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Abstract: The 1(G) -graph is defined as a graph whose vertex set correspond 1 to 1 with the 1(G) -sets of G .
Two 1(G)-setssay S, and S, areadjacentin i(G) if there exists avertex ve S, and avertex we S,
suchthat Vv isadjacentto W and S, =S, —{w}{v} orequivalently S, =S, —{v}{w}. In this paper
we obtain 1(G) -graph of some special graphs.

I.  Introduction
By a graph we mean a finite, undirected, connected graph without loops and multiple edges. For graph
theoretical terms we refer Harary [12] and for terms related to domination we refer Haynes et al. [14].

Aset SV issaidtobe adominatingsetin G ifeveryvertexin V —S isadjacent to some vertex
in S . The domination number of G is the minimum cardinality taken over all dominating sets of G and is
denoted by »(G). Asubset S of the vertex set in a graph G is said to be independent if no two vertices in
S areadjacentin G . The maximum number of vertices in an independent set of G is called the independence
number of G and is denoted by /3, (G) . Any vertex which is adjacent to a pendent vertex is called a support. A
vertex whose degree is not equal to one is called a non-pendent vertex and a vertex whose degree is P—1 is
called a universal vertex. Let U and V be (not necessarily distinct) vertices of a graph G . A U—V walk of

G is a finite, alternating sequence U =U,,€,€,,...,€,,U, =V of vertices and edges beginning with vertex

U and ending with vertex V such that € =U;_,,U; ,1=1,2,3,...,n. The number N is called the length of
the walk. A walk in which all the vertices are distinct is called a path. A closed walk (uo,ul,uz,...,un) in
which Uy, U,,U,,...,U, aredistinct is called a cycle. A path on P vertices is denoted by Pp and a cycle on

P vertices is denoted by C,,.

Gerd H.Frickle et. al [11] introduced y -graph.The ¥ -graph of a graph G denoted by
G(») =V (), E(y)) is the graph whose vertex set corresponds 1—to—1 with the » -sets. Two ¥ -sets
say S, and S, are adjacent in E(y) if there exist a vertex Ve S, and a vertex wWe S, such that V is
adjacentto W and S, =S, —{w}{u} orequivalently S, =S, —{u}{w} . Elizabeth et.al [10] proved
that all graphs of order N <5 have connected ¥ -graphs and determined all graphs G on six vertices for
which G() is connected. We impose an additional condition namely independency on ¥ -sets and study
I(G) -graphs denoted by G(i). The i1(G)-graph is defined as a graph whose vertex set correspond 1 to 1 with
the 1(G)-sets of G . Two i(G)-setssay S, and S, are adjacentin i(G) if there exists a vertex v e S, ,
and a vertex WeS, such that V is adjacent to W and S, =S, —{w}uU{Vv} or equivalently
S, =S, —{v}U{w}. In this paper we obtain 1(G) -graph of some special graphs.

Il.  Main Results
Definition 2.1 A set SV is said to the independent if no two vertices in S are adjacent. The minimum
cardinality of a maximal independent dominating set is called the independent domination number and is denoted

by i(G). A maximal independent dominating set is called a 1(G)— set.

Definition 2.2 Consider the family of all independent dominating sets of a graph G and define the graph
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G(i) = (V (i), E(i)) tobe the graph whose vertices V (i) correspond 1-1 with independent dominating sets of
G andtwosets S, and S, are adjacent ib G(i) if there exists a vertex ve S;, and we S, such that (i)
V isadjacentto W and (ii) S, = S, —{w}u{v} and S, =S, —{v}u{w}.

Proposition 2.3 Ifagraph G has a unique 1(G)-setthen G(i) = K, and conversely.

Corollary 2.4 K, (i) = K,.

Proof. Since the central vertex of K, istheonly i(G)-set, K, (i) = K.

Proposition 2.5 K_n(i) =~ K, whereas K (i) =K,.

Proof. Let {V,,V,,Vs,...,V,} be the set of vertices of K, . Each singletonset S, ={v,},i=1,2,3,...,n is
an element of V(i) and each pair (S;,S;),(1<i, j<n) form an edge in K, (i). Hence K (i)=K.

Since the set of all vertices of K_n is the only independent dominating set of K_n,K_n(i) =K,.

Proposition 2.6 For 1<m<n,
K, ifm=n=1
Knn(i)={K, ifm=nandm >2
K, ifm<n

Proof. Let S, ={U,,U,,Us,...,U,} and S, ={V;,V,,V;,...,V, } be the bipartition of K _ .
If m=n=1, {u} and {v,} arethe i(G) setsand clearly K_ (i) =K,.

If m=n and m>2, S, and S, are the only two independent dominating sets of K~ and they are

non-adjacent vertices of K (i).Hence K (i) = K, forallvaluesof m.If m<n,S, istheonly i(G)
-setandso K (i) =K.

Proposition 2.7 C,, ., (1) =C,, ...

Proof. Case(i). k =1

Let the cycle be (Vy,V,,V3,V,, Vs, V,) .

S, ={v,,v;},S, ={v;,v,},S; ={v,,v,},S, ={V,,V:},Ss ={Vv;,V} are the 5 i(G) -sets of C and
C.(i) isthecycle (S,,S,,S;,5,,S;,5,).

Case(ii). k=2

Let the cycle be (V,V,,Vs,V,, Vs, Vg, V5, Vg, V) .

Sy = VeV Vo3 Sy =V Vi Ve S =4V, Ve, Vs b Sy = V2, Vs, Ve b S =4V, Ve, Vi 3 S = V2,V Vo 3 S = {V5, Vg, Ve
arethe 8 1(G)-setsof C, and Cg(i) isthecycle (S,,S,,S5,S,,S5,56,S,,S;,S,) .

Case(iii). Let the vertices of the cycle be (Vy,V,,Vs,..., Va0, V)

We know that 1(Cyn) =k+1 : S; =4V, Vy, Vo, Vi ey Vay 0y Vo b and

S, ={V,,V,, V5, Vig, ey Vg oy Vo } aretwo 1(G)-setsof C,,,,.

Now finding the first vertex of S, and changing the other vertices of S, we get

S; ={V,, V3, Vg, Vg, - . ., Vg, 5, Vo, }. Now fixing the first two vertices of S, and changing the other vertices of

S, we get S, ={V;,V,,Vg,Vy,..., Vg 3,V } . Proceeding like this, fixing the first k —1 vertices and

changing the k™ vertex alone we get S,.; ={Vy, V4, Vo, Vg, -y Vo 55 Var 35 Vo b - Now consider the two
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1(G)-sets Sy, ={V,, Ve, Vs Vo 1: Varo} ad Sppg ={V5, Vs, Vg, Vg Va1 Ve d
As before, fixing the first vertex and changing from the 2",3" vertices upto k™ of S, we get
Sira =V2:Var Vo Vigr- - Vg 51 iz Vi)

S =AV21Vas Vo, Vigy -1 Vaisi Vaar Vaaa b

Sare ={V21 Ve, Vs Vigs- -+ Vg Va2 Vaaa d-
Now consider S, .5 ={Vs,V,Vg,---) Vo, Vo, ) As before, fixing the first vertex and changing from the

nd ord »th :
2",37,47 vertices of S,, ., we get
Sacra ={Va1 Ve Vs Vigy -1 Vo Vo d
Sars ={VarVe: Ve Vigs- - o Va1 Vagao}

Saki2 = V3 Ves Vg, Vigs- s Va3 Vg 1. V3k+2}'

Now S,,S,,S,,..., Sy, are 1(G)-sets of C,,,,. Here S, is adjacent S, and S,.,. S,,S,,S,,...S,
are adjacent to preceeding and succeeding vertices. S,,; isadjacentto S, and S,. S,,, isadjacentto S, ,;
and S,.., . S, is adjacent to S,,, and S,.,, . S,,, is adjacent to S, . and S, .
Sii5r Skigr Syagr---1 9y, are adjacent to the preceeding and suceeding vertices. S,, ., isadjacentto S,, .,
and S,.; . S,.,; is adjacent to S, and S,., . S,., is adjacent to S,,, and S, . .
Sk Sorisr Sopi7r-+ 193, are adjacent to the preceeding and suceeding vertices. S,, ., is adjacent to

Saca and Sys.
Thus we get a cycle

(Sl' 52’ Sk+l' Sk ! Skl L ‘83’ SZk+3’ S3k+2’ S3k—1’ SSk L ‘82k+4’ Sk+2’ Sk+3’ SZk+2’ SZk+1’ SZk te Sk+4’ Sl)
which is isomorphic to C,, ,,.

Proposition 2.8 For k >2,C,, (i) = K,

Proof. Since each C,, for k >3 has 3 disjoint 1(G)-sets, C,, (i) = K, .

Proposition 2.9 P, (i) = E

Proof. Since paths Py, of order 3k have a unique i(G)-set, P, (i) = K.

Proposition 2.10 B, .,(I)=PR,,,

Proof. Let V,,V,,V3,...,Vq.,, be the vertices of P,.,, . We have i(R,,,)=k+1
S, ={V,, Vg, Vg Vo o 1 Sy =V, Ve, Vg s Vay 4y Vo 15 Vay it are two 1(G) -sets of Py, . Now
fixing the first vertex and varying from the 2",3" 4™ .. k™ vertices we get the following i(G)-sets.

Sy ={V2: Vi V7 i Vigs- 0 Vayn}

Sa ={Vai iy Vi Vigy s Vgt

St = V21 Ve, Vg Vigs -+ Vg1 Varn

Also S, , ={V,,V,,V;,Vyg,- .., Ve, } isan 1(G)-setof Py, ,.

Thusthereare kK +2 1(G)-setsof P, ,,.Itisobviousthat S, isadjacentto S, aloneand S,,, isadjacent
to S, alone. S,,; isadjcentto S, and S,. S;,S,,S;,...,S, areadjacent to the preceeding and succeeding

vertices. Thus we get a path of length B, ,,. Hence Py, ,(I))=PR .
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Definition 2.11 Grid graph is the cartesian product of 2 paths.

The cartesian product of 2 paths P, and P, isdenoted by P, WP, or P, xP,.

Proposition 2.12 For k > 2, (PR,WPR,, ,,)(i) = E

Proof. PRWP, (i) for k> 2 has only two disjoint i(G)-sets. Therefore (P,WP,,,)(i) =K, .

The structure of 1(G)-graphs of paths and cycles of order 3k +1 can be determined. Assume that the vertices
in each of these graphs have been labelled 1,2,3,...3k+1 . For G=PR,, or

G=C,,,S={147,...,.3k+1} is a i(G) -set of size k+1. In each case, 1 and 3k +1 have one
external private neighbour while the other numbers of S have two non adjacent external private neighbours. So
S, —{13u{2} and S—{3k +1} {3k} are i(G)-sets. Further if S isan i(G)-set for G=P,, or
G=C,,,, and vertex | has exactly one external private neighbour, j=1i+1 or j=Kk-1, then
S ={i}U{j} is an i(G)-set. Let us refer to the process of changing from a i(G)-set S  to the ¥ -set
S —{i}U{|j} asaswap. We see that each swap defines an edge in G(i).

Definition 2.13 We define a step grid SG(K) to be the induced subgraph of the k xk grid graph P, WP,
that is defined as follows:

SG(K) = (V(K), E(K)) where V(K)={G, j):1<i, j<k,i+j<k+2} and
E(K) ={G, j),(,j):i=i,j = j+Li =i+l j= j}

Theorem 2.141f G=P, ,, or G=C,,, then G(i) is connected.

Proof. Each independent dominating set X of P,., is some number of swaps of sets of type 1
(X ={i}{i+1}) orsetsoftype2 (X —{i}{i—1}) from S . Alternatively we can perform swaps from
S to X . Thus each vertex in P, (i) can be associated with an ordered pair (i, j) where i is the number

of swaps of type 2 needed to convert S to X . Thus vertex 1 and 3k +1 in P, ., can be swapped with at
most one external private neighbour. However each vertex can be swapped at most once in either direction. Thus
the conditions on the ordered pair (i, j) are 1<i<K,1< j<K,i+j=2.1f =i+l and r=j+1, we

have 1<q<k+1,1<r<k+1and g+r<(k+1)+2.
Thus every 1(G) -set of G=PR,,, or G=C,, is some number of swaps from the 1(G) -set
S={1,4,7,...,.3k+1}. Hence G(i) is connected for these graphs.

Theorem 2.15 P3k+1(i) is isomorphic to a step grid of order k with 2 pendent edges where the pendent
vertices correspond to the 1(G)-sets {Vy, Vs, Vg, ...,V } and {V,, Vs, Vg, ..., Vo 1, Va1t

Proof. We know that i(P,, ;) = k+1. Consider the 1(G)-set S, ={V;,V,,V,,...,Vq .} of Py, Fixing
the first vertex of S; and changing from the 2" 3 4™ k™ vertex of S, we get,

S, ={Vv,,V5, Vg, Vg, ..o, Vg }

Sy ={V1: V4 Ve Vg Vg

Sy ={V1 Vi V7 Vg, Vg

St V1 Vs Vo Vigr -y Vg -
Now consider S, ., ={V,,V,Vg,...,Vay 4, Vs, .1 }- Now fixing the first and last vertices of S, ., and changing

the K™ vertex (k—1)" vertex alone, k"™ vertex (k—1)" vertex (2 vertices),
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523 (k=1)™ k™ vertices, (k—1) vertices, we get (K —1) i(G)-sets. They are
Skia ={V2, Vs, Vgo- -+ Va5, Va2 Vaa}
Skia ={Vo Vs, Vgs- -+ Va4 Va2 Van

Sar V21 VarVar- 0 Va6 Va2 Vit
Now fixing the first vertex of S, , and changing the remaining vertices including the last vertex as before we

get kKC,i(G) -sets. Let us denote these KC, 1(G) sets by (3). Thus the total number of i(G) -sets of
2 2

k(k2 L _k +3k+2.0fthese kszﬂ I(G) sets, S, gets deg

2, S, gets deg 1 and the remaining (K —1) vertices of (1) getdeg 3. S,,, getsdeg 1,remaining (K —1)

vertices of (2) get deg 3. Of the kC, vertices of (3),(k—1)C, get deg 4,remaining

[kC, —(k—1)C, = k —1] vertices get deg 2.

k?+3k+2

Thus these — vertices are connected in Py, , (i) and they form the step grid of order k with 2

Py = 2k+1+kC, =2k +1+

pendent vertices {V,, Vs, Vg, Vg, ..., Va } and {V,, Ve, Vg, .., Var 15 Variit
Theorem 2.16 For any triangle free graph G, G(i) is triangle free.

Proof. Suppose G(i) contains a traingle of 3 vertices corresponding to 1(G)-sets S;,S, and S, . Since
(S,,S,) corresponds to an edge in G(i), S, =S, —{Gu{y} for some X,y eV (G) such that
(x,¥) € E(G) . Further since (S,,S;) corresponds to an edge in G(i), S, =S, —{c}u{d} for some
c,d eV (G) such that (c,d) € E(G). However S, =S, —{c}u{d}=S, —{x,c}{y,d}. But since
(S,,S;) corresponds to an edge in G(i), S,=S,—{a}u{b} for some a,beV(G) such that
(a,b) e E(G) . since S, is not two swap away from S, , it must be the case X =a,C=Y and b=d . But
this implies that (X, ¥), (X,b) and (y,b) areedgesin E(G), a contradiction since G is traingle free. Thus
for any traingle free graph G , thereisno K, induced subgraph in G(i).

Corollary 2.17 For any tree T, T (i) is traingle free.

Theorem 2.18 Foranytree T, T(n) is C, -free foranyodd n>3.

Proof. Suppose T(i) containsacycle C of k>3 verticeswhere Kk isodd. Let X bethevertexin C and
let S be the 1(G)-set corresponding to the vertex X.Let Y and Z be the two vertices on C of distance

= T_ swaps away from X with corresponding i(G)—sets S, and S,. That is there is a path P,

corresponding to a series of vertex swaps say X, for y, , X, for Y,,...X, for Yy, so that
S, =S—XuUY where X ={X,X,,X5,..., X} and Y ={Y,,¥,, Ya,.-., Y, }- Likewise there is a path
P, corresponding to a series of vertex swaps say W, for z,,w, for Z,,...,wW, for Z so that
S,=S-WuZzZ where W={w,w,,w,,...,w.} and Z={z,,2,,2,,...,2,,} . However since
(v,2) e E(T(i)),S, =S, —{a}Ab} for some a,beV(T). Thus this must be the case that the set
X =W —{w;}{x;} and Y =Z-{z;,}{y;} . This implies that S, =S, —{y;}{x;} and
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(X;,Y;) € E(T(i)) for 1< j<m.Since X; wasswappedfor y, and X, wasswapped for y, in P, we
also know that (X;,y;) € E(T(i)) and (X, Y,) € E(T(i)). Now both x; and y; arein S,. So there
existsaswap X, for Yy, in P, suchthat (X,Y;) € E(T(i)). However in path B, X, was swapped for Y,
andthus (X;,Y,) € E(T(i)).Similarly y, €S, sothereexists some X, sothatinpath P,, X, wasswapped
for y,. We can continue to find the alternating path P, and P, swaps. But since M is finite , we reach a
vertex Y, which swapped with X; in P,, thus creating a cycle in T and contradicting the fact that T is

cycle-free. Hence T (i) is free of odd cycle.

Theorem 2.19 Every tree T isthe I -graph of some graph.

Proof. Let us prove the theorem by induction on the order N ofatree T .Thetrees T =K, and T = K, are
the i-graphs of K, and K, respectively.

Let us assume that the theorem is true for all trees T of order at most N and let T be a tree of order n+1.
Let V be a leaf of T  with support U . T —V is a tree of order N . By induction we know that the tree
T —V isthe i-graphof somegraphsay G . Let i(G) =k and S, ={u,,U,,Us,...,u,} bethe i(G)- set
of G corresponding to the vertex U in T —v.

Construct a new graph G’ by attaching K leaves to the vertices in S, say Sl'J :ui,ulz,u;,...,u;(. Now add
a new vertex X and join it to each of the vertices in Sl;. Finally attach a leaf Yy adjacentto X . Then every
I(G) - set of the new graph G must either be of the form S {X} for any i(G)-set S in G or the one
new 1(G)-set S, U{y}.

S, U{x} isadjacentto S, U{y} in the graph i-graph of G’. Also the vertex corresponding to the 1(G)-
set S, U{y} is adjacent only to the vertex corresponding to the 1(G)- set S, U{x} and the i(G)- set

S, w{y} corresponding to the vertex V in T . Thusthe i -graph of the graph G is isomorphic to the tree
T.

i i
I -graph sequence: From a given graph we can construct the 1 -graph repeatedly thatis G —G(i) —G(i)(i)
etc. We can also see that often the sequence ends with K, . We can list some examples of the phenomenon.

. Ky, N K,

). Cy —) K; =K,
Q). K,—>K;

4. P,—>P, =K,
(5). PBLWP, = K, =K the sequence can be infinite.

6). P,WP, —I> P,UP, —I> K, the sequence can be infinite.

(7). PBWPR,,,;, > K, — K| the sequence can be infinite.

Although all the 1 -graph sequences terminated after a small number of steps, for some graph the sequence can be
infinite.
For example
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1. K, =K, —>K, —>...
2. CBk+2 _>C3K+2 _)C3k+2 ...
3. RBWP,—-C;,—»C;—...

Definition 2.20 Let us define a new class of graph as follows. These graphs are combinations of cycles and
complete graphs. Consider C,, the cycle on k vertices (X, X,, Xs,...,X, ). If k is odd, we replace each

edge (X;,X;,,) (Modk)) e E(C,), i <i<k with a complete graph of size N. That is we add vertices

a,,a,,3,,...,a,_, andall possible edges corresponding to these verticesand X; and X;,, . This is repeated for

i+1
each of the original edges in C, . If Kk is even, we replace one vertex X; with a complete graph K and add

edges from X, and K, to each vertex in the added K. Then for each of the edge (X;, X;,; (modk) ,
2<i<k -1 we make the same replacement as we did when K is odd. We call the graph formed in this
manner as K oC, . Thegraph K, oC; is given in fig 5.3.
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Proposition 2.21 (K, oC,)(i) = kK .
Proof. We only prove the case when N is odd since the graph (Kn oCk) consists of kKn subgraphs

arranged along an odd cycle C, . We choose vertices that will dominate the vertices in each K, subgraph. This
is minimally accomplished by choosing the vertices that are on the inner cycle. Each of these two vertices
dominate two adjacent K, subgraphs . Let V,,V,,V,,...,V, be the vertices of the inner cycle and

ail' aiZ’aiS"‘ 'a'in2

be the vertices of K, drawn on the edge V,v; of the cycle C, . Then

S =i Ve Ve Vi b S, =V, Ve Vg 8 and Sy =4V, Vg, Vs, Y, 8 ) are

. k+1
three 1(G) sets of K, oC, with cardinalitFT. Since there are 2 vertices V,_, and V; of S, the

vertices of K drawn on the edge V,_,V, is not determined by the first vertices of S, . Hence any one
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of the vertices of that K except Vv, , and V, should be an element of S,. Hence @, ; and Vv, dominates
that K, . Thereare n—2 choices for the last vertex of S,. Now, varying the last vertex of S, these n—2
I(G) setsincluding S; andthese n—2 1(G) sets are adjacent with each other and they forma K, . Now
fixing the first vertex of S, and changing from the 2" vertex, we get the i(G) set

—1" k-1

k
S, ={V,,V,,Ve---, V1,8, .} . Now changing from the 3“’,4“‘,5“‘,...,7 vertices we get e

number of K, graph . Thus with v, as the first vertex we get number of K, graphs. Similarly

using S, we get number of K, , graph. Now changing the last vertex of S, by allowing all n—2

- : k-1 k-2
choices for it we geta K, _, graph. Thus the total number of K, graph:T + T +1=K. Therefore

(Kn oCk)(i) = kKn—Z'

To find the number of independent dominating sets of the comb:

Let U;,U,,Us,...,U, bethesupportsand V,,V,,V,,...,V, bethe corresponding pendent vertices of the comb
Cbn .Ineach 1(G) -set, let us arrange the pendents and supports individually in the ascending order of suffixes.
{v,,V,,Vs,...,V. } isthe only i(G)-setwith N pendent vertices. Hence the 1(G) -set with no support is 1.
The sets
SRR VAR T 3% (VAN o R V/RVARSIRVART S 3 {VARVARY/N VAR VAUNUR VAN A SRIE | VAN o S VARRRIR VAR T 1Y &
arethe N 1(G) - sets with only one support.

To find the number of independent dominating sets with 2 supports:

The 1(G) - sets with U as first support are
V5,V Ve, Ve e Vo U U Vo Vo, Vi Vg Voo Vo Uy U 1V, VG, VgV U U T VS, Vg, Yy Y U U Y
. Thus we get n—2 1(G)- sets with u, as first support.

The I(G) - sets with u, as first support are
Vi, Vo, Ve, Vg, oy Vo U U 1V, Vo, Vi Vg, Vs, Vo U U by VG VG, Vg, Ve e e, V50 Vg, Uy, U Y
Thus there are N—3 i(G) - sets with u, as first support. Proceeding like this we see that
{V,,V,, Vs,V 5, Vg, U, U} isthe only 1(G)-setwith U, as first support.

n

Hence the total number of IG) - sets  with 2 supports are
(n-1)(n-2)
5 :

Here we see that Cb, is the smallest comb having 1(G) -sets with 2 supports.

(n-2)+(n-3)+(n—4)+...+3+2+1=

To find the number of independent dominating sets with 3 supports:

Ch; is the smallest comb containing 1(G) -sets with 3 supports and {V,,V,,U,;,U;,Us} is the only 1(G)-set
with 3 supports. For sake of brevity we use the following notation. We denote supports only. For example let us
denote {V,,V,,U;,U,, U} by {U,,U;, Uz}

For the comb Cb,, the i(G) -set with first support U, and second support U, are {U,,Us, U},
{u,,u;,uc}, {u,,u;,u.},. {u,,us, U} e, here we fix the first 2 supports and vary the third support. Thus
weget N—4 1(G)-sets. Now fixing u, and u, asthefirst 2 supportsand varying the third support we get the
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I(G) -sets {u,,u,,us}, {u,u,,u,}, {u,u,,u} .. {u,u,,u.}. Thus we get Nn—5 1(G) -sets.
Proceeding like this we get {u,, U, ,,U,} is the only i(G)-set with u, as the first support and U, _, as the
second support. Hence the number of i(G) -sets with u, as the first support is
(n-4)(n-3)
T E—
Now fixing U, and U, as the first 2 supports and varying the third support we get n—5 i(G) -sets. Similarly

=(n-4)+(n-5+(N-6)+...+2+1=

by fixing U, and U as the first 2 supports and varying the third support we get n—6 i(G) -sets. Proceeding

like this, by fixing U, and U, , as the first 2 supports we get only one i(G)-set. Hence the number of 1(G)
n-5)(n-4

-sets with first support u, is (N=5)+(N—4)+(n-3)+...+2+1= M

Continuing in a similar way , by fixing U, , and U, , as the first two supports we get only one 1(G) -set. Thus

the total number of 1(G) -sets with 3 supports is

_(n-4(n-3) (-5Mn-4) (-6)(n-5  2x1
X . ) ..

1 1)
=23 (k-4)k-3)
2i=
Hence the number of 1(G)-sets of Ch;, Chy,Cb,,Cb;,Ch,,... are 1,4,10,20,35,....
To find the number of independent dominating sets with 4 supports.
Ch, is the smallest comb having 1(G) -set with 4 supports.
For the comb, the number of 1(G) -sets with U, U,,Us as first 3 supports =n—7:.
The number of 1(G) -sets with U,,U,,U, , as first 3 supports =1.
. n-5)(n-6
Hence the number of 1(G)-sets with u, and U, as first two supports = % .
. n-6)(n—-7
Similarly number of I(G) -set with U, and u, as the first 2 supports = %
Number of 1(G)-sets with U, U, as first 2 supports = 3.
Number of 1(G)-sets with u,, U, , as first 2 supports =1.
Therefore number of 1(G)-sets with U, as first support.
n-6)(n-5) (n-7)(n-6) (n-8)(n—-7
_(0-6)(n-5) (:-7)n-6) (-B(-7) |
2 2 2
6+3+1 )

- %Z(k—G)(k—5)

Similarly number of 1(G) -sets with first support U, = %ZE;(k —6)(k-5).

Number of 1(G) -sets with first support U, = %Z:j(k —6)(k-5).

Proceeding like this we get the number of 1(G) -sets with first support n—7 is 3 and the number of 1(G) -sets
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with first support N—6 is 1. Hence the total number of i(G) -sets with 4 supports is
1 n 1 n- 1 n—
Ezkﬂ(k—6)(k—5)+§Zk:17(k—6)(k—5)+§Zk:j(k—6)(k—5)+...+6+3+1. Hence the
number of 1(G)-sets of Ch,,Ch;,Ch,,... are 1,5,15,35,....

To find the smallest comb with only one 1(G) -set with 5 supports:

Ch, is the smallest comb with only one 1(G)-set with 5 supports. For the comb Chb,, the number of 1(G)
-sets with U, U, Ug, U, as first 4 supports is n—8. The number of 1(G)-sets with U,, U, Us,Ug as first 4
supportsis N—9.

The number of 1(G)-sets with U,,Us,Ug, U, as first 4 supports is 1. Thus the the number of i(G) -sets with
first 3 vertices U, U;,Ug; U, Ug, Ug Uy, Ug, Us L, U U, ULy, are
(n-8)(n-7) (n-9)(n—-8) (n-10)(n-9)

1 1 ,...,1
2 2 2

i 1
Therefore number of 1(G) -sets with U,,U, as first 2 supports= EZ::g(k =-8)(k-7).

i 1 -
Similarly number of 1(G) -sets with U,,U, as first 2 supports= EZE:z(k -8)(k-7)

Number of 1(G)-sets with U, U,  as first 2 supports is 1.

Number of I(G) -sets with first support
u, = %ZEZQ(k -8)(k—7) +%Zﬁ:2(k —8)(k—-7) +%Z::Z(k —8)(k—7)+...+10+4+1.
Similarly number of 1(G) -sets with u, as first support

- %ZE;(k_8)(kJH%ZE:z(k—8)(k—7)+...+10+4+1

Number of 1(G)-sets with U, as first support is 1.
Therefore total number of 1(G) -sets with 5 supports is

n-2

%zgzg(k -8)(k-7) +§ZE;19(|< -8)(k-7) +gzk:g(k -8)(k-7) +%ZE;Z(k —8)(k=7)+...+(n=10)6+ (N —9)4+(n—8)1.
Thus the total number of 1(G)-sets of Chy,Cb,,,Cb,,,Cb,,,... with 5 supports are 1,6,21,56,...

By a similar method we can find the number of i(G) -sets of the comb with more number of supports.

Note 2.22 Consider the sequence 1,4,10,20,35,56,84,120,165,... ... Q)

This is the sequence of number of i(G) -sets of the comb with 3 supports. Let
t, =1,t, =4,t, =10,t, = 20,.... The partial sums of the sequence are

S, =t =1

S, =t +t,=1+4=5

S, =t +t,+t,=1+4+10=15

S,=t +t,+t, +t, =1+4+10+20=35

Thus the sequence of partial sums of the sequence (1) is 1,5,15,35,.... ............(2)
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The terms of this sequence represents the number of 1(G) -sets with 4 supports of the comb.

The sequence of partial sums of the sequence (2) are 1,6,21,56,.... ... (3).

The terms of this sequence represent the number of 1(G) -sets with 5 supports of the comb.

The sequence of partial sums of the sequence (3) are 1,7,28,84,210,.... The terms of the sequence represent
the number of 1(G) -sets with 6 supports of the comb.

Thus if the number of 1(G)-sets with N supports is known, the number of 1(G) -sets with n+1 supports can
be found out.

Note 2.23
1. Let us denote the partial sums of the sequence of number of i(G) -sets with k supports by

Skll’ Sklz’skls""

Then S,,=1,S,,=4,S,,=10,S,,=20,...
S,,=1.S,,=5,5,,=15,5,,=35,...
S5,=1,5;,=6,5,,=21,S;,=56,... and so on.
2. Number of i(G)-sets of the comb Cb, with 2 supports=number of i(G)-sets of the comb Cb, _,

with 2 supports +(N—2) = %(n -2)(n-3)+(n-2).

. 1
3. Number of i(G)-sets of the comb Cb, with 3 supports =S, ¢ +§ (n=3)(n-4).

4. Number of 1(G)-sets of the comb Ch,, with 4 supports =S, ¢ +S, . ;.
5. Number of i(G)-sets of the comb Cb, with 5 supports =S, ¢ +S;, 4.
6. Number of i(G)-sets of the comb Cb, with 6 supports =S, +Sq, ;. and so on.
Theorem 2.24 Let us denote the graph Cb, (i) by G, . Then order of G, =order of G, , +order of G, ,.

Proof. We know that Cb, has 2n vertices and 1(Cb,) =n. Also the maximum number of supports in an
. n
I(G)-set of Ch, = [E—‘

Let U,,U,,U,,...,U, bethesupportsand V;,V,,Vs,...,V, be the pendent vertices of the comb Cb, . Then
0(G,)) = Number of i1(G) sets with n pendents+ Number of i(G)-sets with n—1 pendents+ Number of

. . n
I(G) -sets with n—2 pendents +...+ Number of 1(G) -sets with (E—l pendents

=1+ n+%(n ~1D)(N-2)+S,, 4 +S,,6+Sspg+---

DOI: 10.9790/5728-11147084 www.iosrjournals.org 80 |Page



1(G)-Graph - G(i) Of Some Special Graphs

ie)o(G,) =1+n +%(n 1) (N=2)+ Sy, 4+ Sups+Seng b
:1+[(n—1)+1]+[%(n—2)(n—3)+(n—2)]+

[Ss, 5+ % (N=2)(n=3)]+(S5,6 + S4,n—7) +

(Sypg+Ssn0) +(Ssp10+Sepast--t 3
=1+[(n-1) +%(n 2)(N=3)+ (Syy 0+ Sana)
(Syp-g+Ssn0)+(Ss 10+ Senas) *---F

:1+[(n—1)+§(n—2)(n—3)+(sg,n,5 £, )+

Sy, o+ ]+ 1+ (1—2) +%(n 3)(n-4)+S,, , +

SynstSsp10t- -

=0(G,,)+0(G, ,)
Example 2.25 When n=1, Ch, = K, and
|Ch(i)|=2=1+1
|Cb,(i)[=3=1+2
|Cb,(i)[=5=1+3+1=1+(2+1)+1=(1+2) +(1+1)
|Cb,(1))=8=1+4+3=1+B+1)+(1+2) = (1+3+1)+(1+2)
|Cb,(1)[=13=1+5+6+1=1+(4+1)+(3+3)+1=(1+4+3)+(1+3+1)
|Cby(i)|=21=1+6+10+4=1+(5+1)+(6+4)+(1+3) = (1+5+6+1)+(1+4+3) andsoon.

Theorem 2.26 For any complete graph H , there exists a graph G® H such that G(i) = H .

Proof. Let H be a complete graph with vertices Vi, V,,Vs,...,V,. By construction, let us prove that there
exists a graph G®H such that G(i)=H . To form G, we add a star K, of order s+1 with vertices
P, Pys Ps... Pg,q, center P, and s >3 and add an edge joining any one of the leaf of K,  toa vertex Vv,

of H,1<i<n. Since no vertex of G s adjacent to any other vertex, i(G)>2 . Obviously
X; ={p,,V;},1<i<n isan i(G)-setfor G sinceeach Vv; dominates all the other vertices of K, . Since

p, is the only vertex of K, ; which dominates all the vertices of K, ¢ there are no other I(G) -sets for G .

Hence X,,1<i<n aretheonly i(G)-setsfor G.
Each 1(G)-set differs by only one vertex as p, appears in every 1(G)-set of G . Hence G(i)=H . The

following figure shows the construction of the graph G with H = K, sothat G(i) = H .
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Corollary 2.27 Every complete graph H of order n isthe 1-graph G of order n+m where m>3.

Definition 2.28 A graph obtained by attaching a pendent edge to each vertex of the N -cycle is called a crown. Let
usdenoteitby G, and G, =C eK,. Henceacrown G, has 2n vertices.
Let U;,U,,U,...,U, bethe vertices of the cycle(supports) and V,,V,,Vs,...,V, bethe corresponding pendent

vertices. It is obvious that i(G,) =n. Inthe i(G)-setof G, , let us arrange the pendent vertices and supports

. n
in the increasing order of the suffixes. Note that maximum number of supports in any 1(G) -set of G, = {EJ .

To find the number of independent dominating sets of a crown:
As {V;,V,,V,,...,V } is the only 1(G)-set with N pendent vertices, the number of 1(G) - set with no
support is 1.
The sets {V,, Vs, .., Vo, U bV, Vay oo Vo U by VG, Vo, Vg, .o, Vo, U T are the N §(G) -sets with only
one support. Hence the number of 1(G) -sets with one supportis N .
The i(G) -sets containing 2  supports with U, as the first support are
{V,, v, Ve, Vg oo U UV, Vo, Vi, Vg, Vs Vo U U b Y, Vs, Yy, VL U, U o Thus we get
n—3 i(G)-sets with U, as the first support.
The I(G) -sets with u, as the first support are
Vi, Vo,V Ve, Vo U U 1V, Vo,V Vg Vs, Vo U Ve by oV, Vg, Vg, Ve, Vo, Uy U o Thus
thereare N—3 1(G)-sets with U, as the first support.
The I(G) -sets with U, as the first support are
Vi, Vo, Vg, Ve, Ve, -y Vo U U 1V, Vo, Vg Vs, Vg oo, Vi U U e VG Y, Vg, Vg, Vg, o Vg, U, U
Thus there are n—4 1(G)-sets with U, as the first support. Hence the number of 1(G) -sets with 2 supports
is

=(n=-3)+[(n=3)+(n—4)+(n-5)+...+1]

=n—3+—(n_3)2(n_2) (@)
2n—-6+n* -5n+6 n°>-3n
= == Q)
2 2

G, isthe smallest crown with 1(G) -sets containing 2 supports. Hence substituting N—4,5,6,... in (1) we
get the sequence 2,5,9,14,20,27,35,44,54,65,77,90,.. .....(2)

ie)the terms in the sequence (2) represent the number of 1(G) -sets of the crown G,,G;,Gg,... . Let
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t, =2,t,=5t,=9,t, =14,t, = 20,t, = 27,t, =35,t, = 44,t, =54,t,, = 65,1, = 77,t,, = 90,...
Consider the sequence of partial sums of (2) .

S,=2,5,=7,,=16,S, =30,S, =50,S, = 77,S, =112, S, =156, S, = 210,S,, = 275, ...

ie)the sequence of partial sums of (2) is 2,7,16,30,50,77,112,156,.....(3)

The terms of (3) represent the number of i(G) -sets of the crown Gy, G,,Gg,... with 3 supports . The
sequence of partial sums of (3) is 2,9,25,55,105,182,.......(4)

The terms of this sequence represent the number of i(G) -sets of the crown G8 , Gg, Glo, ... With 4 supports. In

a similar manner the number of i(G) -sets of the crown with more number of supports can be found out.

Note 2.29
1. We denote the partial sums of the sequence of number of i(G) -sets with Kk -supports by

Sy 1Sk Sreens

Then
8,1=29,,25,8,,9,5,,214,8,4=20,8,,=27,5,,=35,...5,,=2,5,,=7,5,,=16,5,,230,8,,=50,5,, = 77,5, =112,5,, =156,...5,,=2,5,,=9,5,,= 25,5, =55,5,,5 =105,5,,, =182, 5, , = 2%4,...

2. Number of i(G)-sets of the crown G, with 2 supports =S, , +n—2.
3. Number of i(G)-sets of the crown G, with 3 supports =S; ¢ +S, .
4. Number of 1(G)-sets of the crown G with 4 supports =S, o +S;, ;.
5. Number of i(G)-sets of the crown G, with 5 supports =S o +S,, o.andsoon.

Theorem 2.30 Let G, be a crown of order N.Then G, (i) = orderof G, ,(i)+ orderof G, , (i)
Proof. Let U;,U,,U,,...,U, be the vertices of the cycle and V,,V,,V;,...,V, be the corresponding pendent
vertices. O(G, (i)) = Number of 1(G) setswith N pendents + Number of 1(G)-sets with n—21 pendents +
Number of 1(G)-sets with n—2 pendents +. ..+ Number of 1(G) -sets with LEJ pendents. Therefore

O(G, (1)) =14n+S,, 3 +S5, 5+ S0 7+ S50t Sanyy
=1+[(n-1)+1]+ [Sz,n74 +(n-2)]+ (Sa,nfe + Sz,nfs)
+ (S48 +S507) +(Ss g0+ Sypgt--t
=1+[(N-1)+ (S, 4 +S556) +(Sypel+... 1+
[(N=2)+(S,,5+S;5,7)+S4n+--]
=0(G,4())+0(G, (1)

Example 2.31When n=3, |G, (i)|=4=1+3

When n=4, |G, ())[F7=1+4+2=1+3+1)+2=(1+3)+(1+2)

When n=5, |G, (I)[F11=1+5+5=1+(4+1)+(2+3) = (1+4+2)+(1+3)

When n=6, |G, (1)[F18=1+6+9+2=1+(5+1)+(5+4)+2=(1+5+5)+(1+4+2)

When n=7
|G, ()|F29=1+7+14+7=1+(6+1)+(9+5)+(2+5) = (1+6+9+12) + (1+5+5)
When n=8

|G, (1))|=47=1+8+20+16+2=1+(7+1)+(14+6)+(7+9)+2=(1+7+14+7)+(1+6+9+2)
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When n=9 )
|G, (i) |=76=1+9+27+30+9=1+(8+1)+(20+7)+(16+14)+ (2+7) = (1+8+20+16+2) + (1+ 7 +1+7)
and so on.
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