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Probabilistic operator theory is the branch of probabilistic analysis which is  concerned with the study of 

operator-valued random variables and their properties. The development of a theory of random operators is of 

interest in its own right as a probabilistic generalization of (deterministic) operator theory and just as operator 

theory is of fundamental importance in the study of operator equations, the development of probabilistic operator 

theory is required for the study of various classes of random equations.  

Defenition.1.1.Any -valued random variable x() which satisfies the condition ({ : T ()  () = y 

()}) = 1 is said to be a random solution of the random operator equation T() x () = y (). 

Defenition.1.2:  An -valued random variable () is said to be a fixed point of the random operator T() if 

() is a random solution of the equation T()() = (). 

 The study of fixed point theorems for random operators was initiated by Špaček and Hanš1. The first 

systematic investigation of random fixed point theorems was carried out by Hanš1. Because of the wide 

applicability of Banach’s contraction mapping theorem in the study of deterministic operator equations, Špaček 

and Hanš directed their attention to probabilistic versions of Banach’s theorem and used their results to prove the 

existence, uniqueness, and measurability of solutions of integral equations with random kernels. 

Defenitin.1.3 :A random operator T() on a Banach space  with domain D(T()) is said to be a random 

contraction operator if there exists a nonnegative real-valued random variable such that k() < 1, and such that 

as, T()x1 – T()x2 k()x1 – x2for all x1, x2  D(T()). If k() = k (a- constant) for all   

, then T() is called a uniform random contraction operator. 

Theorem. 1.4:  Let  be a separable Banach space, and let. T() be a continuous random operator on  to 
itself such that 

      

  = 1, 

Where for every   , x  , and n = 1, 2, …., we put T
1
()x = T()x, and T

n+1
()x = T()[T

n
()x]. Then. 

There exists an -valued random variable () which is the unique fixed point of T(); that is if () is 

another fixed point, then ()=() . 

 PROOF. Let E denote those elements of  belonging to the set 

  

for  with T () is continuous. Clearly E  P, and by hypothesis, (E) = 1. Let the mapping () :    be 

defined as follows : For every   E, () is equal to the unique fixed point of T(); and for every    - E, 

put () =  (the null element of ). Then T()() = () . 

 Now,we proceed to establish the measurability of the fixed point (). Let x0() be an arbitrary -

valued random variable, and put x1() = T() x0 (). x1() is an -valued random variable and a sequence of 
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-valued random variables can be defined as follows : xn() = T()xn-1(), n = 1, 2,… Now, since T() is 

continuous, the sequence xn() converges almost surely to (); hence () is an -valued random variable. 
 The uniqueness of the fixed point follows from the uniqueness of () for every  E. 

Theorem.1.5: Let T() be a continuous random operator on a separable Banach space  to itself, and let k() 

be a nonnegative real-valued random variable such that k() < 1.and T() x1 – T ()x2  k()x1 – 

x2 for every pair of elements x1, x2  . Then there exists an -valued random variable () which is the 
unique fixed point of T(). 

 PROOF. Let E = {: k() < 1}, F = { : T() x is continuous in x}, and  

  Gx1,x2 = {:T()x1 – T()x2 k()x1 – x2}. 

Since  is separable, the intersections in the expression  

  

can be replaced by intersections over a countable dense set of . Therefore the condition of Theorem (1.4) is 

satisfied with n = 1. 

 Random contraction mapping theorems are of fundamental importance in the theory of random 

equations in that they can be used to establish the existence, uniqueness, and measurability of solutions of 

random operator equations.  

Theorem.1.6. Let T() be a random contraction operator on a separable Banach space , and let k() be a 

nonnegative real-valued random variable which is bounded. Then, for every real  0 such that k() < . 

there exists a random operator S() which is the inverse of T() - I. 

 

Proof. Since   0, T() - I is invertible whenever the random operator (I/) T() – I is invertible, and vice 

versa. However, for every y   the random operator Ty() defined, for every    and x  , by 

Ty()[x] = (1/) T() x – y is a random contraction operator. Therefore, by Theorem (1.6) there exists a unique 

random fixed point y() satisfying the relation y() = (1/) T() y() – y a.s. However, the above 

statement is equivalent to the invertibility of the random operator (1/) T() – I, and therefore the invertibility 

of the random operator T() - I. 

 

Theorem 1.7: Let (  ) be an atomic probability measure space, and let E be a compact (or closed and 

bounded) convex subset of a separable Banach space . Let T() be a compact random operator mapping E 

into itself. Then, there exists an E-valued random variable () such that T()() = () a.s. n, such that 

T(n)n = n. Put () = n for   Cn, and 0 otherwise. Then T()()= (). 

Theorem 1.8. Let E be a compact convex subset of a Banach space and T() be a continuous random operator 

mapping E into itself. Then there exists an E-valued random variable () such that T()() = () . 

PROOF. Let A() = {x  E : T()x = x}. Then by Theorem (D) for each  the set A() is nonempty. 

Furthermore, for any closed subset F of E 

 { : A()  F is nonempty} = { : A()x = x for some x in F}                          

 
Where the xi’s form a dense sequence in F. It is therefore clear that set { : A()  F is nonempty} is 

measurable for every closed subset F of E. To prove the theorem, it is sufficient to find an E-valued random 

variable () such that ()  A(). It is known that we can associate with the space E a sequence of triples 

(Cn, Pn, n) (n a nonnegative integer) such that  

 (i) Each Cn is a countable set and Pn maps Cn+1 onto Cn; 
(ii) n maps Cn into a class of nonempty closed subsets of E of diameter  2-n. 

(iii) E = UcC0 0(c); 

(iv) for each n and for each c in Cn, 

Without  any loss of generality. We assume  that C0 and each Pn
-1(c) with c in Cn are naturally linearly ordered 

such that only finitely many elements can precede any element in this order. Now, for each n, we intend to find a 







 



)( 2,1

21

FEG xx

xx


 





 



 nxxT ii

in

/1)(:
11














Fixed Point Theorm In Probabilistic Analysis 

DOI: 10.9790/5728-11161618                                     www.iosrjournals.org                                             18 | Page 

suitable partition of . We proceed inductively as follows: For each c in C0, we define c by   c if and only 

if A ()  0(c) is nonempty and A()  0(c) is empty for c  C0, c < c. Then the cs are pair wise  
disjoint measurable sets with union . Suppose now that we have found a partition of  corresponding to the 

elements of Ck. To do this for Ck+1, we define for c in Ck+1 the set c by   c if and only   pk(c) and A() 

 k+1(c) is nonempty, but A()  k+1(c) is empty for c in Pk
-1(Pk(c)) and c < c. 

 For any positive n and each c  Cn we choose an element xn(c)  n(c) and define n() = xn(c) for  

 c where the cs are members of the partition of  corresponding to the elements of Cn. Then each n( is 

measurable and 

  n() - n+1 () 2-n,  d (n(), A())  2-n. 

Therefore if () = lim n(), then ()  A() and the theorem follows. 

Theorem. 1.10: Let T() be a stochastically continuous random operator on a separable Banch space   to 

itself. Suppose that for each   , {x : T()x = x}  Ø (the null set). Then there exists a measurable multi-
valued map () :   2 X  such that () = (x : T()x = x}.  

 In a number of applications of fixed point theorems in probabilistic analysis, it is assumed that a random 

operator T() satisfies the hypotheses of Schauder’s theorem for each   . Then, if T() is a continuous 

random operator it is also stochastically continuous and separable. 

 

Theorem.1.11: Let (, P, ) be a probability measure space, and let E be a compact and convex subset of a 

separable Banach space . Let T()x1 + T()x2  E for all x1, x2  E and   , (ii) there exists a nonnegative 

real-valued random variable k() such that S()x1 – S()x2 k()x1 – x2 for all x1, x2  E and 

k() < 1 a.s. Then there exists an X – valued random variable () such that S()() + T()() = () 

for all   .  

 The proof of the above theorem follows easily from Theorem 1.8 observing that the operator [I – S()]-
1 T() is a well-defined continuous mapping on E into itsel 
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