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I. Introduction 
The wave equation is an important second-order linear partial differential equation which generally 

describes all kinds of waves, such as sound waves, light waves and water waves. It arises in many different 

fields, such as acoustics, electromagnetics, and fluid dynamics. Variations of the wave equation are also found in 

quantum mechanics and general relativity. Historically, the problem of a vibrating string such as that of a 

musical instrument was studied by Jean le Rondd'Alembert, Leonhard Euler, Daniel Bernoulli, and Joseph-Louis 

Lagrange. In 1746, d’Alambert discovered the one-dimensional wave equation, and within ten years Euler 
discovered the three-dimensional wave equation. 

In recent years, many researches have paid attention to find the solution of partial differential equations 

by using various methods. Among theseare the double Laplace transform, the double Sumudu transform [3-7], 

differential transform method [15], various ways have been proposed recently to deal with these partial 

differential equations, one of these combination is Elzaki transform method [8-14]. The Elzaki transform a kind 

of modified Laplace’s / Sumudu, was introduce by Elzaki in 2011 and it is defined by  

 
0

( )  ( )exp( / ) ( ).E f t v f t t v dt T v



     (1) 

For  ( ) ( ),E f t T v Where ( )f t isa functionfor all real numbers 0.t   

Where  Elzaki transform defined over the set of function. 
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the constant M must be finite number, 1 2 k ,k may be finite or infinite.  

 

II. Double Elzaki Transform And Double Laplace Transform 

Let ( , )f x t  be a function that can be express as convergent infinite series andlet
2( , )x t R , thenthe double 

Elzaki transform is denoted by  2 ( , )E f x t and defined by 

 2

0 0

( , ) : ( , ) ( , )  ( , ),

x t

u vE f x t u v uv f x t e dx dt T u v

  
  
      (2) 

where ,  0x t   and ,  u v are transform variables for x and t respectively, whenever the improper integral 

is convergent. 

Double Elzaki transform of the second partial derivative with respect to x is of form 

2 2 2

2 2 2 2

0 0 0 0

( , ) ( , ) ( , )
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x t t x

u v v u
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the integral inside the bracket is 
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x
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  (3) 

By taking Elzaki transform with respect to t  for equation (3), we get adouble Elzaki transform in the form

2

2 2 2

( , ) ( , ) (0, )
: ( , ) (0, ) .

f x t T u v T v
E u v T v u

x u x

  
   

  
          (4) 

Similarly, we get double Elzaki transformof 

2

2

( , )f x t

t




 as 

2

2 2 2

( , ) ( , ) ( ,0)
: ( , ) ( ,0) .

f x t T u v T u
E u v T u v

t v t

  
   

  
         (5) 

The double Laplace transform of a function of two variables defined in the positive quadrant of the xt -plane is 

given by: 

 
0 0

( , ) : ( , ) ( , )  ( , ),px st

x tL L f x t p s e f x t e dx dt F p s

 

               (6) 

where ,  0x t   and ,  p s are transform variables for x and t respectively, whenever the improper integral 

is convergent. 

Double Laplace transform of first order partial derivative definedas follow 

( , )
( , ) (0, ),x t

f x t
L L pF p s F s

x

 
   

  (7) 

Double Laplace transform for second partial derivative with respect to x is defined as 

2
2

2

( , ) (0, )
( , ) (0, ) .x x

f x t F s
L L p F p s pF s

x x

  
   

  
     (8) 

Similarly, double Laplace transform for second partial derivative with respect to t is  

2
2

2

( , ) ( ,0)
( , ) ( ,0) .t t

f x t F p
L L s F p s sF p

t t

  
   

  
        (9) 

Double Laplace transformsof a mixed   partial derivative with respect to x and t can be defined as 

2 ( , )
( , ) ( ,0) (0, ) (0,0).x t

f x t
L L psF p s pF p sF s F

x t

 
    

  
    (10) 

 

Theorem (1): Considera function f in the set A  defined by  

 1 2( , ) ( , )  , , 0f x t f x t A M k k    such that 
2

( , )  ,  1,2i

x t

kf x t M e i



   and 2( , )x t R  

with double Laplace transform ( , ),F p s  and double Elzaki transform ( , )T u v , 

then
1 1

( , ) , ,T u v uvF
u v

 
  

 
  where 1 2,  ,  M k k R   

Proof: Let ( , )f x t A and 1 2,k u v k   , 
2 2 ( )

0 0

( , ) ( , ) ,x tT u v u v f ux vt e dxdt

 

     

Let ux  and vt  , we have  

Note:

2 2 ( )

0 0 0 0

1 1
( , ) ( , ) ( , ) ,x t u vT u v u v f ux vt e dxdt uv f e d d uvF

u v

 

   
    

       
    

 
     

The double Laplace transform and double Elzaki transform having strong relation. 
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1 1 1 1
( , ) ( , ); , ,x tT u v L L f x t uvF

u v u v

    
     

    
, or 

1 1 1 1
( , ) ( , ); ,  ,x tT p s L L f x t ps F

p s p s

    
     

    
            (11) 

 

Definition (1):Let ( , )f x t  and ( , )g x t be piecewise continuous functions on [0, ) and having double 

Laplace transform ( , )F p s and ( , )G p s  respectively, then thedouble convolution of the functions ( , )f x t  

and ( , )g x t  exist and defined by  

 
0 0

** ( , ) ( , ) ( , ) ,

t x

f g x t f g x t d d                         (12)

 ** ( , );( , ) ( , ) ( , ),x tL L f g x t p s F p s G p s          (13)     

 

Theorem(2): Let   ( , )f x t and ( , )g x t be defined in A and having the double Laplace transform ( , )F p s

and ( , )G p s respectively, and also having double Elzaki transform ( , )M u v and ( , )N u v   respectively, then 

the double Elzaki transform of the convolution of ( , )f x t and ( , )g x t  is given by 

 2

1
** ( , );( , ) ( , ) ( , )E f g x t u v M u v N u v

uv
     

Proof: The Laplace transform of  ** ( , )f g x t is given by  

 ** ( , );( , ) ( , ) ( , ).x tL L f g x t p s F p s G p s     

From theorem(1) we have  

   2 ** ( , );( , ) ** ( , );( , ) ,x tE f g x t u v uvL L f g x t p s        

Since 
1 1

( , ) , ,M u v uvF
u v

 
  

 

1 1
( , )  ,N u v uv G

u v

 
  

 
, then  

   2

1 1 1 1 ( , ) ( , ) 1
** ( , );( , ) , , . ( , ). ( , ) .

M u v N u v
E f g x t u v uv F G uv M u v N u v

u v u v uv uv uv

      
           

        

 

III. Applications 

In this section, we assume that theinverse double Elzaki transform is exists.We apply the inverse doubleElzaki 

transform to find the solution of the wave equation in one dimension with initial and boundary conditions. 

 

Example (1): Consider the homogeneous wave equation in the form:  
2  ,

tt xx
U c U (14) 

with initial conditions  

( ,0) sin ,         ( ,0) 2,
t

U x x U x   (15) 

and boundary conditions  

(0, ) 2 ,         (0, ) cos(c ),
x

U t t U t t       (16) 

where  
1

2

,Tc


 is T the tension, and  is its linear density. The quantity c has the dimensions of 

velocity. 

By taking the double Elzaki transform to Eq.(14) we get, 

2

2 2

( , ) ( ,0) ( , ) (0, )
( ,0) (0, ) ,

T u v T u T u v T v
T u v c T v u

v t u x

    
           

(17)                                           
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The single Elzaki transform of initial conditions gives 

3
T( ,0) 2

( ,0) ,         2 ,
2

1

u u
T u u

tu


 


(18) 

The single Elzaki transform of boundary conditions gives 

2
T(0, )3

(0, ) 2 ,         ,
2 2

1

v v
T v v

x c v


 

 
(19) 

By substituting (18) & (19) into equation (17), we get 

2 2 2

2 2

( , ) ( , ) ( ,0) (0, )
( ,0) (0, ) ,

T u v T u v T u T v
c T u v c T v c u

v u t x

 
    

 
then

3 2
2 3

2 2 2
( , ) 2 ,

1 1

u v
T u v u v

u c v

  
   

   
(20)

 

ApplyinginversedoubleElzaki transformof equation (20) gives the solution of wave equation (14) in the form 

( , ) 2 sin  cos(c ).U x t t x t          (21) 

By taking the double Laplace transform to Eq (14) we get,  

2 2 2( ,0) (0, )
( , ) ( ,0) ( , ) (0, )

F p F s
s F p s sF p c p F p s pF s

t x

  
     

  
  (22) 

Thesingle Laplace transform of initial conditions gives 

2

1 ( ,0) 2
( ,0) ,               ,

1

F p
F p

p t p


 

 
 (23) 

The singleLaplace transformof boundary conditions                                     

2 2 2

2 (0, )
(0, )   ,              ,

F s s
F s

s x s c


 

 
(24) 

By substituting (23)&(24) into equation(22), we get 

 2 2 2 2 2( ,0) (0, )
( , ) ( ,0) (0, ) ,

F p F s
s c p F p s sF p c pF s c

t x

 
    

 
then 

2 2 2 2

1 2
( , ) .

1

s
F p s

p s c ps

  
   

   
   (25) 

Applyinginversedouble Laplace transform of equation (25) gives the solution of wave equation (14) in the form 

( , ) 2 sin  cos(c ).U x t t x t                               (26) 

 

Example (2): Consider the inhomogeneous wave equation in the form: 

6 2 ,  t >0. 
tt xx

U U t x                  (27) 

With initial conditions       

( ,0) 0,         ( ,0) sin ,
t

U x U x x      (28) 

and boundary conditions  
3 2(0, ) ,         (0, ) sin ,

x
U t t U t t t      (29) 

By taking the double Elzaki transform to Eq.(27) gives, 

3 2 3 2

2 2

( , ) ( ,0) ( , ) (0, )
( ,0) (0, ) 6 2 ,

T u v T u T u v T v
T u v T v u v u u v

v t u x

    
             

(30) 

The singleElzaki transform of initial conditions gives 
3

2

T( ,0)
( ,0) 0,         ,

1

u u
T u

t u


 

 
(31) 

Thesingle Elzaki transform of boundary conditions gives 
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3

5 4

2

T(0, )
(0, ) 6 ,         2 ,

1

v v
T v v v

x v


  

 
(32) 

By substituting(31) &(32) intoequation (30), we get 

2 2 3 3
3 2 3 2 5 4

2 2 2 2

 
( , ) 6 2 6 2 ,

1 1

u v v u v u
T u v v u u v v v u

u v u v

 
      

  
then

3 3
3 4 5 2

2 2
( , ) 2 6 .

1 1

u v
T u v u v v u

u v

  
     

   
(33) 

By applyinginverse double Elzaki transform of equation (33) gives the solution of wave equation (27) in the 

form 
2 3( , ) sin  sin .U x t xt t x t     (34) 

By taking double Laplace transform to Eq (27),we get 

2 2

2 2

( ,0) (0, ) 6 2
( , ) ( ,0) ( , ) (0, )

  

F p F s
s F p s sF p p F p s pF s

t x p s p s

  
       

  
(35) 

Thesingle Laplacetransform of initial conditions gives 

( ,0) 1
( ,0) 0,                   ,

2
1

F p
F p

t p


 

 
(36) 

The single Laplace transformof boundary conditions gives 

4 3 2

3! (0, ) 2! 1
(0, )   ,              ,

1

F s
F s

s x s s


  

 
(37)

 
By substituting (36)&(37) into equation(35), weget 

 
  

2 2
2 2

2 2 4 3 2 2

6 2 6 2
( , )

 1 1

p s p
s p F p s

s p p s s s s p


     

 
then 

  4 2 3 2 2

6 2 1
( , ) ,

 1 1
F p s

s p p s s p
  

 
(38) 

By applyinginverse double Laplace transform of equation (38) gives the solution of wave equation (27) in the 

form 
2 3( , ) sin  sin .U x t xt t x t              (39) 

 

Example (3):Consider the inhomogeneous wave equation in the form: 
2 23 ,  (x,y) .x t

tt xx
U U e 


   R (40) 

With initial conditions  
2 2( ,0) + ,         ( ,0) + ,x x x x

t
U x e e U x e e  (41) 

and boundary conditions  

(0, ) 2 ,         (0, ) 3 ,t t

x
U t e U t e  (42) 

By taking the double Elzaki transform to Eq. (40),we get 

2 2

2 2

( , ) ( ,0) ( , ) (0, )
( ,0) (0, ) 3 ,

1 2 1

T u v T u T u v T v u v
T u v T v u

v t u x u v

      
                     

(43)            

Thesingle Elzaki transform of initial conditions gives 
2 2 2 2T( ,0)

( ,0) + ,         + ,
1 2 1 1 2 1

u u u u u
T u

u u t u u


 

    
   (44) 

Thesingle Elzaki transform of boundary conditions gives 
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2 22 T(0, ) 3
(0, ) ,         ,

1 1

v v v
T v

v x v


 

  
(45) 

By substituting (44) & (45) intoequation (43), we get 

2 2 2 2

( , ) + ,
1 2 1 1 1

u v u v
T u v

u v u v

     
      

        
(46) 

Applying inverse double Elzaki transform of equation (46)gives the solution of wave equation(40) in the form 
2( , ) + .x t x tU x t e e  (47) 

By takingdouble Laplace transform to Eq.(40), we get ,  

  
2 2( ,0) (0, ) 3

( , ) ( ,0) ( , ) (0, ) ,
1 2

F p F s
s F p s sF p p F p s pF s

t x s p

   
      

    
(48) 

The single Laplace transform of initial conditions gives 

       
1 1 ( ,0) 1 1

( ,0) ,         ,
2 1 2 1

F p
F p

s p s p t s p s p


   

    
  (49) 

The single Laplace transformof boundary conditions gives 

   
2 (0, ) 3

(0, )   ,         ,
1 1

F s
F s

p s x p s


 

  
             (50)

 

By substituting (49) & (50) in equation(48), weget 

     
1 1

( , ) ,
1 2 1 1

F p s
s p p s

 
   

     (51) 

Applying doubleinverse Laplace transform of equation(51)gives the solution of waveequation (40) in the form 
2( , ) + .x t x tU x t e e  (52)     

 

Example (4):Consider the inhomogeneous wave equation in the form:  

3 3,
tt xx

U U U   (53) 

With initial conditions  

( ,0) 1,         ( ,0) 2sin ,
t

U x U x x                   (54) 

and boundary conditions  

(0, ) 1,         (0, ) sin2 ,
x

U t U t t     (55) 

By taking the double Elzaki transform to Eq.(53), we get, 

2 2

2 2

( , ) ( ,0) ( , ) (0, )
( ,0) (0, ) 3 ( , ) 3

T u v T u T u v T v
T u v T v u T u v u v

v t u x

    
             

       (56)                                           

The single Elzaki transform of initial conditions gives 
3

2

2

T( ,0) 2
( ,0) ,         ,

1

u u
T u u

t u


 

 
             (57) 

The single Elzaki transform of boundary conditions gives 
3

2

2

T(0, ) 2
(0, ) ,         ,

4 1

v v
T v v

x v


 

 
(58) 

By substituting (57) & (58) into equation (56), we get 

2 2 2 2 3 3
2 2 2 2

2 2 2 2

3 2 2
( , ) 3 ,

1 4 1

u v u v u v v u
T u v u v u v

u v u v

  
     

  
then

 
3 3

2 2

2 2

2
( , )

1 4 1

u v
T u v u v

u v

  
    

   
                               (59)
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Applying doubleinverse Elzaki transform of equation (59) gives the solution of wave equation (53) in the form 

( , ) 1 sin  sin2 .U x t x t        (60) 

By taking double Laplace transform to Eq. (53), we get 

2 2( ,0) (0, ) 3
( , ) ( ,0) ( , ) (0, ) 3 ( , )

F p F s
s F p s sF p p F p s pF s F p s

t x s

  
       

  
         (61) 

The single Laplace transform of initial conditions gives 

2

1 ( ,0) 2
( ,0) ,         ,

1

F p
F p

p t p


 

 
        (62) 

The singleLaplace transformof boundary conditions       

2

1 (0, ) 2
(0, )   ,          ,

4

F s
F s

s x s


 

 
                (63) 

By substituting (62)&(63) into equation(61) , we have 

 2 2 ( ,0) (0, ) 3
3 ( , ) ( ,0) (0, ) ,

F p F s
s p F p s sF p pF s

t x s

 
      

 
then 

2 2

1 1 2
( , ) .

1 4
F p s

ps p s

  
    

   
 (64) 

Applying doubleinverse Laplace transform of equation (64) gives the solution of wave equation (53) in the form 

( , ) 1 sin  sin2 .U x t x t  (69)

 IV. Conclusions 

Double Elzaki transform is applied to obtain the solution of wave equation of one dimensional, the 

result are compared with result of double Laplace transform. The wave equation in one dimensional under the 

initial and boundary conditions, give similar results when we use the double Elzaki transform and double 

Laplace transform. 
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