CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmetric Semi-Metric Connection

Sheeba RizviI¹, Toukeer Khan² and Sameena Saba³

^{1,2,3} (Department of Mathematics, Integral University, Lucknow-226026, India)

Abstract: We consider a nearly hyperbolic cosymplectic manifold and we study some properties of CRsubmanifolds of a nearly cosymplectic manifold with a semi-symmetric semi-metric connection. We also obtain some results on ξ -horizontal and ξ -vertical CR- submanifolds of a nearly cosymplectic manifold with a semisymmetric semi-metric connection and study parallel distributions on nearly hyperbolic cosymplectic manifold with a semi-symmetric semi-metric connection.

Keywords: CR-submanifolds, Nearly hyperbolic cosymplectic manifold, totally geodesic, Parallel distribution and Semi-symmetric semi-metric connection.

2000 AMS Subject Classification : 53D05, 53D25, 53D12

Introduction

I.

A. Bejancu [1] initiated a new class of submanifolds of a complex manifold which he called CRsubmanifolds and obtained some interesting results. A. Bejancu also introduced the notion of CR-submanifolds of Kaehler manifold in [2]. Since then, many papers have been concerned with Kaehler manifolds. The notion of CR-submanifolds of Sasakian manifold was studied by C. J. Hsu in [3] and M. Kobayashi in [10]. Later, several geometers (see [4], [5], [7]) studied CR-submanifolds of almost contact manifolds. In [9], Upadhyay and Dube studied almost hyperbolic (f, g, η, ξ) -structure. Moreover in [6], M. Ahmad and Kashif Ali, studied some properties of CR-submanifolds of a nearly hyperbolic cosymplectic manifold.

In the present paper, we study some properties of CR-submanifolds of a nearly hyperbolic cosymplectic manifold with a semi-symmetric semi-metric connection.

The paper is organized as follows: In 2, we give a brief description of nearly hyperbolic cosymplectic manifold with a semi-symmetric semi-metric connection. In 3, some properties of CR-submanifolds of nearly hyperbolic cosymplectic manifold are investigated. In 4, some results on parallel distribution on ξ -horizontal and ξ -vertical CR-submanifolds of a nearly cosymplectic manifold are obtained.

II. **Preliminaries**

Let \overline{M} be an *n*-dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric structure $(\emptyset, \xi, \eta, q)$, where a tensor \emptyset of type (1,1) a vector field ξ , called structure vector field and η , the dual 1-form of ξ and the associated Riemannian metric g satisfying the following $\emptyset^2 X = X + \eta(X)\xi$ (2.1)

$$\begin{array}{l}
 \eta(\xi) = -1, \quad g(X,\xi) = \eta(X) \\
 \phi(\xi) = 0, \quad \eta o \phi = 0 \\
 \phi X, \phi Y) = -g(X,Y) - \eta(X)\eta(Y)
 \end{array}
 \tag{2.2}$$

$$g(\emptyset X, \emptyset Y) = -g(X, Y) - \eta(X)\eta(Y)$$
⁽²⁾

for any X, Y tangent to \overline{M} . In this case

 $g(\emptyset X, Y) = -g(\emptyset Y, X).$

An almost hyperbolic contact metric structure $(\emptyset, \xi, \eta, g)$ on \overline{M} is called nearly hyperbolic cosymplectic manifold if and only if

$$(\nabla_X \phi) Y + (\nabla_Y \phi) X = 0$$

$$\nabla_Y \xi = 0$$
(2.6)
$$(2.7)$$

for all *X*, *Y* tangent to \overline{M} , where ∇ is Riemannian connection \overline{M} . Now, we define a semi-symmetric semi-metric connection

such that
$$(\overline{\nabla}_X g)(Y,Z) = 2\eta(X)g(Y,Z) - \eta(Y)g(X,Z) - \eta(Z)g(X,Y)$$

from (2.8), replacing Y by $\emptyset Y$, we have
 $\overline{\nabla}_X \theta Y = \nabla_X \theta Y - \eta(X)\theta Y + g(X, \theta Y)\xi$ (2.8)

$$\nabla_X \phi Y = \nabla_X \phi Y - \eta(X) \phi Y + g(X, \phi Y) \xi$$

$$(\overline{\nabla}_X \phi) Y + \phi(\overline{\nabla}_X Y) = (\nabla_X \phi) Y + \phi(\nabla_X Y) - \eta(X) \phi Y + g(X, \phi Y) \xi$$

Interchanging X & Y, we have

$$(\overline{\nabla}_Y \phi)X + \phi(\overline{\nabla}_Y X) = (\nabla_Y \phi)X + \phi(\nabla_Y X) - \eta(Y)\phi X + g(Y, \phi X)\xi$$

Adding above two equations, we have

Adding above two equations, we have

(2.5)

 $(\overline{\nabla}_{X}\phi)Y + (\overline{\nabla}_{Y}\phi)X + \phi(\overline{\nabla}_{X}Y) + \phi(\overline{\nabla}_{Y}X) = (\nabla_{X}\phi)Y + (\nabla_{Y}\phi)X + \phi(\nabla_{X}Y) + \phi(\nabla_{Y}X) - \eta(X)\phiY - \eta(Y)\phiX + g(X,\phiY)\xi + g(Y,\phiX)\xi$

 $(\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X + \phi(\overline{\nabla}_X Y - \nabla_X Y) + \phi(\overline{\nabla}_Y X - \nabla_Y X) = (\nabla_X \phi)Y + (\nabla_Y \phi)X - \eta(X)\phi Y - \eta(Y)\phi X$ Using equation (2.6) in above, we have $(\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X - \eta(X)\phi Y - \eta(Y)\phi X$

 $(\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X + \phi(\overline{\nabla}_X Y - \nabla_X Y) + \phi(\overline{\nabla}_Y X - \nabla_Y X) = -\eta(X)\phi Y - \eta(Y)\phi X$ Using equation (2.8) in above, we have

 $(\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X + \phi [\nabla_X Y - \eta(X)Y + g(X,Y)\xi - \nabla_X Y] + \phi [\nabla_Y X - \eta(Y)X + g(Y,X)\xi - \nabla_Y X]$ = $-\eta(X)\phi Y - \eta(Y)\phi X$ $(\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X = -\eta(X)\phi Y - \eta(Y)\phi X + \eta(Y)\phi X + \eta(X)\phi Y - \phi [g(X,Y)\xi] - \phi [g(Y,X)\xi]$

 $(\overline{\nabla}_X \emptyset) Y + (\overline{\nabla}_Y \emptyset) X = 0$

Now replacing Y by ξ in (2.8) we get $\overline{\nabla}_X \xi = \nabla_X \xi - \eta(X)\xi + g(X,\xi)\xi$ $\overline{\nabla}_X \xi = 0$

 $\overline{\nabla}_{\chi}\xi = 0$ (2.10) An almost hyperbolic contact metric manifold with almost hyperbolic contact structure $(\emptyset, \xi, \eta, g)$ is called nearly hyperbolic Cosymplectic manifold with semi-symmetric semi-metric connection if it is satisfied (2.9) and (2.10).

(2.9)

(3.5)

III. CR-Submanifolds

Let *M* be submanifold immersed in \overline{M} , we assume that the vector ξ is tangent to *M*, denoted by $\{\xi\}$ the 1dimensional distribution spanned by ξ on *M*, then *M* is called a CR-submanifold [14] of \overline{M} if there exist two differentiable distribution *D* & D^{\perp} on *M* satisfying

(i) $TM = D \oplus D^{\perp}$,

(ii) The distribution D is invariant under \emptyset that is $\emptyset D_X = D_X$ for each $X \in M$,

(iii) The distribution D^{\perp} is anti-invariant under \emptyset , that is $\emptyset D^{\perp}_{X} \subset T^{\perp}M$ for each $X \in M$,

Where $TM \& T^{\perp}M$ be the Lie algebra of vector fields tangential & normal to M respectively. If $\dim D^{\perp} = 0$ (resp. $\dim D = 0$) then CR-submanifold is called an invariant (resp. anti-invariant) submanifold. The distribution D (resp. D^{\perp}) is called the horizontal (resp. vertical) distribution. Also the pair D, D^{\perp} is called ξ -horizontal

(resp. ξ –vertical) if $\xi_x \in D_x$ (resp $\xi_x \in D_x^{\perp}$).

Let Riemannian metric g induced on M and ∇^* is induced Levi-Civita connection on M then the Guass formula is given by

$$\nabla_X Y = \nabla_X^* Y + h(X, Y) \tag{3.1}$$
$$V_Y N = -A_N X + \nabla_Y^{\perp} N \tag{3.2}$$

 $\nabla_X N = -A_N X + \nabla_X^{\perp} N$ (3.2) for any $X, Y \in TM$ and $N \in T^{\perp}M$, where ∇^{\perp} is a connection on the normal bundle $T^{\perp}M$, *h* is the second fundamental form & A_N is the Weingarten map associated with *N* as

$$g(A_N X, Y) = g(h(X, Y), N)$$
(3.3)

Any vector X tangent to M is given as

$$X = PX + QX$$
(3.4)
where $PX \in D$ and $QX \in D^{\perp}$.

Similarly, for *N* normal to *M*, we have

$$\phi N = BN + CN$$

where BN (resp. CN) is tangential component (resp. normal component) of $\emptyset N$. The Guass formula for a nearly hyperbolic cosymplectic manifold with semi-symmetric semi-metric connection is

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{3.6}$$

For Weingarten formula putting Y = N in (2.8), we have

$$\overline{\nabla}_X N = \nabla_X N - \eta(X)N + g(X,N)\xi$$

$$\overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N - \eta(X)N$$
(3.7)

for any $X, Y \in TM$ and $N \in T^{\perp}M$, where ∇^{\perp} is a connection on the normal bundle $T^{\perp}M$, *h* is the second fundamental form and A_N is the Weingarten map associated with *N*.

Some Basic lemmas

Lemma 3.1. Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} with semisymmetric semi-metric connection, then

$$2(\nabla_X \phi)Y = \nabla_X \phi Y - \nabla_Y \phi X + h(X, \phi Y) - h(Y, \phi X) - \phi[X, Y]$$

$$2(\overline{\nabla}_Y \phi)X = \nabla_Y \phi X - \nabla_X \phi Y + h(Y, \phi X) - h(X, \phi Y) + \phi[X, Y]$$

for each $X, Y \in D$. **Proof.** By Gauss formulas (3.6), we have

$$\overline{\nabla}_{X} \phi Y = \overline{\nabla}_{X} \phi Y + h(X, \phi Y)$$
Interchanging *X* and *Y* in above, we have

$$\overline{\nabla}_{Y} \phi X = \overline{\nabla}_{Y} \phi X + h(Y, \phi X)$$
From above two equations, we have

$$\overline{\nabla}_{X} \phi Y - \overline{\nabla}_{Y} \phi X = \nabla_{X} \phi Y - \nabla_{Y} \phi X + h(X, \phi Y) - h(Y, \phi X) \quad (3.8)$$
Also, by covariant differentiation, we have

$$\overline{\nabla}_{X} \phi Y = (\overline{\nabla}_{X} \phi)Y + \phi(\overline{\nabla}_{X} Y)$$
Interchanging *X* and *Y* in above, we have

$$\overline{\nabla}_{Y} \phi X = (\overline{\nabla}_{Y} \phi)X + \phi(\overline{\nabla}_{Y} X)$$
from above two equations, we have

$$\overline{\nabla}_{X} \phi Y - \overline{\nabla}_{Y} \phi X = (\overline{\nabla}_{X} \phi)Y - (\overline{\nabla}_{Y} \phi)X + \phi[X, Y] \quad (3.9)$$
From (3.8) and (3.9), we have

$$(\overline{\nabla}_{X} \phi)Y - (\overline{\nabla}_{Y} \phi)X + \phi[X, Y] = \nabla_{X} \phi Y - \nabla_{Y} \phi X + h(X, \phi Y) - h(Y, \phi X) \\ (\overline{\nabla}_{X} \phi)Y - (\overline{\nabla}_{Y} \phi)X = \nabla_{X} \phi Y - \nabla_{Y} \phi X + h(X, \phi Y) - h(Y, \phi X) - \phi[X, Y] \quad (3.10)$$
Adding (2.9) and (3.10), we obtain

$$2(\overline{\nabla}_{X} \phi)Y = \nabla_{X} \phi Y - \nabla_{Y} \phi X + h(X, \phi Y) - h(Y, \phi X) - \phi[X, Y]$$
Subtracting equation (3.10) from (2.9), we have

$$2(\overline{\nabla}_{Y} \phi)X = \nabla_{Y} \phi X - \nabla_{X} \phi Y + h(Y, \phi X) - h(X, \phi Y) + \phi[X, Y]$$
for each *X*, *Y* $\in D$.
Hence lemma is proved
Lemma 3.2. Let *M* be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} v

Lemma 3.2. Let *M* be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} with semisymmetric semi-metric connection, then $2(\overline{\nabla}_{..} \alpha)Y = A_{\alpha\nu}Y - A_{\alpha\nu}X + \nabla^{\perp}_{\nu} \phi Y - \nabla^{\perp}_{\nu} \phi X - \phi[X,Y] - \eta(X)\phi Y + \eta(Y)\phi X$

$$2(\nabla_{X} \emptyset)Y = A_{\theta Y}Y - A_{\theta Y}Y + \nabla_{Y}^{1} \emptyset Y - \nabla_{Y}^{1} \emptyset Y - \nabla_{Y}^{1} \emptyset X - \emptyset (X, Y] - \eta(X) \emptyset Y + \eta(Y) \emptyset X$$

$$2(\overline{\nabla_{Y}} \emptyset)X = A_{\theta Y}X - A_{\theta X}Y + \nabla_{Y}^{1} \emptyset X - \nabla_{X}^{1} \emptyset Y + \theta[X, Y] + \eta(X) \emptyset Y - \eta(Y) \emptyset X$$
for all $X, Y \in D^{\perp}$.
Proof. Using Weingarten formula (3.7), we have
$$\overline{\nabla_{X}} \emptyset Y = -A_{\theta Y}X + \nabla_{Y}^{1} \emptyset X - \eta(X) \emptyset Y$$
Interchanging and Y, we have
$$\overline{\nabla_{Y}} \emptyset X = -A_{\theta X}Y + \nabla_{Y}^{1} \emptyset X - \eta(Y) \emptyset X$$
From above two equations, we have
$$(\overline{\nabla_{X}} \emptyset)Y - \overline{\nabla_{Y}} \emptyset X = A_{\theta X}Y - A_{\theta Y}X + \nabla_{Y}^{1} \emptyset X - \eta(Y) \emptyset X - \eta(X) \emptyset Y$$
(3.11)
Comparing equation (3.9) and (3.11), we have
$$(\overline{\nabla_{X}} \emptyset)Y - (\overline{\nabla_{Y}} \emptyset)X + \theta[X, Y] = A_{\theta Y}Y - A_{\theta Y}X + \nabla_{X}^{1} \emptyset Y - \nabla_{Y}^{1} \emptyset X + \eta(Y) \emptyset X - \eta(X) \emptyset Y$$

$$(\overline{\nabla_{X}} \emptyset)Y - (\overline{\nabla_{Y}} \emptyset)X + \theta[X, Y] = A_{\theta X}Y - A_{\theta Y}X + \nabla_{X}^{1} \emptyset Y - \nabla_{Y}^{1} \emptyset X - \eta(X) \emptyset Y - \eta(X) \emptyset Y$$
($\overline{\nabla_{X}} \emptyset Y - \overline{\nabla_{Y}} \emptyset X + A_{\theta Y}X + \nabla_{X}^{1} \emptyset Y - \nabla_{Y}^{1} \emptyset X - \eta(X) \emptyset Y - \eta(X) \emptyset Y$
($\overline{\nabla_{X}} \emptyset Y - \overline{\nabla_{Y}} \emptyset X + A_{\theta Y}X + \nabla_{X}^{1} \emptyset Y - \nabla_{Y}^{1} \emptyset X - \eta(X) \emptyset Y + \eta(Y) \emptyset X$
Adding (2.9) and (3.12), we have
$$(2(\overline{\nabla_{Y}} \emptyset)X = A_{\theta X}Y - A_{\theta Y}X + \nabla_{X}^{1} \emptyset Y - \nabla_{Y}^{1} \emptyset X - \theta[X, Y] - \eta(X) \emptyset Y - \eta(Y) \emptyset X$$
for all $X, Y \in D^{\perp}$.
Corollary 3.3. Let M be a ξ -horizontal CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M}
with semi-symmetric semi-netric connection, then
$$2(\overline{\nabla_{X}} \emptyset)Y = -A_{\theta Y}X - A_{\theta Y}X + \nabla_{Y}^{1} \emptyset Y - \nabla_{Y}^{1} \emptyset X - [X, Y] - \eta(X) \emptyset Y - \eta(Y) \emptyset X$$

$$2(\overline{\nabla_{Y}} \emptyset)X = A_{\theta Y}X - A_{\theta X}Y + \nabla_{Y}^{1} \emptyset X - \nabla_{X}^{1} \emptyset Y + \emptyset[X, Y] - \eta(X) \emptyset Y - \eta(Y) \emptyset X$$

$$2(\overline{\nabla_{Y}} \emptyset)Y = -A_{\theta Y}X - \nabla_{Y} \emptyset X - h(Y, \emptyset X) - \emptyset[X, Y] - \eta(X) \emptyset Y - \eta(Y) \emptyset X$$

$$2(\overline{\nabla_{Y}} \emptyset)Y = -A_{\theta Y}X - \nabla_{Y} \emptyset X - h(Y, \emptyset X) - \emptyset[X, Y] - \eta(X) \emptyset Y - \eta(Y) \emptyset X$$

$$2(\overline{\nabla_{Y}} \emptyset)Y = -A_{\theta Y}X + \nabla_{Y}^{1} \emptyset Y - \nabla_{Y} \emptyset X - h(Y, \emptyset X) - \eta[X, Y] - \eta(X) \emptyset Y - \eta(Y) \emptyset X$$

$$2(\overline{\nabla_{Y}} \emptyset)X = A_{\theta Y}X - \nabla_{Y} \emptyset X - h(Y, \emptyset X) - \emptyset[X, Y] - \eta(X) \emptyset Y - \eta(Y) \emptyset X$$

$$2(\overline{\nabla_{Y}} \emptyset)X = A_{\theta Y}X - \nabla_{Y} \emptyset X - h(Y, \emptyset X) - \emptyset[X, Y] - \eta(X) \emptyset Y - \eta(Y) \emptyset X$$

$$2(\overline{\nabla_{Y}} \emptyset)X = A_{\theta Y}X - \nabla_{Y} \emptyset X + h(Y, \emptyset$$

Comparing equation (3.9) and (3.13), we have $(\overline{\nabla}_X \emptyset)Y - (\overline{\nabla}_Y \emptyset)X + \emptyset[X, Y] = -A_{\emptyset Y}X + \nabla_X^{\perp} \emptyset Y - \nabla_Y \emptyset X - h(Y, \emptyset X) - \eta(X) \emptyset Y$ $(\overline{\nabla}_X \phi)Y - (\overline{\nabla}_Y \phi)X = -A_{\phi Y}X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y] - \eta(X)\phi Y$ (3.14)Adding equation (2.9) & (3.14), we have $2(\overline{\nabla}_X \phi)Y = -A_{\phi Y}X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y] - \eta(X)\phi Y$ Subtracting (3.14) from (2.9), we have $2(\overline{\nabla}_{Y}\phi)X = A_{\phi Y}X - \nabla_{X}^{\perp}\phi Y + \nabla_{Y}\phi X + h(Y,\phi X) + \phi[X,Y] + \eta(X)\phi Y$ for all $X \in D$ and $Y \in D^{\perp}$. **Lemma 3.6**. Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} with semisymmetric semi-metric connection, then $\phi P(\nabla_X Y) + \phi P(\nabla_Y X) = P(\nabla_X \phi P Y) + P(\nabla_Y \phi P X) - PA_{\phi O Y} X - PA_{\phi O X} Y$ (3.15) $2Bh(X,Y) = Q(\nabla_X \phi PY) + Q(\nabla_Y \phi PX) - QA_{\phi OY}X - QA_{\phi OX}Y$ (3.16) $\phi Q(\nabla_X Y) + \phi Q(\nabla_Y X) + 2Ch(X,Y) = h(X,\phi PY) + h(Y,\phi PX) + \nabla_X^{\perp} \phi QY + \nabla_Y^{\perp} \phi QX$ $-\eta(X)\phi QY - \eta(Y)\phi QX$ (3.17)for all $X, Y \in TM$. **Proof.** From equation (3.4), we have $\emptyset Y = \emptyset P Y + \emptyset O Y$ Differentiating covariantly with respect to vector, we have $\overline{\nabla}_X \phi Y = \overline{\nabla}_X (\phi P Y + \phi Q Y)$ $\overline{\nabla}_X \phi Y = \overline{\nabla}_X \phi P Y + \overline{\nabla}_X \phi Q Y$ $(\overline{\nabla}_X \phi)Y + \phi(\overline{\nabla}_X Y) = \overline{\nabla}_X \phi PY + \overline{\nabla}_X \phi QY$ Using equations (3.6) and (3.7) in above, we have $(\overline{\nabla}_X \phi)Y + \phi(\nabla_X Y) + \phi h(X, Y) = \nabla_X \phi PY + h(X, \phi PY) - A_{\phi OY} X + \nabla_X^{\perp} \phi QY - \eta(X) \phi QY$ (3.18)Interchanging X & Y, we have $(\overline{\nabla}_Y \phi)X + \phi(\nabla_Y X) + \phi h(Y, X) = \nabla_Y \phi P X + h(Y, \phi P X) - A_{\phi O X} Y + \nabla_Y^{\perp} \phi Q X$ -n(Y)ØOX(3.19)Adding equations (3.18) & (3.19), we have $(\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X + \phi(\nabla_X Y) + \phi(\nabla_Y X) + 2\phi h(X, Y) = \nabla_X \phi PY + \nabla_Y \phi PX + h(X, \phi PY) + h(Y, \phi PX)$ $-A_{\phi OY}X - A_{\phi OX}Y + \nabla_X^{\perp}\phi QY + \nabla_Y^{\perp}\phi QX - \eta(X)\phi QY - \eta(Y)\phi QX$ (3.20)By Virtue of (2.9) & (3.19), we have $\phi(\nabla_X Y) + \phi(\nabla_Y X) + 2\phi h(X, Y) = \nabla_X \phi P Y + \nabla_Y \phi P X + h(X, \phi P Y) + h(Y, \phi P X) - A_{\phi O X} Y - A_{\phi O Y} X$ $+\nabla_{X}^{\perp} \phi Q Y + \nabla_{Y}^{\perp} \phi Q X - \eta(X) \phi Q Y - \eta(Y) \phi Q X$ Using equations (3.4) and (3.5) in above, we have $\phi P(\nabla_X Y) + \phi Q(\nabla_X Y) + \phi P(\nabla_Y X) + \phi Q(\nabla_Y X)) + 2Bh(X,Y) + 2Ch(X,Y) = P(\nabla_X \phi PY) + Q(\nabla_X \phi PY) + Q(\nabla_X \phi PY) + Q(\nabla_X \phi PY) + Q(\nabla_Y \phi$ $P(\nabla_Y \phi PX) + Q(\nabla_Y \phi PX) + h(X, \phi PY) + h(Y, \phi PX) - PA_{\phi 0Y}X - QA_{\phi 0Y}X - PA_{\phi 0X}Y - QA_{\phi 0X}Y + \nabla_X^{\perp}\phi QY +$ $\nabla^{\perp}_{Y} \phi Q X - \eta(X) \phi Q Y - \eta(Y) \phi Q X$ Comparing horizontal, vertical and normal components, we get desired result. IV. **Parallel Distribution Definition 4.1.** The horizontal (resp. vertical) distribution D (resp. D^{\perp}) is said to be parallel [13] with respect to the connection on M if $\nabla_X Y \in D$ (resp. $\nabla_Z W \in D^{\perp}$) for any vector field $X, Y \in D$ (resp. $W, Z \in D^{\perp}$). **Theorem 4.2.** Let *M* be a ξ -vertical CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} with semi-symmetric semi-metric connection. If horizontal distribution D is parallel, then $h(X, \emptyset Y) = h(Y, \emptyset X)$ (4.1)for all $X, Y \in D$. **Proof.** Let $X, Y \in D$, as *D* is parallel distribution, then $\nabla_{Y} \phi Y \in D$ & $\nabla_V \emptyset X \in D$. Then, from (3.16), we have

 $2Bh(X,Y) = Q(\nabla_X \phi PY) + Q(\nabla_Y \phi PX) - QA_{\phi QY}X - QA_{\phi QX}Y$ As Q being a projection operator on D^{\perp} then we have 2Bh(X,Y) = 0(4.2)
From equations (3.5) and (4.2), we have $\phi h(X,Y) = Ch(X,Y) \qquad \text{for all } X,Y \in D$ (4.3)

Now, from equation (3.17), we have

 $\phi Q(\nabla_{Y}Y) + \phi Q(\nabla_{Y}X) + 2Ch(X,Y) = h(X,\phi PY) + h(Y,\phi PX) + \nabla_{Y}^{\perp}\phi QY + \nabla_{Y}^{\perp}\phi QX$ $-\eta(X) \phi QY - \eta(Y) \phi QX$ As Q being a projection operator on D^{\perp} then we have $2Ch(X,Y) = h(X,\emptyset PY) + h(Y,\emptyset PX)$ Using equation (4.3) in above, we have $h(X, \emptyset PY) + h(Y, \emptyset PX) = 2\emptyset h(X, Y)$ (4.4)Replacing X by $\emptyset X$ in (4.4), we have $h(\emptyset X, \emptyset Y) + h(Y, \emptyset^2 X) = 2\emptyset h(\emptyset X, Y)$ Using equation (2.1) in above, we have $h(\emptyset X, \emptyset Y) + h(Y, X) = 2\emptyset h(\emptyset X, Y)$ (4.5)Replacing Y by \emptyset Y & using (2.1) in (4.4), we have $h(X,Y) + h(\emptyset Y, \emptyset X) = 2\emptyset h(X, \emptyset Y)$ (4.6)By Virtue of (4.5) and (4.6), we have $h(X, \emptyset Y) = h(Y, \emptyset X)$ for all $X, Y \in D$. **Theorem 4.3.** Let *M* be a ξ -vertical CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} with semi-symmetric semi-metric connection. If horizontal distribution D is parallel with respect to connection on M, then $A_{\emptyset X}Y + A_{\emptyset Y}X \in D^{\perp}$ (4.7)for all $X, Y \in D^{\perp}$. **Proof:** Let $X, Y \in D^{\perp}$, from Weingarten formula (3.7), we have $\overline{\nabla}_X \phi Y = -A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \eta(X) \phi Y$ $(\overline{\nabla}_X \phi)Y + \phi(\overline{\nabla}_X Y) = -A_{\phi Y}X + \nabla^{\perp}_X \phi Y - \eta(X)\phi Y$ Using Gauss equation (3.6) in above, we have $(\overline{\nabla}_X \phi)Y + \phi(\nabla_X Y) + \phi h(X, Y) = -A_{\phi Y}X + \nabla_X^{\perp} \phi Y - \eta(X)\phi Y$ $(\overline{\nabla}_X \phi)Y = -A_{\phi Y}X + \nabla_X^{\perp} \phi Y - \phi(\nabla_X Y) - \phi h(X, Y) - \eta(X)\phi Y$ (4) (4.8)Interchanging X & Y in (4.8), we have $(\overline{\nabla}_{Y} \emptyset) X = -A_{\emptyset X} Y + \nabla_{Y}^{\perp} \emptyset X - \eta(Y) \emptyset X - \emptyset(\nabla_{Y} X) - \emptyset h(Y, X)$ (4.9)Adding equations (4.8) and (4.9), we have $(\overline{\nabla}_X \emptyset) Y + (\overline{\nabla}_Y \emptyset) X = -A_{\emptyset Y} X - A_{\emptyset X} Y + \nabla_X^{\perp} \emptyset Y + \nabla_Y^{\perp} \emptyset X - \emptyset (\nabla_X Y) - \emptyset (\nabla_Y X)$ $-\eta(X)\phi Y - \eta(Y)\phi X - 2\phi h(X,Y)$ Using equation (2.9) in (4.10), we have $0 = -A_{\phi Y}X - A_{\phi X}Y + \nabla_X^{\perp}\phi Y + \nabla_Y^{\perp}\phi X - \phi(\nabla_X Y) - \phi(\nabla_Y X) - \eta(X)\phi Y - \eta(Y)\phi X - 2\phi h(X,Y)$ (4.11) Taking inner product with $Z \in D$ in (4.11), we have $0 = -g(A_{\emptyset Y}X,Z) - g(A_{\emptyset X}Y,Z) + g(\nabla_X^{\perp} \emptyset Y,Z) + g(\nabla_Y^{\perp} \emptyset X,Z) - g(\emptyset(\nabla_X Y),Z) - g(\emptyset(\nabla_Y X),Z)$ $-2g(\phi h(X,Y),Z) - \eta(X)g(\phi Y,Z) - \eta(Y)g(\phi X,Z)$ $g(A_{\emptyset Y}X + A_{\emptyset X}Y, Z) = -g(\emptyset(\nabla_X Y), Z) - g(\emptyset(\nabla_Y X), Z)$ (4.12)If D^{\perp} is parallel then $\nabla_X Y \in D^{\perp}$ and $\nabla_Y X \in D^{\perp}$, so from equation (4.12), we have $g(A_{\emptyset Y}X + A_{\emptyset X}Y, Z) = 0$ Consequently, we have $A_{\phi Y}X + A_{\phi Y}Y \in D^{\perp}$ for all $X, Y \in D^{\perp}$ Hence lemma is proved. **Definition 4.4.** A CR-submanifold is said to be mixed totally geodesic if h(X, Y) = 0, for all $X \in D$ and $Y \in$ D^{\perp} . **Definition 4.5.** A Normal vector field $N \neq 0$ is called D - parallel normal section if $\nabla_X^{\perp} N = 0$, for all $X \in D$. **Lemma 4.6.** Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} with semi-

symmetric semi-metric connection. Then M is a mixed totally geodesic if and only if $A_N X \in D$ for all $X \in D$. **Proof.** Let $A_N X \in D$ for all $X \in D$. Now, from equation (3.3), we have for $Y \in D^{\perp}$. $g(h(X,Y),N) = g(A_NX,Y) = 0,$ Which is equivalent to h(X,Y)=0Hence *M* is totally mixed geodesic. Conversely, Let *M* is totally mixed geodesic. That is h(X,Y) = 0for $X \in D$ and $Y \in D^{\perp}$.

(4.10)

Now, from equation (3.3), we have Now, $g(h(X,Y),N) = g(A_NX,Y)$. This implies that $g(A_NX,Y) = 0$ Consequently, we have $A_NX \in D$, for all $Y \in D^{\perp}$

Hence lemma is proved.

Theorem 4.7. Let *M* be a mixed totally geodesic CR-submanifold of a nearly hyperbolic cosymplectic \overline{M} with semi-symmetric semi-metric connection. Then the normal section $N \in \emptyset D^{\perp}$ is D parallel if and only if $\nabla_X \emptyset N \in D \text{ for all } X \in D \& Y \in D^{\perp}.$ **Proof.** Let $\in \emptyset D^{\perp}$, $X \in D$ and $Y \in D^{\perp}$, then from (3.16), we have $2Bh(X,Y) = Q(\nabla_X \phi PY) + Q(\nabla_Y \phi PX) - QA_{\phi OY}X - QA_{\phi OX}Y$ For mixed totally geodesic, we have from above equation $Q\nabla_V \phi X = 0$, for $X \in D$. In particular, we have $Q\nabla_Y X = 0.$ (4.13) $\emptyset Q \nabla_X Y = \nabla_X^{\perp} \emptyset Y.$ Using it in (3.17), we have $\emptyset Q \nabla_X \emptyset N = \nabla_X^{\perp} N$ (4.14)Thus, if the normal section $N \neq 0$ is D-parallel, then using "definition 4.5" and (4.14), we have $\emptyset \nabla_{\mathbf{x}}(\emptyset N) = 0.$ Which is equivalent to $\nabla_X \phi N \in D$, for all $X \in D$.

The converse part easily follows from (4.14). This completes the proof of the theorem. Hence the theorem is proved.

References

- [1] A. Bejancu, CR- submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69, (1978), 135-142.
- [2] A. Bejancu, CR- submanifolds of a Kaehler manifold II, *Trans. Amer. Math. Soc.*, 250, (1979), 333-345.
- [3] C.J. Hsu, On CR-submanifolds of Sasakian manifolds I, Math. Research Centre Reports, Symposium Summer, (1983), 117-140.
- [4] C. Ozgur, M. Ahmad and A. Haseeb, CR-submanifolds of LP-Sasakian manifolds with semi-symmetric metric connection, *Hacettepe J. Math. And Stat.*, vol. 39 (4), (2010), 489-496.
- [5] Lovejoy S.K. Das and M. Ahmad, CR-submanifolds of LP-Sasakian manifolds with quarter symmetric non-metric connection, Math. Sci. Res. J. 13 (7), (2009), 161-169.
- [6] M. Ahmad and Kasif Ali, CR-submanifold of a nearly hyperbolic cosymplectic manifold, *IOSR Journal of Mathematics (IOSR-JM)* Vol 6, Issue 3 (May. Jun. 2013), PP 74-77.
- [7] M. Ahmad, M.D. Siddiqi and S. Rizvi, CR-submanifolds of a nearly hyperbolic Sasakian manifold admitting semi-symmetric semimetric connection, *International J. Math. Sci. & Engg. Appls.*, Vol. 6, (2012), 145-155.
- [8] M. Ahmad and J.P. Ojha, CR-submanifolds of LP-Sasakian manifolds with the canonical semi-symmetric semi-metric connection, Int. J. Contemp. Math. Science, vol.5, no. 33, (2010), 1637-1643.
- [9] M.D. Upadhyay and K.K. Dube, Almost contact hyperbolic *φ*,,, -structure, *Acta. Math. Acad. Scient. Hung. Tomus*, 28 (1976), 1-4.
- [10] M. Kobayashi, CR-submanifolds of a Sasakian manifold, *Tensor N.S.*, 35 (1981), 297-307.