CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmetric Semi-Metric Connection

Sheeba RizviI ${ }^{1}$, Toukeer Khan ${ }^{2}$ and Sameena Saba ${ }^{3}$
1,2,3 (Department of Mathematics, Integral University, Lucknow-226026, India)

Abstract

We consider a nearly hyperbolic cosymplectic manifold and we study some properties of CRsubmanifolds of a nearly cosymplectic manifold with a semi-symmetric semi-metric connection. We also obtain some results on ξ-horizontal and ξ-vertical CR-submanifolds of a nearly cosymplectic manifold with a semisymmetric semi-metric connection and study parallel distributions on nearly hyperbolic cosymplectic manifold with a semi-symmetric semi-metric connection.

Keywords: CR-submanifolds, Nearly hyperbolic cosymplectic manifold, totally geodesic, Parallel distribution and Semi-symmetric semi-metric connection.
2000 AMS Subject Classification : 53D05, 53D25, 53D12

I. Introduction

A. Bejancu [1] initiated a new class of submanifolds of a complex manifold which he called CRsubmanifolds and obtained some interesting results. A. Bejancu also introduced the notion of CR-submanifolds of Kaehler manifold in [2]. Since then, many papers have been concerned with Kaehler manifolds. The notion of CR-submanifolds of Sasakian manifold was studied by C. J. Hsu in [3] and M. Kobayashi in [10]. Later, several geometers (see [4], [5], [7]) studied CR-submanifolds of almost contact manifolds. In [9], Upadhyay and Dube studied almost hyperbolic (f, g, η, ξ)-structure. Moreover in [6], M. Ahmad and Kashif Ali, studied some properties of CR-submanifolds of a nearly hyperbolic cosymplectic manifold.

In the present paper, we study some properties of CR-submanifolds of a nearly hyperbolic cosymplectic manifold with a semi-symmetric semi-metric connection.
The paper is organized as follows: In 2, we give a brief description of nearly hyperbolic cosymplectic manifold with a semi-symmetric semi-metric connection. In 3, some properties of CR-submanifolds of nearly hyperbolic cosymplectic manifold are investigated. In 4, some results on parallel distribution on ξ - horizontal and ξ-vertical CR-submanifolds of a nearly cosymplectic manifold are obtained.

II. Preliminaries

Let \bar{M} be an n-dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric structure $(\emptyset, \xi, \eta, g)$, where a tensor \emptyset of type $(1,1)$ a vector field ξ, called structure vector field and η, the dual 1 -form of ξ and the associated Riemannian metric g satisfying the following $\emptyset^{2} X=X+\eta(X) \xi$

$$
\begin{equation*}
\eta(\xi)=-1, \quad g(X, \xi)=\eta(X) \tag{2.1}
\end{equation*}
$$

$\emptyset(\xi)=0, \quad \eta \circ \emptyset=0$

$$
\begin{equation*}
g(\varnothing X, \varnothing Y)=-g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

for any X, Y tangent to \bar{M}. In this case

$$
\begin{equation*}
g(\varnothing X, Y)=-g(\emptyset Y, X) \tag{2.4}
\end{equation*}
$$

An almost hyperbolic contact metric structure ($\varnothing, \xi, \eta, g$) on \bar{M} is called nearly hyperbolic cosymplectic manifold if and only if

$$
\begin{gather*}
\left(\nabla_{X} \varnothing\right) Y+\left(\nabla_{Y} \varnothing\right) X=0 \tag{2.6}\\
\nabla_{X} \xi=0 \tag{2.7}
\end{gather*}
$$

for all X, Y tangent to \bar{M}, where ∇ is Riemannian connection \bar{M}.
Now, we define a semi-symmetric semi-metric connection

$$
\begin{equation*}
\vec{\nabla}_{X} Y=\nabla_{X} Y-\eta(X) Y+g(X, Y) \xi \tag{2.8}
\end{equation*}
$$

such that $\quad\left(\bar{\nabla}_{X} g\right)(Y, Z)=2 \eta(X) g(Y, Z)-\eta(Y) g(X, Z)-\eta(Z) g(X, Y)$
from (2.8), replacing Y by $\emptyset Y$, we have

$$
\bar{\nabla}_{X} \emptyset Y=\nabla_{X} \emptyset Y-\eta(X) \varnothing Y+g(X, \varnothing Y) \xi
$$

$$
\left(\bar{\nabla}_{X} \emptyset\right) Y+\emptyset\left(\bar{\nabla}_{X} Y\right)=\left(\nabla_{X} \emptyset\right) Y+\emptyset\left(\nabla_{X} Y\right)-\eta(X) \emptyset Y+g(X, \emptyset Y) \xi
$$

Interchanging $X \& Y$, we have

$$
\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset\left(\bar{\nabla}_{Y} X\right)=\left(\nabla_{Y} \emptyset\right) X+\emptyset\left(\nabla_{Y} X\right)-\eta(Y) \emptyset X+g(Y, \emptyset X) \xi
$$

Adding above two equations, we have

$$
\begin{gathered}
\left(\bar{\nabla}_{X} \emptyset\right) Y+\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset\left(\bar{\nabla}_{X} Y\right)+\emptyset\left(\bar{\nabla}_{Y} X\right)=\left(\nabla_{X} \emptyset\right) Y+\left(\nabla_{Y} \emptyset\right) X+\emptyset\left(\nabla_{X} Y\right)+\emptyset\left(\nabla_{Y} X\right)-\eta(X) \emptyset Y \\
\left(\bar{\nabla}_{X} \emptyset\right) Y+\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset\left(\bar{\nabla}_{X} Y-\nabla_{X} Y\right)+\emptyset\left(\bar{\nabla}_{Y} X-\nabla_{Y} X\right)=\left(\nabla_{X} \emptyset\right) Y+\left(\nabla_{Y} \emptyset\right) X-\eta(X) \emptyset Y-\eta(Y) \emptyset X
\end{gathered}
$$

Using equation (2.6) in above, we have

$$
\left(\bar{\nabla}_{X} \emptyset\right) Y+\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset\left(\bar{\nabla}_{X} Y-\nabla_{X} Y\right)+\emptyset\left(\bar{\nabla}_{Y} X-\nabla_{Y} X\right)=-\eta(X) \emptyset Y-\eta(Y) \emptyset X
$$

Using equation (2.8) in above, we have

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \emptyset\right) Y+\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset\left[\nabla_{X} Y-\eta(X) Y+g(X, Y) \xi-\nabla_{X} Y\right]+\emptyset\left[\nabla_{Y} X-\eta(Y) X+g(Y, X) \xi-\nabla_{Y} X\right] \\
& \quad=-\eta(X) \varnothing Y-\eta(Y) \emptyset X \\
& \left(\bar{\nabla}_{X} \emptyset\right) Y+\left(\bar{\nabla}_{Y} \emptyset\right) X=-\eta(X) \emptyset Y-\eta(Y) \emptyset X+\eta(Y) \emptyset X+\eta(X) \emptyset Y-\emptyset[g(X, Y) \xi]-\emptyset[g(Y, X) \xi] \\
& \left(\bar{\nabla}_{X} \emptyset\right) Y+\left(\bar{\nabla}_{Y} \emptyset\right) X=0 \tag{2.9}
\end{align*}
$$

Now replacing Y by ξ in (2.8) we get $\bar{\nabla}_{X} \xi=\nabla_{X} \xi-\eta(X) \xi+g(X, \xi) \xi$

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=0 \tag{2.10}
\end{equation*}
$$

An almost hyperbolic contact metric manifold with almost hyperbolic contact structure ($\varnothing, \xi, \eta, g$) is called nearly hyperbolic Cosymplectic manifold with semi-symmetric semi-metric connection if it is satisfied (2.9) and (2.10).

III. CR-Submanifolds

Let M be submanifold immersed in \bar{M}, we assume that the vector ξ is tangent to M, denoted by $\{\xi\}$ the $1-$ dimentional distribution spanned by ξ on M, then M is called a CR-submanifold [14] of \bar{M} if there exist two differentiable distribution $D \& D^{\perp}$ on M satisfying
(i) $\quad T M=D \oplus D^{\perp}$,
(ii) The distribution D is invariant under \emptyset that is $\emptyset D_{X}=D_{X}$ for each $X \in M$,
(iii) The distribution D^{\perp} is anti-invariant under \emptyset, that is $\emptyset D^{\perp}{ }_{X} \subset T^{\perp} M$ for each $X \in M$,

Where $T M \& T^{\perp} M$ be the Lie algebra of vector fields tangential \& normal to M respectively. If $\operatorname{dim} D^{\perp}=0$ (resp. $\operatorname{dim} D=0$) then CR-submanifold is called an invariant (resp. anti-invariant) submanifold. The distribution D (resp. D^{\perp}) is called the horizontal (resp. vertical) distribution. Also the pair D, D^{\perp} is called ξ-horizontal
(resp. ξ-vertical) if $\xi_{x} \in D_{x}\left(\operatorname{resp} \xi_{x} \in D^{\perp}{ }_{x}\right)$.
Let Riemannian metric g induced on M and ∇^{*} is induced Levi-Civita connection on M then the Guass formula is given by

$$
\begin{gather*}
\nabla_{X} Y=\nabla_{X}^{*} Y+h(X, Y) \tag{3.1}\\
\nabla_{X} N=-A_{N} X+\nabla_{X}^{\frac{1}{X}} N \tag{3.2}
\end{gather*}
$$

for any $X, Y \in T M$ and $N \in T^{\perp} M$, where ∇^{\perp} is a connection on the normal bundle $T^{\perp} M, \quad h$ is the second fundamental form \& A_{N} is the Weingarten map associated with N as

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) \tag{3.3}
\end{equation*}
$$

Any vector X tangent to M is given as

$$
\begin{equation*}
X=P X+Q X \tag{3.4}
\end{equation*}
$$

where $P X \in D$ and $Q X \in D^{\perp}$.
Similarly, for N normal to M, we have

$$
\begin{equation*}
\emptyset N=B N+C N \tag{3.5}
\end{equation*}
$$

where $B N$ (resp.CN) is tangential component (resp.normal component) of $\emptyset N$.
The Guass formula for a nearly hyperbolic cosymplectic manifold with semi-symmetric semi-metric connection is

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{3.6}
\end{equation*}
$$

For Weingarten formula putting $Y=N$ in (2.8), we have

$$
\begin{gather*}
\bar{\nabla}_{X} N=\nabla_{X} N-\eta(X) N+g(X, N) \xi \\
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N-\eta(X) N \tag{3.7}
\end{gather*}
$$

for any $X, Y \in T M$ and $N \in T^{\perp} M$, where ∇^{\perp} is a connection on the normal bundle $T^{\perp} M, h$ is the second fundamental form and A_{N} is the Weingarten map associated with N.

Some Basic lemmas

Lemma 3.1. Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection, then

$$
\begin{aligned}
& 2\left(\bar{\nabla}_{X} \emptyset\right) Y=\nabla_{X} \emptyset Y-\nabla_{Y} \emptyset X+h(X, \emptyset Y)-h(Y, \emptyset X)-\emptyset[X, Y] \\
& 2\left(\bar{\nabla}_{Y} \emptyset\right) X=\nabla_{Y} \emptyset X-\nabla_{X} \emptyset Y+h(Y, \emptyset X)-h(X, \emptyset Y)+\emptyset[X, Y]
\end{aligned}
$$

for each $X, Y \in D$.
Proof. By Gauss formulas (3.6), we have

$$
\bar{\nabla}_{X} \emptyset Y=\nabla_{X} \emptyset Y+h(X, \emptyset Y)
$$

Interchanging X and Y in above, we have

$$
\bar{\nabla}_{Y} \emptyset X=\nabla_{Y} \emptyset X+h(Y, \emptyset X)
$$

From above two equations, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \emptyset Y-\bar{\nabla}_{Y} \emptyset X=\nabla_{X} \emptyset Y-\nabla_{Y} \emptyset X+h(X, \emptyset Y)-h(Y, \emptyset X) \tag{3.8}
\end{equation*}
$$

Also, by covariant differentiation, we have

$$
\bar{\nabla}_{X} \emptyset Y=\left(\bar{\nabla}_{X} \varnothing\right) Y+\emptyset\left(\bar{\nabla}_{X} Y\right)
$$

Interchanging X and Y in above, we have

$$
\bar{\nabla}_{Y} \emptyset X=\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset\left(\bar{\nabla}_{Y} X\right)
$$

from above two equations, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \emptyset Y-\bar{\nabla}_{Y} \emptyset X=\left(\bar{\nabla}_{X} \emptyset\right) Y-\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset[X, Y] \tag{3.9}
\end{equation*}
$$

From (3.8) and (3.9), we have

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \emptyset\right) Y-\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset[X, Y]=\nabla_{X} \emptyset Y-\nabla_{Y} \emptyset X+h(X, \emptyset Y)-h(Y, \emptyset X) \\
& \left(\bar{\nabla}_{X} \emptyset\right) Y-\left(\bar{\nabla}_{Y} \emptyset\right) X=\nabla_{X} \emptyset Y-\nabla_{Y} \emptyset X+h(X, \varnothing Y)-h(Y, \emptyset X)-\emptyset[X, Y] \tag{3.10}
\end{align*}
$$

Adding (2.9) and (3.10), we obtain

$$
2\left(\bar{\nabla}_{X} \emptyset\right) Y=\nabla_{X} \emptyset Y-\nabla_{Y} \emptyset X+h(X, \emptyset Y)-h(Y, \emptyset X)-\emptyset[X, Y]
$$

Subtracting equation (3.10) from (2.9), we have

$$
2\left(\bar{\nabla}_{Y} \emptyset\right) X=\nabla_{Y} \emptyset X-\nabla_{X} \emptyset Y+h(Y, \emptyset X)-h(X, \emptyset Y)+\emptyset[X, Y]
$$

for each $X, Y \in D$.
Hence lemma is proved

Lemma 3.2. Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection, then

$$
\begin{gathered}
2\left(\bar{\nabla}_{X} \emptyset\right) Y=A_{\emptyset X} Y-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\nabla_{Y}^{\frac{1}{}} \emptyset X-\emptyset[X, Y]-\eta(X) \emptyset Y+\eta(Y) \emptyset X \\
2\left(\bar{\nabla}_{Y} \emptyset\right) X=A_{\emptyset Y} X-A_{\emptyset X} Y+\nabla_{Y}^{\frac{1}{Y}} \emptyset X-\nabla_{X}^{\frac{1}{X}} \emptyset Y+\emptyset[X, Y]+\eta(X) \emptyset Y-\eta(Y) \emptyset X
\end{gathered}
$$

for all $X, Y \in D^{\perp}$.
Proof. Using Weingarten formula (3.7), we have

$$
\bar{\nabla}_{X} \emptyset Y=-A_{\emptyset Y} X+\nabla_{X}^{\perp} \emptyset X-\eta(X) \emptyset Y
$$

Interchanging and Y, we have

$$
\bar{\nabla}_{Y} \emptyset X=-A_{\emptyset X} Y+\nabla_{Y}^{\frac{1}{Y}} \varnothing X-\eta(Y) \emptyset X
$$

From above two equations, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \emptyset Y-\bar{\nabla}_{Y} \emptyset X=A_{\emptyset X} Y-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\nabla_{Y}^{\perp} \emptyset X+\eta(Y) \emptyset X-\eta(X) \emptyset Y \tag{3.11}
\end{equation*}
$$

Comparing equation (3.9) and (3.11), we have

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \emptyset\right) Y-\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset[X, Y]=A_{\emptyset X} Y-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\nabla_{Y}^{\perp} \emptyset X+\eta(Y) \emptyset X-\eta(X) \emptyset Y \\
& \left(\bar{\nabla}_{X} \emptyset\right) Y-\left(\bar{\nabla}_{Y} \emptyset\right) X=A_{\emptyset X} Y-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\nabla_{Y}^{\frac{1}{Y}} \emptyset X-\emptyset[X, Y]+\eta(Y) \emptyset X-\eta(X) \emptyset Y \tag{3.12}
\end{align*}
$$

Adding (2.9) and (3.12), we have
$2\left(\bar{\nabla}_{X} \emptyset\right) Y=A_{\emptyset X} Y-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\nabla_{Y}^{\frac{1}{Y}} \emptyset X-\emptyset[X, Y]-\eta(X) \emptyset Y+\eta(Y) \emptyset X$
Subtracting (3.12) from (2.9), we have
$2\left(\bar{\nabla}_{Y} \emptyset\right) X=A_{\emptyset Y} X-A_{\varnothing X} Y+\nabla_{Y}^{\frac{1}{Y}} \emptyset X-\nabla_{X}^{\frac{1}{X}} \emptyset Y+\emptyset[X, Y]+\eta(X) \emptyset Y-\eta(Y) \emptyset X$
for all $X, Y \in D^{\perp}$.
Corollary 3.3. Let M be a ξ-horizontal CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semi-symmetric semi-metric connection, then

$$
\begin{aligned}
& 2\left(\bar{\nabla}_{X} \emptyset\right) Y=A_{\varnothing X} Y-A_{\emptyset Y} X+\nabla_{X}^{\perp} \emptyset Y-\nabla_{Y}^{\perp} \emptyset X-\emptyset[X, Y] \\
& 2\left(\bar{\nabla}_{Y} \emptyset\right) X=A_{\emptyset Y} X-A_{\emptyset X} Y+\nabla_{Y}^{\perp} \emptyset X-\nabla_{X}^{\perp} \emptyset Y+\emptyset[X, Y]
\end{aligned}
$$

for all $X, Y \in D^{\perp}$.
Lemma 3.4. Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection, then
$2\left(\bar{\nabla}_{X} \emptyset\right) Y=-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\nabla_{Y} \emptyset X-h(Y, \emptyset X)-\emptyset[X, Y]-\eta(X) \emptyset Y-\eta(Y) \emptyset X$
$2\left(\bar{\nabla}_{Y} \emptyset\right) X=A_{\emptyset Y} X-\nabla_{X}^{\perp} \emptyset Y+\nabla_{Y} \emptyset X+h(Y, \emptyset X)+\emptyset[X, Y]-\eta(X) \emptyset Y-\eta(Y) \emptyset X$
for all $X \in D$ and $Y \in D^{\perp}$.
Proof. By Gauss formulas (3.6), we have

$$
\bar{\nabla}_{Y} \emptyset X=\nabla_{Y} \emptyset X+h(Y, \emptyset X)
$$

Also, by Weingarten formula (3.7), we have

$$
\bar{\nabla}_{X} \emptyset Y=-A_{\emptyset Y} X+\nabla_{X}^{\perp} \emptyset Y-\eta(X) \emptyset Y
$$

From above two equations, we hav

$$
\begin{equation*}
\bar{\nabla}_{X} \emptyset Y-\bar{\nabla}_{Y} \emptyset X=-A_{\emptyset Y} X+\nabla_{X}^{\perp} \emptyset Y-\nabla_{Y} \emptyset X-h(Y, \varnothing X)-\eta(X) \emptyset Y \tag{3.13}
\end{equation*}
$$

Comparing equation (3.9) and (3.13), we have

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \emptyset\right) Y-\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset[X, Y]=-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\nabla_{Y} \emptyset X-h(Y, \emptyset X)-\eta(X) \varnothing Y \\
& \left(\bar{\nabla}_{X} \emptyset\right) Y-\left(\bar{\nabla}_{Y} \emptyset\right) X=-A_{\emptyset Y} X+\nabla_{X}^{\perp} \emptyset Y-\nabla_{Y} \emptyset X-h(Y, \emptyset X)-\emptyset[X, Y]-\eta(X) \emptyset Y \tag{3.14}
\end{align*}
$$

Adding equation (2.9) \& (3.14), we have

$$
2\left(\bar{\nabla}_{X} \emptyset\right) Y=-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\nabla_{Y} \emptyset X-h(Y, \emptyset X)-\emptyset[X, Y]-\eta(X) \emptyset Y
$$

Subtracting (3.14) from (2.9), we have

$$
2\left(\bar{\nabla}_{Y} \emptyset\right) X=A_{\emptyset Y} X-\nabla_{X}^{\frac{1}{X}} \emptyset Y+\nabla_{Y} \emptyset X+h(Y, \emptyset X)+\emptyset[X, Y]+\eta(X) \emptyset Y
$$

for all $X \in D$ and $Y \in D^{\perp}$.
Lemma 3.6. Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection, then

$$
\begin{gather*}
\emptyset P\left(\nabla_{X} Y\right)+\emptyset P\left(\nabla_{Y} X\right)=P\left(\nabla_{X} \emptyset P Y\right)+P\left(\nabla_{Y} \emptyset P X\right)-P A_{\emptyset Q Y} X-P A_{\emptyset Q X} Y \tag{3.15}\\
2 B h(X, Y)=Q\left(\nabla_{X} \emptyset P Y\right)+Q\left(\nabla_{Y} \emptyset P X\right)-Q A_{\emptyset Q Y} X-Q A_{\emptyset Q X} Y \tag{3.16}\\
\emptyset Q\left(\nabla_{X} Y\right)+\emptyset Q\left(\nabla_{Y} X\right)+2 C h(X, Y)=h(X, \emptyset P Y)+h(Y, \emptyset P X)+\nabla_{X}^{\frac{1}{X}} \emptyset Q Y+\nabla_{Y}^{\frac{1}{Y}} \emptyset Q X \\
 \tag{3.17}\\
-\eta(X) \emptyset Q Y-\eta(Y) \emptyset Q X
\end{gather*}
$$

for all $X, Y \in T M$.
Proof. From equation (3.4), we have

$$
\emptyset Y=\emptyset P Y+\emptyset Q Y
$$

Differentiating covariantly with respect to vector, we have

$$
\begin{gathered}
\bar{\nabla}_{X} \emptyset Y=\bar{\nabla}_{X}(\emptyset P Y+\emptyset Q Y) \\
\bar{\nabla}_{X} \emptyset Y=\bar{\nabla}_{X} \emptyset P Y+\bar{\nabla}_{X} \emptyset Q Y \\
\left(\bar{\nabla}_{X} \emptyset\right) Y+\emptyset\left(\bar{\nabla}_{X} Y\right)=\bar{\nabla}_{X} \emptyset P Y+\bar{\nabla}_{X} \emptyset Q Y
\end{gathered}
$$

Using equations (3.6) and (3.7) in above, we have
$\left(\bar{\nabla}_{X} \emptyset\right) Y+\emptyset\left(\nabla_{X} Y\right)+\emptyset h(X, Y)=\nabla_{X} \emptyset P Y+h(X, \emptyset P Y)-A_{\emptyset Q Y} X+\nabla_{X}^{\perp} \emptyset Q Y-\eta(X) \emptyset Q Y$
Interchanging $X \& Y$, we have

$$
\begin{gather*}
\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset\left(\nabla_{Y} X\right)+\emptyset h(Y, X)=\nabla_{Y} \emptyset P X+h(Y, \emptyset P X)-A_{\emptyset Q X} Y+\nabla_{Y}^{\perp} \emptyset Q X \tag{3.18}\\
-\eta(Y) \emptyset Q X \tag{3.19}
\end{gather*}
$$

Adding equations (3.18) \& (3.19), we have

$$
\begin{align*}
\left(\bar{\nabla}_{X} \emptyset\right) Y & +\left(\bar{\nabla}_{Y} \emptyset\right) X+\emptyset\left(\nabla_{X} Y\right)+\emptyset\left(\nabla_{Y} X\right)+2 \emptyset h(X, Y)=\nabla_{X} \emptyset P Y+\nabla_{Y} \emptyset P X+h(X, \emptyset P Y)+h(Y, \emptyset P X) \\
& \quad-A_{\emptyset Q Y} X-A_{\emptyset Q X} Y+\nabla_{X}^{\perp} \emptyset Q Y+\nabla_{Y}^{\perp} \emptyset Q X-\eta(X) \emptyset Q Y-\eta(Y) \emptyset Q X \tag{3.20}
\end{align*}
$$

By Virtue of (2.9) \& (3.19), we have

$$
\begin{aligned}
\emptyset\left(\nabla_{X} Y\right)+\emptyset\left(\nabla_{Y} X\right)+2 \emptyset h(X, Y) & =\nabla_{X} \emptyset P Y+\nabla_{Y} \emptyset P X+h(X, \emptyset P Y)+h(Y, \emptyset P X)-A_{\emptyset Q X} Y-A_{\emptyset Q Y} X \\
& +\nabla_{X}^{\perp} \emptyset Q Y+\nabla_{Y}^{\perp} \emptyset Q X-\eta(X) \emptyset Q Y-\eta(Y) \emptyset Q X
\end{aligned}
$$

Using equations (3.4) and (3.5) in above, we have
$\left.\emptyset P\left(\nabla_{X} Y\right)+\emptyset Q\left(\nabla_{X} Y\right)+\emptyset P\left(\nabla_{Y} X\right)+\emptyset Q\left(\nabla_{Y} X\right)\right)+2 B h(X, Y)+2 C h(X, Y)=P\left(\nabla_{X} \emptyset P Y\right)+Q\left(\nabla_{X} \emptyset P Y\right)+$
$P\left(\nabla_{Y} \emptyset P X\right)+Q\left(\nabla_{Y} \emptyset P X\right)+h(X, \emptyset P Y)+h(Y, \emptyset P X)-P A_{\emptyset Q Y} X-Q A_{\emptyset Q Y} X-P A_{\emptyset Q X} Y-Q A_{\emptyset Q X} Y+\nabla_{X}^{\perp} \emptyset Q Y+$ $\nabla_{Y}^{\perp} \emptyset Q X-\eta(X) \emptyset Q Y-\eta(Y) \emptyset Q X$
Comparing horizontal, vertical and normal components, we get desired result.

IV. Parallel Distribution

Definition 4.1. The horizontal (resp. vertical) distribution D (resp. D^{\perp}) is said to be parallel [13] with respect to the connection on M if $\nabla_{X} Y \in D$ (resp. $\nabla_{Z} W \in D^{\perp}$) for any vector field $X, Y \in D$ (resp. $W, Z \in D^{\perp}$).
Theorem 4.2. Let M be a ξ-vertical CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semi-symmetric semi-metric connection. If horizontal distribution D is parallel, then

$$
\begin{equation*}
h(X, \emptyset Y)=h(Y, \emptyset X) \tag{4.1}
\end{equation*}
$$

for all $X, Y \in D$.
Proof. Let $X, Y \in D$, as D is parallel distribution, then

$$
\nabla_{X} \emptyset Y \in D \quad \& \quad \nabla_{Y} \emptyset X \in D
$$

Then, from (3.16), we have
$2 B h(X, Y)=Q\left(\nabla_{X} \emptyset P Y\right)+Q\left(\nabla_{Y} \emptyset P X\right)-Q A_{\emptyset Q Y} X-Q A_{\emptyset Q X} Y$
As Q being a projection operator on D^{\perp} then we have

$$
\begin{equation*}
2 B h(X, Y)=0 \tag{4.2}
\end{equation*}
$$

From equations (3.5) and (4.2), we have

$$
\begin{equation*}
\emptyset h(X, Y)=\operatorname{Ch}(X, Y) \quad \text { for all } X, Y \in D \tag{4.3}
\end{equation*}
$$

Now, from equation (3.17), we have

$$
\begin{aligned}
\emptyset Q\left(\nabla_{X} Y\right)+\emptyset Q\left(\nabla_{Y} X\right)+2 C h(X, Y) & =h(X, \emptyset P Y)+h(Y, \emptyset P X)+\nabla_{X}^{\frac{1}{X}} \emptyset Q Y+\nabla_{Y}^{1} \emptyset Q X \\
& -\eta(X) \emptyset Q Y-\eta(Y) \emptyset Q X
\end{aligned}
$$

As Q being a projection operator on D^{\perp} then we have

$$
2 C h(X, Y)=h(X, \emptyset P Y)+h(Y, \emptyset P X)
$$

Using equation (4.3) in above, we have

$$
\begin{equation*}
h(X, \emptyset P Y)+h(Y, \emptyset P X)=2 \emptyset h(X, Y) \tag{4.4}
\end{equation*}
$$

Replacing X by $\emptyset X$ in (4.4), we have

$$
h(\emptyset X, \varnothing Y)+h\left(Y, \emptyset^{2} X\right)=2 \emptyset h(\varnothing X, Y)
$$

Using equation (2.1) in above, we have

$$
\begin{equation*}
h(\varnothing X, \varnothing Y)+h(Y, X)=2 \emptyset h(\varnothing X, Y) \tag{4.5}
\end{equation*}
$$

Replacing Y by $\emptyset Y$ \& using (2.1) in (4.4), we have

$$
\begin{equation*}
h(X, Y)+h(\emptyset Y, \emptyset X)=2 \emptyset h(X, \emptyset Y) \tag{4.6}
\end{equation*}
$$

By Virtue of (4.5) and (4.6), we have

$$
h(X, \emptyset Y)=h(Y, \emptyset X)
$$

for all $X, Y \in D$.
Theorem 4.3. Let M be a ξ-vertical CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semi-symmetric semi-metric connection. If horizontal distribution D is parallel with respect to connection on M, then

$$
\begin{equation*}
A_{\varnothing X} Y+A_{\varnothing Y} X \in D^{\perp} \tag{4.7}
\end{equation*}
$$

for all $X, Y \in D^{\perp}$.
Proof: Let $X, Y \in D^{\perp}$, from Weingarten formula (3.7), we have

$$
\bar{\nabla}_{X} \emptyset Y=-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\eta(X) \emptyset Y
$$

$$
\left(\bar{\nabla}_{X} \emptyset\right) Y+\emptyset\left(\bar{\nabla}_{X} Y\right)=-A_{\emptyset Y} X+\nabla_{X}^{\frac{1}{X}} \emptyset Y-\eta(X) \emptyset Y
$$

Using Gauss equation (3.6) in above, we have

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \emptyset\right) Y+\emptyset\left(\nabla_{X} Y\right)+\emptyset h(X, Y)=-A_{\emptyset Y} X+\nabla_{X}^{\perp} \emptyset Y-\eta(X) \emptyset Y \\
\left(\bar{\nabla}_{X} \emptyset\right) Y= & -A_{\emptyset Y} X+\nabla_{X} \emptyset Y Y-\emptyset\left(\nabla_{X} Y\right)-\emptyset h(X, Y)-\eta(X) \emptyset Y \tag{4.8}
\end{align*}
$$

Interchanging $X \& Y$ in (4.8), we have

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} \emptyset\right) X=-A_{\varnothing X} Y+\nabla_{Y}^{\perp} \emptyset X-\eta(Y) \emptyset X-\emptyset\left(\nabla_{Y} X\right)-\emptyset h(Y, X) \tag{4.9}
\end{equation*}
$$

Adding equations (4.8) and (4.9), we have

$$
\begin{array}{r}
\left(\bar{\nabla}_{X} \varnothing\right) Y+\left(\bar{\nabla}_{Y} \emptyset\right) X=-A_{\emptyset Y} X-A_{\varnothing X} Y+\nabla_{X}^{\perp} \varnothing Y+\nabla_{Y}^{\perp} \emptyset X-\emptyset\left(\nabla_{X} Y\right)-\emptyset\left(\nabla_{Y} X\right) \\
-\eta(X) \emptyset Y-\eta(Y) \varnothing X-2 \emptyset h(X, Y) \tag{4.10}
\end{array}
$$

Using equation (2.9) in (4.10), we have

$$
\begin{equation*}
0=-A_{\emptyset Y} X-A_{\varnothing X} Y+\nabla_{X}^{\frac{1}{X}} \varnothing Y+\nabla_{Y}^{\frac{1}{Y}} \emptyset X-\emptyset\left(\nabla_{X} Y\right)-\emptyset\left(\nabla_{Y} X\right)-\eta(X) \emptyset Y-\eta(Y) \emptyset X-2 \emptyset h(X, Y) \tag{4.11}
\end{equation*}
$$

Taking inner product with $Z \in D$ in (4.11), we have

$$
\begin{gather*}
0=-g\left(A_{\emptyset Y} X, Z\right)-g\left(A_{\emptyset X} Y, Z\right)+g\left(\nabla_{X}^{\perp} \emptyset Y, Z\right)+g\left(\nabla_{Y}^{\perp} \emptyset X, Z\right)-g\left(\emptyset\left(\nabla_{X} Y\right), Z\right)-g\left(\varnothing\left(\nabla_{Y} X\right), Z\right) \\
\\
-2 g(\varnothing h(X, Y), Z)-\eta(X) g(\varnothing Y, Z)-\eta(Y) g(\varnothing X, Z) \tag{4.12}\\
g\left(A_{\varnothing Y} X+A_{\emptyset X} Y, Z\right)=-g\left(\varnothing\left(\nabla_{X} Y\right), Z\right)-g\left(\emptyset\left(\nabla_{Y} X\right), Z\right)
\end{gather*}
$$

If D^{\perp} is parallel then $\nabla_{X} Y \in D^{\perp}$ and $\nabla_{Y} X \in D^{\perp}$, so from equation (4.12), we have

$$
g\left(A_{\varnothing Y} X+A_{\emptyset X} Y, Z\right)=0
$$

Consequently, we have

$$
A_{\varnothing Y} X+A_{\varnothing X} Y \in D^{\perp} \quad \text { for all } X, Y \in D^{\perp}
$$

Hence lemma is proved.
Definition 4.4. A CR-submanifold is said to be mixed totally geodesic if $h(X, Y)=0$, for all $X \in D$ and $Y \in$ D^{\perp}.
Definition 4.5. A Normal vector field $N \neq 0$ is called D - parallel normal section if $\nabla_{\frac{1}{X}} N=0$,for all $X \in D$.
Lemma 4.6. Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection. Then M is a mixed totally geodesic if and only if $A_{N} X \in D$ for all $X \in D$.
Proof. Let $A_{N} X \in D$ for all $X \in D$.
Now, from equation (3.3), we have
$g(h(X, Y), N)=g\left(A_{N} X, Y\right)=0, \quad$ for $Y \in D^{\perp}$.
Which is equivalent to $\quad h(X, Y)=0$
Hence M is totally mixed geodesic.
Conversely, Let M is totally mixed geodesic.
That is

$$
h(X, Y)=0
$$

for $X \in D$ and $Y \in D^{\perp}$.

Now, from equation (3.3), we have
Now, $\quad g(h(X, Y), N)=g\left(A_{N} X, Y\right)$.
This implies that $\quad g\left(A_{N} X, Y\right)=0$
Consequently, we have

$$
A_{N} X \in D, \text { for all } Y \in D^{\perp}
$$

Hence lemma is proved.
Theorem 4.7. Let M be a mixed totally geodesic CR-submanifold of a nearly hyperbolic cosymplectic \bar{M} with semi-symmetric semi-metric connection. Then the normal section $N \in \emptyset D^{\perp}$ is D parallel if and only if

$$
\nabla_{X} \emptyset N \in D \text { for all } X \in D \& Y \in D^{\perp} .
$$

Proof. Let $\in \emptyset D^{\perp}, X \in D$ and $Y \in D^{\perp}$, then from (3.16), we have
$2 B h(X, Y)=Q\left(\nabla_{X} \emptyset P Y\right)+Q\left(\nabla_{Y} \emptyset P X\right)-Q A_{\emptyset Q Y} X-Q A_{\emptyset Q X} Y$
For mixed totally geodesic, we have from above equation

$$
Q \nabla_{Y} \emptyset X=0, \quad \text { for } X \in D .
$$

In particular, we have

Using it in (3.17), we have

$$
\begin{gather*}
Q \nabla_{Y} X=0 . \tag{4.13}\\
\emptyset Q \nabla_{X} Y=\nabla_{X}^{\frac{1}{X}} \emptyset Y . \\
\emptyset Q \nabla_{X} \emptyset N=\nabla_{X}^{\frac{1}{X}} N \tag{4.14}
\end{gather*}
$$

Thus, if the normal section $N \neq 0$ is D-parallel, then using "definition 4.5" and (4.14), we have

$$
\emptyset \nabla_{X}(\varnothing N)=0 .
$$

Which is equivalent to

$$
\nabla_{X} \emptyset N \in D, \quad \text { for all } X \in D
$$

The converse part easily follows from (4.14). This completes the proof of the theorem.
Hence the theorem is proved.

References

[1] A. Bejancu, CR- submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69, (1978), 135-142.
[2] A. Bejancu, CR- submanifolds of a Kaehler manifold II, Trans. Amer. Math. Soc., 250, (1979), 333-345.
[3] C.J. Hsu, On CR-submanifolds of Sasakian manifolds I, Math. Research Centre Reports, Symposium Summer ,(1983), 117-140.
[4] C. Ozgur, M. Ahmad and A. Haseeb, CR-submanifolds of LP-Sasakian manifolds with semi-symmetric metric connection, Hacettepe J. Math. And Stat., vol. 39 (4), (2010), 489-496.
[5] Lovejoy S.K. Das and M. Ahmad, CR-submanifolds of LP-Sasakian manifolds with quarter symmetric non-metric connection, Math. Sci. Res. J. 13 (7), (2009), 161-169.
[6] M. Ahmad and Kasif Ali, CR-submanifold of a nearly hyperbolic cosymplectic manifold, IOSR Journal of Mathematics (IOSRJM) Vol 6, Issue 3 (May. - Jun. 2013), PP 74-77.
[7] M. Ahmad, M.D. Siddiqi and S. Rizvi, CR-submanifolds of a nearly hyperbolic Sasakian manifold admitting semi-symmetric semimetric connection, International J. Math. Sci. \& Engg. Appls., Vol. 6 ,(2012), 145-155.
[8] M. Ahmad and J.P. Ojha, CR-submanifolds of LP-Sasakian manifolds with the canonical semi-symmetric semi-metric connection, Int. J. Contemp. Math. Science, vol. 5 ,no. 33, (2010), 1637-1643.
[9] M.D. Upadhyay and K.K. Dube, Almost contact hyperbolic ϕ,,, -structure, Acta. Math. Acad. Scient. Hung. Tomus , 28 (1976), 1-4. [10] M. Kobayashi, CR-submanifolds of a Sasakian manifold, Tensor N.S. , 35 (1981), 297-307.

