$i(G)$-Graph - $G(i)$ Of Some Special Graphs

V. Anusuya, ${ }_{1}$ R. Kala ${ }_{2}$
Department of Mathematics S. T. Hindu college Nagercoil 629002 Tamil Nadu, India Department of Mathematics Manonmaniam Sundaranar University Tirunelveli 627012 Tamil Nadu, India.

Abstract

The $i(G)$-graph is defined as a graph whose vertex set correspond 1 to 1 with the $i(G)$-sets of G. Two $i(G)$ - sets say S_{1} and S_{2} are adjacent in $i(G)$ if there exists a vertex $v \in S_{1}$, and a vertex $w \in S_{2}$ such that v is adjacent to w and $S_{1}=S_{2}-\{w\} \cup\{v\}$ or equivalently $S_{2}=S_{1}-\{v\} \cup\{w\}$. In this paper we obtain $i(G)$-graph of some special graphs.

I. Introduction

By a graph we mean a finite, undirected, connected graph without loops and multiple edges. For graph theoretical terms we refer Harary [12] and for terms related to domination we refer Haynes et al. [14].

A set $S \subseteq V$ is said to be a dominating set in G if every vertex in $V-S$ is adjacent to some vertex in S. The domination number of G is the minimum cardinality taken over all dominating sets of G and is denoted by $\gamma(G)$. A subset S of the vertex set in a graph G is said to be independent if no two vertices in S are adjacent in G. The maximum number of vertices in an independent set of G is called the independence number of G and is denoted by $\beta_{0}(G)$. Any vertex which is adjacent to a pendent vertex is called a support. A vertex whose degree is not equal to one is called a non-pendent vertex and a vertex whose degree is $p-1$ is called a universal vertex. Let u and v be (not necessarily distinct) vertices of a graph G. A $u-v$ walk of G is a finite, alternating sequence $u=u_{0}, e_{1}, e_{2}, \ldots, e_{n}, u_{n}=v$ of vertices and edges beginning with vertex u and ending with vertex v such that $e_{i}=u_{i-1}, u_{i}, i=1,2,3, \ldots, n$. The number n is called the length of the walk. A walk in which all the vertices are distinct is called a path. A closed walk $\left(u_{0}, u_{1}, u_{2}, \ldots, u_{n}\right)$ in which $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ are distinct is called a cycle. A path on p vertices is denoted by P_{p} and a cycle on p vertices is denoted by C_{p}.

Gerd H.Frickle et. al [11] introduced γ-graph.The γ-graph of a graph G denoted by $G(\gamma)=(V(\gamma), E(\gamma))$ is the graph whose vertex set corresponds $1-$ to -1 with the γ-sets. Two γ-sets say S_{1} and S_{2} are adjacent in $E(\gamma)$ if there exist a vertex $v \in S_{1}$ and a vertex $w \in S_{2}$ such that v is adjacent to w and $S_{1}=S_{2}-\{w\} \cup\{u\}$ or equivalently $S_{2}=S_{1}-\{u\} \cup\{w\}$. Elizabeth et.al [10] proved that all graphs of order $n \leq 5$ have connected γ-graphs and determined all graphs G on six vertices for which $G(\gamma)$ is connected. We impose an additional condition namely independency on γ-sets and study $i(G)$-graphs denoted by $G(i)$. The $i(G)$-graph is defined as a graph whose vertex set correspond 1 to 1 with the $i(G)$-sets of G. Two $i(G)$ - sets say S_{1} and S_{2} are adjacent in $i(G)$ if there exists a vertex $v \in S_{1}$, and a vertex $w \in S_{2}$ such that v is adjacent to w and $S_{1}=S_{2}-\{w\} \cup\{v\}$ or equivalently $S_{2}=S_{1}-\{v\} \cup\{w\}$. In this paper we obtain $i(G)$-graph of some special graphs.

II. Main Results

Definition 2.1 A set $S \subset V$ is said to the independent if no two vertices in S are adjacent. The minimum cardinality of a maximal independent dominating set is called the independent domination number and is denoted by $i(G)$. A maximal independent dominating set is called a $i(G)-$ set.

Definition 2.2 Consider the family of all independent dominating sets of a graph G and define the graph
$G(i)=(V(i), E(i))$ to be the graph whose vertices $V(i)$ correspond 1-1 with independent dominating sets of G and two sets S_{1} and S_{2} are adjacent ib $G(i)$ if there exists a vertex $v \in S_{1}$, and $w \in S_{2}$ such that (i) v is adjacent to w and (ii) $S_{1}=S_{2}-\{w\} \cup\{v\}$ and $S_{2}=S_{1}-\{v\} \cup\{w\}$.
Proposition 2.3 If a graph G has a unique $i(G)$-set then $G(i) \cong K_{1}$ and conversely.
Corollary 2.4 $K_{1, n}(i)=K_{1}$.
Proof. Since the central vertex of $K_{1, n}$ is the only $i(G)$-set, $K_{1, n}(i)=K_{1}$.
Proposition $2.5 \overline{K_{n}}(i) \cong K_{1}$, whereas $K_{n}(i) \cong K_{n}$.
Proof. Let $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the set of vertices of K_{n}. Each singleton set $S_{i}=\left\{v_{i}\right\}, i=1,2,3, \ldots, n$ is an element of $V(i)$ and each pair $\left(S_{i}, S_{j}\right),(1 \leq i, j \leq n)$ form an edge in $K_{n}(i)$. Hence $K_{n}(i) \cong K_{n}$. Since the set of all vertices of $\overline{K_{n}}$ is the only independent dominating set of $\overline{K_{n}}, \overline{K_{n}}(i) \cong K_{1}$.

Proposition 2.6 For $1 \leq m \leq n$,

$$
K_{m, n}(i) \cong\left\{\begin{array}{cc}
K_{2} & \text { ifm }=\mathrm{n}=1 \\
\frac{K_{2}}{K_{2}} & \text { ifm }=\text { nandm } \geq 2 \\
K_{1} & \text { ifm }<\mathrm{n}
\end{array}\right.
$$

Proof. Let $S_{1}=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $S_{2}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the bipartition of $K_{m, n}$.
If $m=n=1,\left\{u_{1}\right\}$ and $\left\{v_{1}\right\}$ are the $i(G)$ sets and clearly $K_{m, n}(i)=K_{2}$.
If $m=n$ and $m \geq 2, S_{1}$ and S_{2} are the only two independent dominating sets of $K_{m, n}$ and they are non-adjacent vertices of $K_{m, n}(i)$. Hence $K_{m, n}(i)=\overline{K_{2}}$ for all values of m. If $m<n, S_{1}$ is the only $i(G)$ -set and so $K_{m, n}(i) \cong K_{1}$.

Proposition $2.7 C_{3 k+2}(i) \cong C_{3 k+2}$.

Proof. Case(i). $k=1$
Let the cycle be $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right)$.
$S_{1}=\left\{v_{1}, v_{3}\right\}, S_{2}=\left\{v_{1}, v_{4}\right\}, S_{3}=\left\{v_{2}, v_{4}\right\}, S_{4}=\left\{v_{2}, v_{5}\right\}, S_{5}=\left\{v_{3}, v_{5}\right\}$ are the $5 i(G)$-sets of C_{5} and $C_{5}(i)$ is the cycle $\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{1}\right)$.

Case(ii). $k=2$
Let the cycle be $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{1}\right)$.
$S_{1}=\left\{v_{1}, v_{4}, v_{7}\right\}, S_{2}=\left\{v_{1}, v_{4}, v_{6}\right\}, S_{3}=\left\{v_{1}, v_{3}, v_{6}\right\}, S_{4}=\left\{v_{2}, v_{5}, v_{8}\right\}, S_{5}=\left\{v_{2}, v_{5}, v_{7}\right\}, S_{6}=\left\{v_{2}, v_{4}, v_{7}\right\}, S_{7}=\left\{v_{3}, v_{6}, v_{8}\right.$ are the $8 i(G)$-sets of C_{8} and $C_{8}(i)$ is the cycle $\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}, S_{8}, S_{1}\right)$.
Case(iii). Let the vertices of the cycle be $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{3 k+2}, v_{1}\right)$
We know that $i\left(C_{3 k+2}\right)=k+1 \quad$. $S_{1}=\left\{v_{1}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 k-2}, v_{3 k+1}\right\} \quad$ and $S_{2}=\left\{v_{1}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 k-2}, v_{3 k}\right\}$ are two $i(G)$-sets of $C_{3 k+2}$.
Now finding the first vertex of S_{1} and changing the other vertices of S_{1} we get $S_{3}=\left\{v_{1}, v_{3}, v_{6}, v_{9}, \ldots, v_{3 k-3}, v_{3 k}\right\}$. Now fixing the first two vertices of S_{1} and changing the other vertices of S_{1} we get $S_{4}=\left\{v_{1}, v_{4}, v_{6}, v_{9}, \ldots, v_{3 k-3}, v_{3 k}\right\}$. Proceeding like this, fixing the first $k-1$ vertices and changing the $k^{\text {th }}$ vertex alone we get $S_{k+1}=\left\{v_{1}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 k-5}, v_{3 k-3}, v_{3 k}\right\}$. Now consider the two
$i(G)$-sets $S_{k+2}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 k-1}, v_{3 k+2}\right\}$ and $S_{k+3}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 k-4}, v_{3 k-1}, v_{3 k+1}\right\}$.
As before, fixing the first vertex and changing from the $2^{\text {nd }}, 3^{r d}$ vertices upto $k^{\text {th }}$ of S_{k+3} we get
$S_{k+4}=\left\{v_{2}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 k-5}, v_{3 k-2}, v_{3 k+1}\right\}$,
$S_{k+5}=\left\{v_{2}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 k-5}, v_{3 k-2}, v_{3 k+1}\right\}$,
\vdots
$S_{2 k+2}=\left\{v_{2}, v_{5}, v_{8}, v_{11}, \ldots, v_{3 k-4}, v_{3 k-2}, v_{3 k+1}\right\}$.
Now consider $S_{2 k+3}=\left\{v_{3}, v_{6}, v_{9}, \ldots, v_{3 k}, v_{3 k+2}\right\}$. As before, fixing the first vertex and changing from the $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ vertices of $S_{2 k+3}$ we get
$S_{2 k+4}=\left\{v_{3}, v_{5}, v_{8}, v_{11}, \ldots, v_{3 k-1}, v_{3 k+2}\right\}$
$S_{2 k+5}=\left\{v_{3}, v_{5}, v_{8}, v_{11}, \ldots, v_{3 k-1}, v_{3 k+2}\right\}$
\vdots
$S_{3 k+2}=\left\{v_{3}, v_{6}, v_{9}, v_{12}, \ldots, v_{3 k-3}, v_{3 k-1}, v_{3 k+2}\right\}$.
Now $S_{1}, S_{2}, S_{3}, \ldots, S_{3 k+2}$ are $i(G)$-sets of $C_{3 k+2}$. Here S_{1} is adjacent S_{2} and $S_{k+4} . S_{2}, S_{3}, S_{4}, \ldots S_{k}$ are adjacent to preceeding and succeeding vertices. S_{k+1} is adjacent to S_{2} and $S_{k} . S_{k+2}$ is adjacent to S_{k+3} and $S_{2 k+4} . S_{k+3}$ is adjacent to S_{k+2} and $S_{2 k+2} . S_{k+4}$ is adjacent to S_{k+5} and S_{1}. $S_{k+5}, S_{k+6}, S_{k+7}, \ldots, S_{2 k+1}$ are adjacent to the preceeding and suceeding vertices. $S_{2 k+2}$ is adjacent to $S_{2 k+1}$ and $S_{k+3} . S_{2 k+3}$ is adjacent to S_{3} and $S_{3 k+2} . S_{2 k+4}$ is adjacent to S_{k+2} and $S_{2 k+5}$. $S_{2 k+5}, S_{2 k+6}, S_{2 k+7}, \ldots, S_{3 k+1}$ are adjacent to the preceeding and suceeding vertices. $S_{3 k+2}$ is adjacent to $S_{3 k+1}$ and $S_{2 k+3}$.
Thus we get a cycle
$\left(S_{1}, S_{2}, S_{k+1}, S_{k}, S_{k_{1}}, \ldots S_{3}, S_{2 k+3}, S_{3 k+2}, S_{3 k-1}, S_{3 k}, \ldots S_{2 k+4}, S_{k+2}, S_{k+3}, S_{2 k+2}, S_{2 k+1}, S_{2 k} \ldots S_{k+4}, S_{1}\right)$
which is isomorphic to $C_{3 k+2}$.
Proposition 2.8 For $k \geq 2, C_{3 k}(i) \cong \overline{K_{3}}$
Proof. Since each $C_{3 k}$ for $k \geq 3$ has 3 disjoint $i(G)$-sets, $C_{3 k}(i) \cong \overline{K_{3}}$.
Proposition 2.9 $P_{3 k}(i) \cong \overline{K_{1}}$
Proof. Since paths $P_{3 k}$ of order $3 k$ have a unique $i(G)$-set, $P_{3 k}(i) \cong \overline{K_{1}}$.
Proposition 2.10 $P_{3 k+2}(i) \cong P_{k+2}$
Proof. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{3 k+2}$ be the vertices of $P_{3 k+2}$. We have $i\left(P_{3 k+2}\right)=k+1$. $S_{1}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 k+2}\right\}, S_{2}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 k-4}, v_{3 k-1}, v_{3 k+1}\right\}$ are two $i(G)$-sets of $P_{3 k+2}$. Now fixing the first vertex and varying from the $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, \ldots k^{\text {th }}$ vertices we get the following $i(G)$-sets.
$S_{3}=\left\{v_{2}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 k+1}\right\}$
$S_{4}=\left\{v_{2}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 k+1}\right\}$
\vdots
$S_{k+1}=\left\{v_{2}, v_{5}, v_{8}, v_{11}, \ldots, v_{3 k-1}, v_{3 k+1}\right\}$
Also $S_{k+2}=\left\{v_{1}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 k+1}\right\}$ is an $i(G)$-set of $P_{3 k+2}$.
Thus there are $k+2 i(G)$-sets of $P_{3 k+2}$. It is obvious that S_{1} is adjacent to S_{2} alone and S_{k+2} is adjacent to S_{3} alone. S_{k+1} is adjcent to S_{2} and $S_{k} . S_{3}, S_{4}, S_{5}, \ldots, S_{k}$ are adjacent to the preceeding and succeeding vertices. Thus we get a path of length P_{k+2}. Hence $P_{3 k+2}(i) \cong P_{k+2}$.

Definition 2.11 Grid graph is the cartesian product of 2 paths.
The cartesian product of 2 paths P_{m} and P_{n} is denoted by $P_{m} \mathrm{~W} P_{n}$ or $P_{m} \times P_{n}$.
Proposition 2.12 For $k \geq 2,\left(P_{2} \mathrm{~W} P_{2 k+1}\right)(i) \cong \overline{K_{2}}$.
Proof. $P_{2} \mathrm{~W} P_{2 k+1}(i)$ for $k \geq 2$ has only two disjoint $i(G)$-sets. Therefore $\left(P_{2} \mathrm{~W} P_{2 k+1}\right)(i) \cong \overline{K_{2}}$.
The structure of $i(G)$-graphs of paths and cycles of order $3 k+1$ can be determined. Assume that the vertices in each of these graphs have been labelled $1,2,3, \ldots, 3 k+1$. For $G=P_{3 k+1}$ or $G=C_{3 k+1}, S=\{1,4,7, \ldots, 3 k+1\}$ is a $i(G)$-set of size $k+1$. In each case, 1 and $3 k+1$ have one external private neighbour while the other numbers of S have two non adjacent external private neighbours. So $S_{1}-\{1\} \cup\{2\}$ and $S-\{3 k+1\} \cup\{3 k\}$ are $i(G)$-sets. Further if S is an $i(G)$-set for $G=P_{3 k+1}$ or $G=C_{3 k+1}$ and vertex i has exactly one external private neighbour, $j=i+1$ or $j=k-1$, then $S^{\prime}=\{i\} \cup\{j\}$ is an $i(G)$-set. Let us refer to the process of changing from a $i(G)$-set S^{\prime} to the γ-set $S^{\prime}-\{i\} \cup\{j\}$ as a swap. We see that each swap defines an edge in $G(i)$.

Definition 2.13 We define a step grid $S G(k)$ to be the induced subgraph of the $k \times k$ grid graph $P_{k} \mathrm{~W} P_{k}$ that is defined as follows:
$S G(k)=(V(K), E(K)) \quad$ where $\quad V(K)=\{(i, j): 1 \leq i, j \leq k, i+j \leq k+2\} \quad$ and $E(K)=\left\{(i, j),\left(i^{\prime}, j^{\prime}\right): i=i, j^{\prime}=j+1, i^{\prime}=i+1, j=j\right\}$.

Theorem 2.14 If $G=P_{3 k+1}$ or $G=C_{3 k+1}$ then $G(i)$ is connected.
Proof. Each independent dominating set X of $P_{3 k+1}$ is some number of swaps of sets of type 1 $(X-\{i\} \cup\{i+1\})$ or sets of type $2(X-\{i\} \cup\{i-1\})$ from S. Alternatively we can perform swaps from S to X. Thus each vertex in $P_{3 k+1}(i)$ can be associated with an ordered pair (i, j) where i is the number of swaps of type 2 needed to convert S to X. Thus vertex 1 and $3 k+1$ in $P_{3 k+1}$ can be swapped with at most one external private neighbour. However each vertex can be swapped at most once in either direction. Thus the conditions on the ordered pair (i, j) are $1 \leq i \leq k, 1 \leq j \leq k, i+j=2$. If $q=i+1$ and $r=j+1$, we have $1 \leq q \leq k+1,1 \leq r \leq k+1$ and $q+r \leq(k+1)+2$.
Thus every $i(G)$-set of $G=P_{3 k+1}$ or $G=C_{3 k+1}$ is some number of swaps from the $i(G)$-set $S=\{1,4,7, \ldots, 3 k+1\}$. Hence $G(i)$ is connected for these graphs.

Theorem 2.15 $P_{3 k+1}(i)$ is isomorphic to a step grid of order k with 2 pendent edges where the pendent vertices correspond to the $i(G)$-sets $\left\{v_{1}, v_{3}, v_{6}, \ldots, v_{k}\right\}$ and $\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 k-1}, v_{3 k+1}\right\}$.
Proof. We know that $i\left(P_{3 k+1}\right)=k+1$. Consider the $i(G)$-set $S_{1}=\left\{v_{1}, v_{4}, v_{7}, \ldots, v_{3 k+1}\right\}$ of $P_{3 k+1}$. Fixing the first vertex of S_{1} and changing from the $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, \ldots, k^{\text {th }}$ vertex of S_{1} we get,
$S_{2}=\left\{v_{1}, v_{3}, v_{6}, v_{9}, \ldots, v_{3 k}\right\}$
$S_{3}=\left\{v_{1}, v_{4}, v_{6}, v_{9}, \ldots, v_{3 k}\right\}$
$S_{4}=\left\{v_{1}, v_{4}, v_{7}, v_{9}, \ldots, v_{3 k}\right\}$
\vdots
$S_{k+1}=\left\{v_{1}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 k}\right\}$.
Now consider $S_{k+2}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 k-1}, v_{3 k+1}\right\}$. Now fixing the first and last vertices of S_{k+2} and changing the $k^{\text {th }}$ vertex $(k-1)^{\text {th }}$ vertex alone, $k^{\text {th }}$ vertex $(k-1)^{\text {th }}$ vertex $\quad(2 \quad$ vertices $)$,

```
\(\ldots, 2^{\text {nd }}, 3^{\text {rd }}, \ldots,(k-1)^{\text {th }}, k^{\text {th }}\) vertices, \((k-1)\) vertices, we get \((k-1) i(G)\)-sets. They are
\(S_{k+3}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 k-5}, v_{3 k-2}, v_{3 k+1}\right\}\)
\(S_{k+4}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 k-4}, v_{3 k-2}, v_{3 k+1}\right\}\)
\(\vdots\)
\(S_{2 k+1}=\left\{v_{2}, v_{4}, v_{7}, \ldots, v_{3 k-5}, v_{3 k-2}, v_{3 k+1}\right\}\)
```

Now fixing the first vertex of S_{k+2} and changing the remaining vertices including the last vertex as before we get $k C_{2} i(G)$-sets. Let us denote these $k C_{2} \quad i(G)$ sets by (3). Thus the total number of $i(G)$-sets of $P_{3 k+1}=2 k+1+k C_{2}=2 k+1+\frac{k(k-1)}{2}=\frac{k^{2}+3 k+2}{2}$. Of these $\frac{k^{2}+3 k+2}{2} i(G)$ sets, S_{1} gets deg 2, S_{2} gets deg 1 and the remaining $(k-1)$ vertices of (1) get deg 3. S_{k+2} gets deg 1,remaining ($k-1$) vertices of (2) get deg 3. Of the $k C_{2}$ vertices of $(3),(k-1) C_{2}$ get deg 4,remaining [$\left.k C_{2}-(k-1) C_{2}=k-1\right]$ vertices get deg 2 .
Thus these $\frac{k^{2}+3 k+2}{2}$ vertices are connected in $P_{3 k+1}(i)$ and they form the step grid of order k with 2 pendent vertices $\left\{v_{1}, v_{3}, v_{6}, v_{9}, \ldots, v_{3 k}\right\}$ and $\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 k-1}, v_{3 k+1}\right\}$.

Theorem 2.16 For any triangle free graph $G, G(i)$ is triangle free.
Proof. Suppose $G(i)$ contains a traingle of 3 vertices corresponding to $i(G)$-sets S_{1}, S_{2} and S_{3}. Since $\left(S_{1}, S_{2}\right)$ corresponds to an edge in $G(i), S_{2}=S_{1}-\{x\} \cup\{y\}$ for some $x, y \in V(G)$ such that $(x, y) \in E(G)$. Further since $\left(S_{2}, S_{3}\right)$ corresponds to an edge in $G(i), S_{3}=S_{2}-\{c\} \cup\{d\}$ for some $c, d \in V(G)$ such that $(c, d) \in E(G)$. However $S_{3}=S_{2}-\{c\} \cup\{d\}=S_{1}-\{x, c\} \cup\{y, d\}$. But since $\left(S_{2}, S_{3}\right)$ corresponds to an edge in $G(i), S_{3}=S_{2}-\{a\} \cup\{b\}$ for some $a, b \in V(G)$ such that $(a, b) \in E(G)$. Since S_{3} is not two swap away from S_{1}, it must be the case $x=a, c=y$ and $b=d$. But this implies that $(x, y),(x, b)$ and (y, b) are edges in $E(G)$, a contradiction since G is traingle free. Thus for any traingle free graph G, there is no K_{3} induced subgraph in $G(i)$.
Corollary 2.17 For any tree $T, T(i)$ is traingle free.
Theorem 2.18 For any tree $T, T(n)$ is C_{n}-free for any odd $n \geq 3$.
Proof. Suppose $T(i)$ contains a cycle C of $k \geq 3$ vertices where k is odd. Let x be the vertex in C and let S be the $i(G)$-set corresponding to the vertex x. Let y and z be the two vertices on C of distance $m=\frac{k-1}{2}$ swaps away from x with corresponding $i(G)$-sets S_{1} and S_{2}. That is there is a path P_{1} corresponding to a series of vertex swaps say x_{1} for y_{1}, x_{2} for $y_{2}, \ldots x_{m}$ for y_{m} so that $S_{1}=S-X \cup Y$ where $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{m}\right\}$. Likewise there is a path P_{2} corresponding to a series of vertex swaps say w_{1} for z_{1}, w_{2} for z_{2}, \ldots, w_{m} for z_{m} so that $S_{2}=S-W \cup Z$ where $W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{m}\right\}$ and $Z=\left\{z_{1}, z_{2}, z_{3}, \ldots, z_{m}\right\}$. However since $(y, z) \in E(T(i)), S_{2}=S_{1}-\{a\} \cup\{b\}$ for some $a, b \in V(T)$. Thus this must be the case that the set $X=W-\left\{w_{j}\right\} \cup\left\{x_{j}\right\}$ and $Y=Z-\left\{z_{j}\right\} \cup\left\{y_{j}\right\}$. This implies that $S_{2}=S_{1}-\left\{y_{j}\right\} \cup\left\{x_{j}\right\}$ and
$\left(x_{j}, y_{j}\right) \in E(T(i))$ for $1 \leq j \leq m$. Since x_{j} was swapped for y_{j} and x_{k} was swapped for y_{k} in P_{1}, we also know that $\left(x_{j}, y_{j}\right) \in E(T(i))$ and $\left(x_{k}, y_{k}\right) \in E(T(i))$. Now both x_{j} and y_{j} are in S_{2}. So there exists a swap x_{l} for y_{i} in P_{2} such that $\left(x_{l}, y_{i}\right) \in E(T(i))$. However in path P_{1}, x_{l} was swapped for y_{l} and thus $\left(x_{l}, y_{l}\right) \in E(T(i))$. Similarly $y_{l} \in S_{2}$, so there exists some x_{s} so that in path P_{2}, x_{s} was swapped for y_{l}. We can continue to find the alternating path P_{1} and P_{2} swaps. But since m is finite, we reach a vertex y_{q} which swapped with x_{j} in P_{2}, thus creating a cycle in T and contradicting the fact that T is cycle-free. Hence $T(i)$ is free of odd cycle.

Theorem 2.19 Every tree T is the i-graph of some graph.
Proof. Let us prove the theorem by induction on the order n of a tree T. The trees $T=K_{1}$ and $T=K_{2}$ are the i-graphs of K_{1} and K_{2} respectively.
Let us assume that the theorem is true for all trees T of order at most n and let T^{\prime} be a tree of order $n+1$. Let v be a leaf of T with support $u . T-v$ is a tree of order n. By induction we know that the tree $T^{\prime}-v$ is the i-graph of some graph say G. Let $i(G)=k$ and $S_{u}=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{k}\right\}$ be the $i(G)$ - set of G corresponding to the vertex u in $T^{\prime}-v$.
Construct a new graph G^{\prime} by attaching k leaves to the vertices in S_{u} say $S_{u}^{\prime}=u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{k}^{\prime}$. Now add a new vertex x and join it to each of the vertices in S_{u}^{\prime}. Finally attach a leaf y adjacent to x. Then every $i(G)$ - set of the new graph G must either be of the form $S \cup\{x\}$ for any $i(G)$ - set S in G or the one new $i(G)$ - set $S_{u} \cup\{y\}$.
$S_{u} \cup\{x\}$ is adjacent to $S_{u} \cup\{y\}$ in the graph i-graph of G^{\prime}. Also the vertex corresponding to the $i(G)$ set $S_{u} \cup\{y\}$ is adjacent only to the vertex corresponding to the $i(G)$ - set $S_{u} \cup\{x\}$ and the $i(G)$ - set $S_{u} \cup\{y\}$ corresponding to the vertex v in T^{\prime}. Thus the i-graph of the graph $G^{\prime \prime}$ is isomorphic to the tree T^{\prime} 。
i-graph sequence: From a given graph we can construct the i-graph repeatedly that is $G \stackrel{i}{\rightarrow} G(i) \stackrel{i}{\rightarrow} G(i)(i)$ etc. We can also see that often the sequence ends with K_{1}. We can list some examples of the phenomenon.
(1). $K_{1, n} \rightarrow K_{1}$
(2). $C_{3 k} \stackrel{i}{\rightarrow} \overline{K_{3}} \stackrel{i}{\rightarrow} K_{1}$
(3). $\overline{K_{n}} \stackrel{i}{\rightarrow} K_{1}$
(4). $P_{4} \xrightarrow{i} P_{3} \xrightarrow{i} K_{i}$
(5). $P_{2} \mathrm{~W} P_{3} \xrightarrow{i} \overline{K_{3}} \xrightarrow{i} K_{1}$ the sequence can be infinite.
(6). $P_{2} \mathrm{~W} P_{6} \xrightarrow{i} P_{3} \cup P_{4} \stackrel{i}{\rightarrow} K_{1}$ the sequence can be infinite.
(7). $P_{2} \mathrm{~W} P_{2 k+1} \xrightarrow{i} \overline{K_{2}} \xrightarrow{i} K_{1}$ the sequence can be infinite.

Although all the i-graph sequences terminated after a small number of steps, for some graph the sequence can be infinite.
For example

1. $K_{n} \xrightarrow{i} K_{n} \xrightarrow{i} K_{n} \xrightarrow{i} \ldots$
2. $C_{3 k+2} \xrightarrow{i} C_{3 K+2} \xrightarrow{i} C_{3 k+2} \xrightarrow{i} \ldots$
3. $P_{3} \mathrm{~W} P_{3} \xrightarrow{i} C_{8} \xrightarrow{i} C_{8} \xrightarrow{i} \ldots$

Definition 2.20 Let us define a new class of graph as follows. These graphs are combinations of cycles and complete graphs. Consider C_{k}, the cycle on k vertices $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right)$. If k is odd, we replace each edge $\left(x_{i}, x_{(i+1)}(\operatorname{modk})\right) \in E\left(C_{k}\right), i \leq i \leq k$ with a complete graph of size n. That is we add vertices $a_{1}, a_{2}, a_{3}, \ldots, a_{n-2}$ and all possible edges corresponding to these vertices and x_{i} and x_{i+1}. This is repeated for each of the original edges in C_{k}. If k is even, we replace one vertex x_{1} with a complete graph K_{n} and add edges from X_{k} and K_{2} to each vertex in the added K_{n}. Then for each of the edge (x_{i}, x_{i+1} (modk) , $2 \leq i \leq k-1$ we make the same replacement as we did when k is odd. We call the graph formed in this manner as $K_{n} \circ C_{k}$. The graph $K_{4} \circ C_{3}$ is given in fig 5.3.
(-3,-3.3483582)(6.4844894,4.3276935)
$59.69716(1.9881554,-0.7504699)$ [linewidth $=0.034$, dimen $=$ outer] $(3.3379886,2.2471151)(-0.042011347,0.46711$ 504)
119.15412(8.365909,-2.2677374)[linewidth=0.034,dimen=outer](6.538801, 2.2125077)(3.1588013, 0.43250778)
$179.7155(6.4535127,-2.8186145)$ [linewidth $=0.034$, dimen=outer] $(4.920255,-0.5112962)(1.5402552,-2.2912962)$ [dotsize $=0.12$,dotangle $=-2.0515552$] $(1.5710514,-0.51132834)$
[dotsize $=0.12$, dotangle $=-2.0515552$] (4.8718,-0.5495155)
[dotsize $=0.12$,dotangle $=-2.0515552$] $(1.7256418,3.2455456)$
[dotsize $=0.12$, dotangle $=-2.0515552$] $(0.062109467,0.38326332)$
[dotsize $=0.12$, dotangle $=-2.0515552$] $(4.7872605,3.2359374)$
[dotsize $=0.12$,dotangle $=-2.0515552$] $(6.4023414,0.27622235)$
[dotsize $=0.12$, dotangle $=-2.0515552$] $(4.8716197,-2.2305865)$
[dotsize $=0.12$,dotangle $=-2.0515552](1.5687231,-2.252361)$
[dotsize $=0.12$, dotangle $=-2.0515552$] $(3.255287,2.3702252)$
[linewidth $=0.042 \mathrm{~cm}](1.7456291,3.2448297)(1.5524962,-0.470638)$
[linewidth $=0.042 \mathrm{~cm}](0.082096644,0.38254735)(3.2345839,2.350954)$
[linewidth $=0.042 \mathrm{~cm}](1.5701551,-2.2123866)(4.851097,-0.5687867)$
[linewidth $=0.042 \mathrm{~cm}](1.5710514,-0.51132834)(4.8330774,-2.1891801)$
[linewidth $=0.042 \mathrm{~cm}](3.27599,2.3894963)(3.275274,2.3695092)$
[linewidth $=0.042 \mathrm{~cm}](3.275274,2.3695092)(6.364515,0.33761585)$
[linewidth $=0.042 \mathrm{~cm}](4.7879763,3.2559245)(4.891787,-0.55023146)$
-2.0515552(0.113585256,0.10894949)(3.0801435,-3.097705)Fig 1
Proposition $2.21\left(K_{n} \circ C_{k}\right)(i) \cong k K_{n-2}$.
Proof. We only prove the case when n is odd since the graph $\left(K_{n} \circ C_{k}\right)$ consists of $k K_{n}$ subgraphs arranged along an odd cycle C_{k}. We choose vertices that will dominate the vertices in each K_{n} subgraph. This is minimally accomplished by choosing the vertices that are on the inner cycle. Each of these two vertices dominate two adjacent K_{n} subgraphs. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{k}$ be the vertices of the inner cycle and $a_{i 1}, a_{i 2}, a_{i 3}, \ldots a_{i n_{2}}$ be the vertices of K_{n} drawn on the edge $v_{i} v_{j}$ of the cycle C_{k}. Then $S_{1}=\left\{v_{1},, v_{3}, v_{5}, \ldots, v_{k-2}, a_{k-1,1}\right\} \quad S_{2}=\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{k-1}, a_{k-1}\right\}$ and $S_{3}=\left\{v_{3}, v_{5}, v_{7}, \ldots, v_{k}, a_{11}\right\}$ are three $i(G)$ sets of $K_{n} \circ C_{k}$ with cardinality $=\frac{k+1}{2}$. Since there are 2 vertices v_{k-2} and v_{1} of S, the vertices of K_{n} drawn on the edge $v_{k-1} v_{k}$ is not determined by the first $\frac{k-1}{2}$ vertices of S_{1}. Hence any one
of the vertices of that K_{n} except v_{k-1} and v_{k} should be an element of S_{1}. Hence a_{k-1} and v_{k} dominates that K_{n}. There are $n-2$ choices for the last vertex of S_{1}. Now, varying the last vertex of S_{1}, these $n-2$ $i(G)$ sets including S_{1} and these $n-2 i(G)$ sets are adjacent with each other and they form a K_{n-2}. Now fixing the first vertex of S_{1} and changing from the $2^{\text {nd }}$ vertex, we get the $i(G)$ set $S_{4}=\left\{v_{1}, v_{4}, v_{6}, \ldots, v_{k-1}, a_{2,1}\right\}$. Now changing from the $3^{r d}, 4^{\text {th }}, 5^{\text {th }}, \ldots, \frac{k-1^{\text {th }}}{2}$ vertices we get $\frac{k-1}{2}$ number of K_{n-2} graph. Thus with v_{1} as the first vertex we get $\frac{k-1}{2}$ number of K_{n-2} graphs. Similarly using S_{2} we get $\frac{k-1}{2}$ number of K_{n-2} graph. Now changing the last vertex of S_{3} by allowing all $n-2$ choices for it we get a K_{n-2} graph. Thus the total number of K_{n-2} graph $=\frac{k-1}{2}+\frac{k-2}{2}+1=k$. Therefore $\left(K_{n} \circ C_{k}\right)(i)=k K_{n-2}$.

To find the number of independent dominating sets of the comb:

Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the supports and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the corresponding pendent vertices of the comb $C b_{n}$. In each $i(G)$-set, let us arrange the pendents and supports individually in the ascending order of suffixes. $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ is the only $i(G)$-set with n pendent vertices. Hence the $i(G)$-set with no support is 1 . The sets $\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{n}, u_{1}\right\},\left\{v_{1}, b_{3}, v_{4}, v_{5}, \ldots, v_{n}, u_{2}\right\},\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}, \ldots, v_{n}, u_{2}\right\}, \ldots,\left\{v_{1}, b_{2}, v_{3}, \ldots, v_{n-1}, u_{n}\right\}$ are the $n \quad i(G)$ - sets with only one support.

To find the number of independent dominating sets with 2 supports:
The $i(G)$ - sets with u_{1} as first support are $\left\{v_{2}, v_{4}, v_{5}, v_{6}, \ldots, v_{n}, u_{1}, u_{2}\right\},\left\{v_{2}, v_{3}, v_{5}, v_{6}, v_{7}, \ldots, v_{n}, u_{1}, u_{4}\right\},\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{n}, u_{1}, u_{5}\right\} \ldots,\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{n-1}, u_{1}, u_{n}\right\}$. Thus we get $n-2 i(G)$ - sets with u_{1} as first support.
The $i(G)$ - sets with u_{2} as first support are $\left\{v_{1}, v_{3}, v_{5}, v_{6}, \ldots, v_{n}, u_{2}, u_{4}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{6}, v_{7}, \ldots, v_{n}, u_{2}, u_{5}\right\}, \ldots,\left\{v_{1}, v_{3}, v_{4}, v_{5}, \ldots, v_{n-2}, v_{n-1}, u_{2}, u_{n}\right\}$. Thus there are $n-3 i(G)$ - sets with u_{2} as first support. Proceeding like this we see that $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-3}, v_{n-1}, u_{n-2}, u_{n}\right\}$ is the only $i(G)$ - set with u_{n-2} as first support.
Hence the total number of $i(G)$ - sets with 2 supports are $(n-2)+(n-3)+(n-4)+\ldots+3+2+1=\frac{(n-1)(n-2)}{2}$.
Here we see that $C b_{3}$ is the smallest comb having $i(G)$-sets with 2 supports.

To find the number of independent dominating sets with $\mathbf{3}$ supports:

$C b_{5}$ is the smallest comb containing $i(G)$-sets with 3 supports and $\left\{v_{2}, v_{4}, u_{1}, u_{3}, u_{5}\right\}$ is the only $i(G)$-set with 3 supports. For sake of brevity we use the following notation. We denote supports only. For example let us denote $\left\{v_{2}, v_{4}, u_{1}, u_{3}, u_{5}\right\}$ by $\left\{u_{1}, u_{3}, u_{5}\right\}$.
For the comb $C b_{n}$, the $i(G)$-set with first support u_{1} and second support u_{3} are $\left\{u_{1}, u_{3}, u_{5}\right\}$, $\left\{u_{1}, u_{3}, u_{6}\right\},\left\{u_{1}, u_{3}, u_{7}\right\}, \ldots,\left\{u_{1}, u_{3}, u_{n}\right\}$ i.e, here we fix the first 2 supports and vary the third support. Thus we get $n-4 i(G)$-sets. Now fixing u_{1} and u_{4} as the first 2 supports and varying the third support we get the
$i(G)$-sets $\left\{u_{1}, u_{4}, u_{6}\right\},\left\{u_{1}, u_{4}, u_{7}\right\},\left\{u_{1}, u_{4}, u_{8}\right\}, \ldots,\left\{u_{1}, u_{4}, u_{n}\right\}$. Thus we get $n-5 i(G)$-sets. Proceeding like this we get $\left\{u_{1}, u_{n-2}, u_{n}\right\}$ is the only $i(G)$-set with u_{1} as the first support and u_{n-2} as the second support. Hence the number of $i(G)$-sets with u_{1} as the first support is $=(n-4)+(n-5)+(n-6)+\ldots+2+1=\frac{(n-4)(n-3)}{2}$.
Now fixing u_{2} and u_{4} as the first 2 supports and varying the third support we get $n-5 i(G)$-sets. Similarly by fixing u_{2} and u_{5} as the first 2 supports and varying the third support we get $n-6 i(G)$-sets. Proceeding like this, by fixing u_{2} and u_{n-2} as the first 2 supports we get only one $i(G)$-set. Hence the number of $i(G)$ - sets with first support u_{2} is $(n-5)+(n-4)+(n-3)+\ldots+2+1=\frac{(n-5)(n-4)}{2}$.

Continuing in a similar way, by fixing u_{n-4} and u_{n-2} as the first two supports we get only one $i(G)$-set. Thus the total number of $i(G)$-sets with 3 supports is

$$
\begin{align*}
& =\frac{(n-4)(n-3)}{2}+\frac{(n-5)(n-4)}{2}+\frac{(n-6)(n-5)}{2}+\ldots+\frac{2 \times 1}{2} \\
& =\frac{1}{2} \sum_{k=5}^{n}(k-4)(k-3) \tag{1}
\end{align*}
$$

Hence the number of $i(G)$-sets of $C b_{5}, C b_{6}, C b_{7}, C b_{8}, C b_{9}, \ldots$ are $1,4,10,20,35, \ldots$.

To find the number of independent dominating sets with $\mathbf{4}$ supports.

$C b_{7}$ is the smallest comb having $i(G)$-set with 4 supports.
For the comb, the number of $i(G)$-sets with u_{1}, u_{3}, u_{5} as first 3 supports $=n-7$:
The number of $i(G)$-sets with u_{1}, u_{3}, u_{n-2} as first 3 supports $=1$.
Hence the number of $i(G)$-sets with u_{1} and u_{3} as first two supports $=\frac{(n-5)(n-6)}{2}$.
Similarly number of $i(G)$-set with u_{1} and u_{4} as the first 2 supports $=\frac{(n-6)(n-7)}{2}$
Number of $i(G)$-sets with u_{1}, u_{n-5} as first 2 supports $=3$.
Number of $i(G)$-sets with u_{1}, u_{n-4} as first 2 supports $=1$.
Therefore number of $i(G)$-sets with u_{1} as first support.

$$
\begin{align*}
& =\frac{(n-6)(n-5)}{2}+\frac{(n-7)(n-6)}{2}+\frac{(n-8)(n-7)}{2}+\ldots+ \\
& 6+3+1 \tag{2}\\
& =\frac{1}{2} \sum_{k=7}^{9}(k-6)(k-5)
\end{align*}
$$

Similarly number of $i(G)$-sets with first support $u_{2}=\frac{1}{2} \sum_{k=7}^{n-1}(k-6)(k-5)$.
Number of $i(G)$-sets with first support $u_{3}=\frac{1}{2} \sum_{k=7}^{n-2}(k-6)(k-5)$.
Proceeding like this we get the number of $i(G)$-sets with first support $n-7$ is 3 and the number of $i(G)$-sets
with first support $n-6$ is 1 . Hence the total number of $i(G)$-sets with 4 supports is $\frac{1}{2} \sum_{k=7}^{n}(k-6)(k-5)+\frac{1}{2} \sum_{k=7}^{n-1}(k-6)(k-5)+\frac{1}{2} \sum_{k=7}^{n-2}(k-6)(k-5)+\ldots+6+3+1$. Hence the number of $i(G)$-sets of $C b_{7}, C b_{8}, C b_{9}, \ldots$ are $1,5,15,35, \ldots$

To find the smallest comb with only one $i(G)$-set with 5 supports:

$C b_{9}$ is the smallest comb with only one $i(G)$-set with 5 supports. For the comb $C b_{7}$, the number of $i(G)$ -sets with $u_{1}, u_{3}, u_{5}, u_{7}$ as first 4 supports is $n-8$. The number of $i(G)$-sets with $u_{1}, u_{3}, u_{5}, u_{8}$ as first 4 supports is $n-9$.
The number of $i(G)$-sets with $u_{1}, u_{3}, u_{5}, u_{7}$ as first 4 supports is 1 . Thus the the number of $i(G)$-sets with first $3 \quad$ vertices $\quad u_{1}, u_{3}, u_{5} ; u_{1}, u_{3}, u_{6} ; u_{1}, u_{3}, u_{7} \ldots, u_{1}, u_{3}, u_{n-4} \quad$ are $\frac{(n-8)(n-7)}{2}, \frac{(n-9)(n-8)}{2}, \frac{(n-10)(n-9)}{2}, \ldots, 1$
Therefore number of $i(G)$-sets with u_{1}, u_{3} as first 2 supports $=\frac{1}{2} \sum_{k=9}^{n}(k-8)(k-7)$.
Similarly number of $i(G)$-sets with u_{1}, u_{3} as first 2 supports $=\frac{1}{2} \sum_{k=9}^{n-1}(k-8)(k-7)$
\vdots
Number of $i(G)$-sets with u_{1}, u_{n-6} as first 2 supports is 1 .
$\begin{array}{llllll}\text { Number of } & i(G) & \text {-sets } & \text { wirsth }\end{array}$
$u_{1}=\frac{1}{2} \sum_{k=9}^{n}(k-8)(k-7)+\frac{1}{2} \sum_{k=9}^{n-1}(k-8)(k-7)+\frac{1}{2} \sum_{k=9}^{n-2}(k-8)(k-7)+\ldots+10+4+1$.
Similarly number of $i(G)$-sets with u_{2} as first support
$=\frac{1}{2} \sum_{k=9}^{n-1}(k-8)(k-7)+\frac{1}{2} \sum_{k=9}^{n-2}(k-8)(k-7)+\ldots+10+4+1$
!
Number of $i(G)$-sets with u_{2} as first support is 1 .
Therefore total number of $i(G)$-sets with 5 supports is $\frac{1}{2} \sum_{k=9}^{n}(k-8)(k-7)+\frac{2}{2} \sum_{k=9}^{n-1}(k-8)(k-7)+\frac{3}{2} \sum_{k=9}^{n-2}(k-8)(k-7)+\frac{4}{2} \sum_{k=9}^{n-2}(k-8)(k-7)+\ldots+(n-10) 6+(n-9) 4+(n-8) 1$.
Thus the total number of $i(G)$-sets of $C b_{9}, C b_{10}, C b_{11}, C b_{12}, \ldots$ with 5 supports are $1,6,21,56, \ldots$
By a similar method we can find the number of $i(G)$-sets of the comb with more number of supports.

Note 2.22 Consider the sequence $1,4,10,20,35,56,84,120,165, \ldots \ldots(1)$
This is the sequence of number of $i(G)$-sets of the comb with 3 supports. Let $t_{1}=1, t_{2}=4, t_{3}=10, t_{4}=20, \ldots$. The partial sums of the sequence are
$S_{1}=t_{1}=1$
$S_{2}=t_{1}+t_{2}=1+4=5$
$S_{3}=t_{1}+t_{2}+t_{3}=1+4+10=15$
$S_{4}=t_{1}+t_{2}+t_{3}+t_{4}=1+4+10+20=35$
!
Thus the sequence of partial sums of the sequence (1) is $1,5,15,35$

The terms of this sequence represents the number of $i(G)$-sets with 4 supports of the comb.
The sequence of partial sums of the sequence (2) are $1,6,21,56, \ldots \ldots$. (3).
The terms of this sequence represent the number of $i(G)$-sets with 5 supports of the comb.
The sequence of partial sums of the sequence (3) are $1,7,28,84,210, \ldots$. The terms of the sequence represent the number of $i(G)$-sets with 6 supports of the comb.

Thus if the number of $i(G)$-sets with n supports is known, the number of $i(G)$-sets with $n+1$ supports can be found out.

Note 2.23

1. Let us denote the partial sums of the sequence of number of $i(G)$-sets with k supports by $S_{k_{11}}, S_{k_{12}}, S_{k_{13}}, \ldots$
Then $S_{3,1}=1, S_{3,2}=4, S_{3,3}=10, S_{3,4}=20, \ldots$
$S_{4,1}=1, S_{4,2}=5, S_{4,3}=15, S_{4,4}=35, \ldots$
$S_{5,1}=1, S_{5,2}=6, S_{5,3}=21, S_{3,4}=56, \ldots$ and so on.
2. Number of $i(G)$-sets of the comb $C b_{n}$ with 2 supports=number of $i(G)$-sets of the comb $C b_{n-1}$ with 2 supports $+(n-2)=\frac{1}{2}(n-2)(n-3)+(n-2)$.
3. Number of $i(G)$-sets of the comb $C b_{n}$ with 3 supports $=S_{3, n-5}+\frac{1}{2}(n-3)(n-4)$.
4. Number of $i(G)$-sets of the comb $C b_{n}$ with 4 supports $=S_{3, n-6}+S_{4, n-7}$.
5. Number of $i(G)$-sets of the comb $C b_{n}$ with 5 supports $=S_{4, n-8}+S_{5, n-9}$.
6. Number of $i(G)$-sets of the comb $C b_{n}$ with 6 supports $=S_{5, n-10}+S_{6, n-11}$. and so on.

Theorem 2.24 Let us denote the graph $C b_{n}(i)$ by G_{n}. Then order of $G_{n}=$ order of G_{n-1} +order of G_{n-2}.

Proof. We know that $C b_{n}$ has $2 n$ vertices and $i\left(C b_{n}\right)=n$. Also the maximum number of supports in an $i(G)$-set of $C b_{n}=\left\lceil\frac{n}{2}\right\rceil$.
Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the supports and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the pendent vertices of the comb $C b_{n}$. Then $o\left(G_{n}\right)=$ Number of $i(G)$ sets with n pendents+ Number of $i(G)$-sets with $n-1$ pendents+ Number of $i(G)$-sets with $n-2$ pendents $+\ldots+$ Number of $i(G) \quad$-sets \quad with $\left\lceil\frac{n}{2}\right\rceil$ pendents $=1+n+\frac{1}{2}(n-1)(n-2)+S_{3, n-4}+S_{4, n-6}+S_{5, n-8}+\ldots$.

$$
\text { i.e) } \begin{align*}
o\left(G_{n}\right) \quad & =1+n+\frac{1}{2}(n-1)(n-2)+S_{3, n-4}+S_{4, n-6}+S_{5, n-8}+\ldots \\
& =1+[(n-1)+1]+\left[\frac{1}{2}(n-2)(n-3)+(n-2)\right]+ \\
& {\left[S_{3, n-5}+\frac{1}{2}(n-2)(n-3)\right]+\left(S_{3, n-6}+S_{4, n-7}\right)+} \\
& \left(S_{4, n-8}+S_{5, n-9}\right)+\left(S_{5, n-10}+S_{6, n-11}+\ldots+\right. \tag{3}\\
& =1+\left[(n-1)+\frac{1}{2}(n-2)(n-3)+\left(S_{3, n-6}+S_{4, n-7}\right)+\right. \\
& \left(S_{4, n-8}+S_{5, n-9}\right)+\left(S_{5, n-10}+S_{6, n-11}\right)+\ldots+ \\
& =1+\left[(n-1)+\frac{1}{2}(n-2)(n-3)+\left(S_{3, n-5}+S_{4, n-7}\right)+\right. \\
& \left.S_{5, n-9}+\ldots\right]+\left[1+(n-2)+\frac{1}{2}(n-3)(n-4)+S_{3, n-6}+\right. \\
& S_{4, n-8}+S_{5, n-10}+\ldots \\
& =O\left(G_{n-1}\right)+O\left(G_{n-2}\right)
\end{align*}
$$

Example 2.25 When $n=1, C b_{1} \cong K_{2}$ and
$\left|C b_{1}(i)\right|=2=1+1$
$\left|C b_{2}(i)\right|=3=1+2$
$\left|C b_{3}(i)\right|=5=1+3+1=1+(2+1)+1=(1+2)+(1+1)$
$\left|C b_{4}(i)\right|=8=1+4+3=1+(3+1)+(1+2)=(1+3+1)+(1+2)$
$\left|C b_{5}(i)\right|=13=1+5+6+1=1+(4+1)+(3+3)+1=(1+4+3)+(1+3+1)$
$\left|C b_{6}(i)\right|=21=1+6+10+4=1+(5+1)+(6+4)+(1+3)=(1+5+6+1)+(1+4+3)$ and so on.

Theorem 2.26 For any complete graph H, there exists a graph $G ® H$ such that $G(i) \cong H$.
Proof. Let H be a complete graph with vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. By construction, let us prove that there exists a graph $G \circledR^{\circledR} H$ such that $G(i) \cong H$. To form G, we add a star $K_{1, s}$ of order $s+1$ with vertices $p_{1}, p_{2}, p_{3} \ldots p_{s+1}$, center p_{2} and $s \geq 3$ and add an edge joining any one of the leaf of $K_{1, s}$ to a vertex v_{i} of $H, 1 \leq i \leq n$. Since no vertex of G is adjacent to any other vertex, $i(G) \geq 2$. Obviously $X_{i}=\left\{p_{2}, v_{i}\right\}, 1 \leq i \leq n$ is an $i(G)$-set for G,since each v_{i} dominates all the other vertices of $K_{1, s}$. Since p_{2} is the only vertex of $K_{1, s}$ which dominates all the vertices of $K_{1, s}$ there are no other $i(G)$-sets for G. Hence $X_{i}, 1 \leq i \leq n$ are the only $i(G)$-sets for G.
Each $i(G)$-set differs by only one vertex as p_{2} appears in every $i(G)$-set of G. Hence $G(i) \cong H$. The following figure shows the construction of the graph G with $H \cong K_{5}$ so that $G(i) \cong H$.

$$
\begin{array}{ccc}
(0,-2.328125)(13.48917,3.328125) & \text { [dotsize }=0.12](0.08,1.0755764) & \text { [dotsize }=0.12](2.86,1.0755764) \\
{[\text { dotsize }=0.12](2.86,-1.6644236)} & {[\text { dotsize }=0.12](0.06,-1.6644236)} & \text { [dotsize }=0.12](4.66,-0.2644236)
\end{array}
$$

[linewidth $=0.042 \mathrm{~cm}](2.88,1.0755764)(4.66,-0.24442361)$
[linewidth $=0.042 \mathrm{~cm}](2.88,-1.6244236)(4.64,-0.2644236)$
[linewidth $=0.042 \mathrm{~cm}](0.08,1.1155764)(4.64,-0.24442361)$
[linewidth $=0.042 \mathrm{~cm}](0.06,-1.6244236)(4.66,-0.2644236)$
$[$ linewidth $=0.042 \mathrm{~cm}](2.82,1.0355763)(0.08,-1.6044236)$
[linewidth $=0.042 \mathrm{~cm}](0.08,1.0755764)(2.92,-1.7044237)$
[linewidth $=0.042 \mathrm{~cm}](4.7,-0.2644236)(7.36,-0.28442362)$
[dotsize $=0.12](7.4,-0.28442362)$
[linewidth $=0.042 \mathrm{~cm}](7.42,-0.28442362)(10.3,-0.28442362)$
[dotsize $=0.12](10.34,-0.3044236)$
[linewidth $=0.042 \mathrm{~cm}](10.34,-0.24442361)(9.32,1.7555764)$
[linewidth $=0.042 \mathrm{~cm}](10.34,-0.2644236)(10.16,1.8355764)$
[linewidth $=0.042 \mathrm{~cm}](10.36,-0.2644236)(11.04,1.7355764)$
[linewidth $=0.042 \mathrm{~cm}](10.34,-0.2644236)(11.94,1.3355764)$
[linewidth $=0.042 \mathrm{~cm}](10.38,-0.24442361)(12.44,0.6155764)$
[linewidth $=0.042 \mathrm{~cm}](10.38,-0.2644236)(12.48,-0.28442362)$
[linewidth $=0.042 \mathrm{~cm}](10.4,-0.28442362)(12.34,-1.1044236)$
[linewidth $=0.042$, dimen=outer] $(12.18,-1.4044236) 0.02 \quad[$ linewidth $=0.042$, dimen $=$ outer $](11.96,-1.5244236) 0.02$
[linewidth $=0.042$, dimen=outer] $(11.64,-1.6644236) 0.02$ [linewidth=0.042, dimen=outer] $(11.36,-1.7244236) 0.02$
[linewidth $=0.042$, dimen=outer] $(11.0,-1.7844236) 0.02 \quad$ [linewidth=0.042, dimen=outer] $(10.68,-1.7844236) 0.02$
[linewidth $=0.042$,dimen=outer](10.36,-1.7444236)0.02
[dotsize $=0.12$] (10.1,-1.6844236)
[dotsize $=0.12](12.32,-1.1244236) \quad[$ dotsize $=0.12](12.46,-0.2644236) \quad$ [dotsize $=0.12](12.44,0.5955764)$
[dotsize $=0.12](11.94,1.3355764) \quad$ [dotsize $=0.12](11.06,1.7355764) \quad$ [dotsize $=0.12](10.16,1.8355764)$
[dotsize $=0.12](9.32,1.7755764) \quad$ [linewidth $=0.04 \mathrm{~cm}](10.365889,-0.2503125)(10.085889,-1.6903125)$
$(7.3387012,-0.5003125) p_{1} \quad 39.2(1.9594711,-6.852193)(10.589769,-0.6648356) \quad p_{2} \quad(9.138701,2.0196874)$
$\begin{array}{llllllll}p_{3} & (10.0987015,2.1396875) & p_{4} & (11.178701,2.0796876) & p_{5} & (12.398702,1.4796875) & p_{6}\end{array}$
$(12.978702,0.6596875) \quad p_{7} \quad(12.998701,-0.3003125) \quad p_{8} \quad(12.818703,-1.2403125) \quad p_{9}$
$(10.168701,-2.1003125) p_{s+1} \quad$ [linewidth $=0.032$, dimen=outer] $(2.84,1.1355762)(0.02,-1.6844236)$

Corollary 2.27 Every complete graph H of order n is the i-graph G of order $n+m$ where $m \geq 3$.
Definition 2.28 A graph obtained by attaching a pendent edge to each vertex of the n-cycle is called a crown. Let us denote it by G_{n} and $G_{n}=C_{n} \mathrm{e} K_{1}$. Hence a crown G_{n} has $2 n$ vertices.
Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of the cycle(supports) and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the corresponding pendent vertices. It is obvious that $i\left(G_{n}\right)=n$. In the $i(G)$-set of G_{n}, let us arrange the pendent vertices and supports in the increasing order of the suffixes. Note that maximum number of supports in any $i(G)$-set of $G_{n}=\left\lfloor\frac{n}{2}\right\rfloor$.

To find the number of independent dominating sets of a crown:

As $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ is the only $i(G)$-set with n pendent vertices, the number of $i(G)$ - set with no support is 1 .
The sets $\left\{v_{2}, v_{3}, \ldots, v_{n}, u_{1}\right\},\left\{v_{1}, v_{3}, \ldots, v_{n}, u_{2}\right\}, \ldots\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, u_{n}\right\}$ are the $n i(G)$-sets with only one support. Hence the number of $i(G)$-sets with one support is n.
The $i(G)$-sets containing 2 supports with u_{1} as the first support are $\left\{v_{2}, v_{4}, v_{5}, v_{6}, \ldots, u_{1}, u_{3}\right\},\left\{v_{2}, v_{3}, v_{5}, v_{6}, v_{7}, \ldots, v_{n}, u_{1}, u_{4}\right\}, \ldots,\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{n}, u_{1}, u_{n-1}\right\}$. Thus we get $n-3 i(G)$-sets with u_{1} as the first support.
The $i(G)$-sets with u_{2} as the first support are
$\left\{v_{1}, v_{3}, v_{4}, v_{5}, \ldots, v_{n}, u_{2}, u_{4}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{6}, v_{7}, \ldots, v_{n}, u_{2}, v_{5}\right\}, \ldots\left\{v_{1}, v_{3}, v_{4}, v_{5}, \ldots, v_{n-2}, u_{2}, u_{n}\right\}$. Thus there are $n-3 i(G)$-sets with u_{2} as the first support.
The $i(G)$-sets with u_{3} as the first support are
$\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}, \ldots, v_{n}, u_{3}, u_{5}\right\},\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}, \ldots, v_{n}, u_{3}, u_{6}\right\}, \ldots,\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}, \ldots, v_{n-1}, u_{3}, u_{n}\right\}$.
Thus there are $n-4 i(G)$-sets with u_{3} as the first support. Hence the number of $i(G)$-sets with 2 supports is

$$
\begin{align*}
& =(n-3)+[(n-3)+(n-4)+(n-5)+\ldots+1] \\
& =n-3+\frac{(n-3)(n-2)}{2} \tag{4}\\
& =\frac{2 n-6+n^{2}-5 n+6}{2}=\frac{n^{2}-3 n}{2} \ldots \ldots \ldots .(1)
\end{align*}
$$

G_{4} is the smallest crown with $i(G)$-sets containing 2 supports. Hence substituting $n-4,5,6, \ldots$ in (1) we get the sequence $2,5,9,14,20,27,35,44,54,65,77,90$,
ie)the terms in the sequence (2) represent the number of $i(G)$-sets of the crown $G_{4}, G_{5}, G_{6}, \ldots$ Let
$t_{1}=2, t_{2}=5, t_{3}=9, t_{4}=14, t_{5}=20, t_{6}=27, t_{7}=35, t_{8}=44, t_{9}=54, t_{10}=65, t_{11}=77, t_{12}=90, \ldots$
Consider the sequence of partial sums of (2).
$S_{1}=2, S_{2}=7, S_{3}=16, S_{4}=30, S_{5}=50, S_{6}=77, S_{7}=112, S_{8}=156, S_{9}=210, S_{10}=275, \ldots$
ie)the sequence of partial sums of (2) is $2,7,16,30,50,77,112,156, \ldots \ldots$ (3)
The terms of (3) represent the number of $i(G)$-sets of the crown $G_{6}, G_{7}, G_{8}, \ldots$ with 3 supports. The sequence of partial sums of (3) is $2,9,25,55,105,182, \ldots \ldots$. (4)
The terms of this sequence represent the number of $i(G)$-sets of the crown $G_{8}, G_{9}, G_{10}, \ldots$ with 4 supports. In a similar manner the number of $i(G)$-sets of the crown with more number of supports can be found out.

Note 2.29

1. We denote the partial sums of the sequence of number of $i(G)$-sets with k-supports by $S_{k, 1}, S_{k, 2}, S_{k, 3}, \ldots$
Then
$S_{21}=2, S_{22}=5, S_{23}=9,9 S_{24}=14, S_{25}=20, S_{26}=27, S_{27}=35, \ldots, S_{11}=2, S_{32}=7, S_{33}=16, S_{34}=30, S_{53}=50, S_{36}=77, S_{33}=112 S_{38}=156, \ldots, S_{41}=2, S_{42}=9, S_{43}=25, S_{44}=55, S_{45}=105 S_{46}=182, S_{44}=294, \ldots$
2. Number of $i(G)$-sets of the crown G_{n} with 2 supports $=S_{2, n-4}+n-2$.
3. Number of $i(G)$-sets of the crown G_{n} with 3 supports $=S_{3, n-6}+S_{2, n-5}$.
4. Number of $i(G)$-sets of the crown G_{n} with 4 supports $=S_{4, n-8}+S_{3, n-7}$.
5. Number of $i(G)$-sets of the crown G_{n} with 5 supports $=S_{5, n-10}+S_{4, n-9}$. and so on.

Theorem 2.30 Let G_{n} be a crown of order n. Then $G_{n}(i)=$ order of $G_{n-1}(i)+$ order of $G_{n-2}(i)$
Proof. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of the cycle and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the corresponding pendent vertices. $O\left(G_{n}(i)\right)=$ Number of $i(G)$ sets with n pendents + Number of $i(G)$-sets with $n-1$ pendents +
Number of $i(G)$-sets with $n-2$ pendents $+\ldots+$ Number of $i(G)$-sets with $\left\lfloor\frac{n}{2}\right\rfloor$ pendents. Therefore

$$
\begin{aligned}
O\left(G_{n}(i)\right) \quad & =1+n+S_{2, n-3}+S_{3, n-5}+S_{4, n-7}+S_{5, n-9}+\ldots+S_{3, n-(n-1)} \\
& =1+[(n-1)+1]+\left[S_{2, n-4}+(n-2)\right]+\left(S_{3, n-6}+S_{2, n-5}\right) \\
& +\left(S_{4, n-8}+S_{3, n-7}\right)+\left(S_{5, n-10}+S_{4, n-9}+\ldots+\right. \\
& =1+\left[(n-1)+\left(S_{2, n-4}+S_{3, n-6}\right)+\left(S_{4, n-8}\right]+\ldots 1+\right. \\
& {\left[(n-2)+\left(S_{2, n-5}+S_{3, n-7}\right)+S_{4, n-9}+\ldots\right] } \\
& =O\left(G_{n-1}(i)\right)+O\left(G_{n-2}(i)\right)
\end{aligned}
$$

Example 2.31 When $n=3,\left|G_{n}(i)\right|=4=1+3$
When $n=4,\left|G_{n}(i)\right|=7=1+4+2=1+(3+1)+2=(1+3)+(1+2)$
When $n=5,\left|G_{n}(i)\right|=11=1+5+5=1+(4+1)+(2+3)=(1+4+2)+(1+3)$
When $n=6,\left|G_{n}(i)\right|=18=1+6+9+2=1+(5+1)+(5+4)+2=(1+5+5)+(1+4+2)$
When

$$
n=7
$$

$\left|G_{n}(i)\right|=29=1+7+14+7=1+(6+1)+(9+5)+(2+5)=(1+6+9+12)+(1+5+5)$
When $n=8$
$\left|G_{n}(i)\right|=47=1+8+20+16+2=1+(7+1)+(14+6)+(7+9)+2=(1+7+14+7)+(1+6+9+2)$

When

$$
n=9
$$

$\left|G_{n}(i)\right|=76=1+9+27+30+9=1+(8+1)+(20+7)+(16+14)+(2+7)=(1+8+20+16+2)+(1+7+1+7)$ and so on.

References

[1]. Acharya B.D, Walikar, H.B and sampath Kumar, E, Recent developments in the theory of domination in graphs, Mehta Research Institute, Allahabad, MRI. Lecture Notes in Math ,1 (1979).
[2]. Akers, S.B Harel, D. and Krishnamurthy, B. The star graph- An attractive alternate to the n-cube -Proc. Intl conf on parallel processing, (1987), 393-400.
[3]. Alexandre Pinlou, Daniel Goncalves, Michael Rao, Stephan Thomase, The Domination Number of Grids, Ar xiv: 1102.2506 VI [CS.DM] 25 feb 2011.
[4]. Arumugan. S. and Kala, R.Domination parameters of star graph, ARS combinatoria, 44 (1996), 93-96.
[5]. Arumugam,S. and Kala, R. Domination parameters of Hypercubes, Journal of the Indian math Soc., (1998),31-38.
[6]. ohdan Zelinka, Domatic number and bichromaticity of a graph, Lecture Notes in Methematics .Dold and Eckman, Ed.Pragan (1981) 1018.
[7]. Chang, T.Y. Domination Number of Grid Graphs Ph.D. Thesis, Department of Mathematics, University of south Florida, 1992.
[8]. Cockayne, E.J. and Hedetniemi, S.T. Disjoint independent dominating sets in graphs, Discrete Math . 15(1976), PP. 312-222.
[9]. Cockayne, E.J. and Hedetniemi, S.T. Towads a theory of domination in graphs ,Network 7 (1977) 247-261.
[10]. Elizabeth conelly, Kevin,R. Hutson and Stephen T.Hedetniemi, A note on γ-graph AKCE, Int .J. Graphs comb., 8, No. 1 (2011),PP23-31.
[11]. Gerd. H.frickle, Sandra M.Hedetnimi, Stephen Heditniemi and Kevin R. Hutson, γ-graph on Graphs,Disuss Math Graph Theory n31 (2011) 517-531.
[12]. Harary, F. Graph Theory, Adison-wesly, Reading Mass, 1972.
[13]. Harary ,F.and Haynes, T.W . Double Domination in graph. ARS Combin. 55(2000), PP.201-213.
[14]. Haynes, T.W. Hedetniemi, S.T. and Slater, P.J. Fundamentals of Domination in Graphs, Marcel Dekkar, Inc. New York 1998.
[15]. Haynes, T.W. Hedetniemi , S.T. and Slater, P.J. Domination in graph; Advanced Topics. Marcel Dekkar, Inc, New York. 1998.
[16]. Hedetniemi, M. and Hedetniemi, S.T. Laskar, C. Lisa Markus, Pater J. Slater, Disjoint Dominating sets in Graphs, Proc, of ICDM, (2006), 87-100.
[17]. Kala, R. and Nirmala Vasantha, T.R Restrained double domination number of a graph, AKCE J Graph Combin ,5, No.1. (2008) PP.73-82.
[18]. LaskR, r. AND Walikar, H.B. On domination related concepts in graph theory, Proceedings of the international Sysposium, Indian Statistical Institute, Calculta, 1980, Lecture notes in Mathematics No 885, Springer- Verlag, Berlin 1981, 308-320.
[19]. Ore, O. Theory of graphs, Amer. Math.Soc. Colloqpubl. 38,Provindence (1962).
[20]. samu Alanko, Simon Crevals, Anton Insopoussu, Patric Ostergard, Ville Pettersson, Domination number of a grid, The electronic Journal of combinatorics, 18 (2011).
[21]. West, D. Introdution to graph Theory, Prentoc -Hall, Upper Saddle River, NT, 1996, PP.00-102.
[22]. Zenlinka, B. Domination number of cule graphs Math Slovace, 32(2), (1982),177-199.

