ L2  ς, t1 , P . We now how that for any quarry control q, α is 

indeed appropriate. 

 For any q ϵ L2  ς, t1 , Q , α − q = u − l, so that the solution at t1 of (63) with this pair of α and q with 

initial function φ is: 
 

 x t1 ,ς, φ,α, q = x t1 ,ς,φ −  T t1 , s Y0 α q, s − q ds
t1

ς
    (82) 

 

  = x t1 ,ς,φ −  T t1 , s Y0 u s − l q, s  ds
t1

ς
   (83) 

 

   = x t1 ,ς,φ −  T t1 , s Y0α q, s ds
t1

ς
−  T t1 , s Y0u s ds

t1

ς
 (84) 

 

   =x1 + 0.        (85) 

 

This completes the proof. 

Theorem 4.2 

 In game (63) assume 0 ϵ Q, P compact. Ttthen there is complete function space capture everywhere at 

time t1 for (67) if, and only if, the associated nonlinear control equation: 

 

 x  t = g t, xt − u t , t ≥ ς       (86) 

 xς = φ ϵ W2
(1)  −r, 0 , En , u t  ϵ U      (87) 

 U = [P + ker T t1 , s Y0] ∗ Q       (88) 

 

Is controllable at time t1. Furthermore, α q, s = u s + q modulo ker T t1 , s Y0,   for all  q ϵ Q, s ϵ [ς, t1] can 

be used to determine a suitable control strategy from admissible control u ϵ L2  ς, t , U for (67) and vice versa. 

 

The proof is quite similar to that of theorem 4.1. 

 

V. Conclusion 

We notice that we have employed nonlinear variation of constants formula as developed by Shanholt to 
arrive at similar results such as that developed by Chukwu, et al for Euclidean and function space controllability. 

We also establish similar results for nonlinear differential games of pursuit. 



Euclidean and Function Space Null-Controllability of Nonlinear Delay Systems with ….. 

www.iosrjournals.org                                                    11 | Page 

References 
[1]. Hermes,H. and Lasalle,J.P., Functional Analysis and Time Optimal ControlAcademic Press, 1969. 

[2]. Chukwu, E. N.,On null-controllability of nonlinear delay systems with restrained controls, J. Math. Anal.  Appl. Vol.76, 

no. 1, July 1980 

[3]. ---------------, Capture in linear functional differential games of pursuit, J. Math. Anal. Appl., Vol. 70, No.  2, 1979. 

[4]. Shanholt, G. A., A nonlinear variation of constants formula for functional differential equations, Math.  Systems theory, Vol. 6, No. 

4, 1972-1973. 

[5]. Chukwu, E. N., Null-controllability in function space of nonlinear retarded systems with limited control.  Preprint. 

[6]. Hale, J., Functional Differential Equations Springer- Verlag, New York, 1971. 

[7]. Luenberger, D. G., Optimization of vector space method John Wiley, New York, 1969. 

[8]. Hajek,O., Pursuit Games  Academic Press,  New York, 1975. 


