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Abstract: In this paper, the fuzzy variational formulation will be introduced and derived. This paper is about 

studying variational problems with fuzzy functions, fuzzy condition and fuzzy boundaries by using different 

approaches for defuzzification, such as centroid method, 𝛼-cut method, centroid point and expected interval in 

which fuzzy sets have been transformed into crisp sets and finding the necessary conditions for extremizing the 

fuzzy variational problems with fuzzy function and fuzzy boundaries. 
 

I. Introduction: 
Historically, the accepted birth date of the theory of fuzzy sets returns to 1965, when the first article 

entitled “fuzzy sets” submitted by Zadeh appeared in the journal of information and control. Also, the term 
“fuzzy” was introduced and coined by Zadeh for the first time, [2]. In which the original definition of fuzzy sets 

is to consider a class of objects with a continuum grades of membership, such a set is characterized by a 

membership (or characteristic) function which assigns to each object a grade of membership value ranging 

between zero and one. As the membership value approaches unity, the grade of membership of an event in the 

fuzzy set becomes higher. For example, the unit membership value indicates that the event x is strictly contained 

in the fuzzy set, and on the other hand, the zero membership value indicate strictly that x is strictly does not 

belong to the fuzzy set. Any intermediate value would reflects the degree on which x could be a member of the 

fuzzy set, [2]. 

In addition, the history of the calculus of variation is tightly interwoven with the history of 

mathematics. The field has drawn the attention of a remarkable range of mathematical luminaries, beginning 
with Newton, then initiated as a subject in its own right by the Bernoulli family. The first major developments 

appeared in the work of Euler, Lagrange and Laplace. In the nineteenth century, Hamilton, Dirichlet and Hilbert 

are among the outstanding contributors. In modern times, the subject of calculus of variations has continued to 

occupy center stage, witnessing major theoretical advances, along with wide-ranging applications in physics, 

engineering and all branches of mathematics, [17].  

Calculus of variation is a branch of mathematics dealing with the optimization of physical quantities 

(such as time, area, or distance). It finds applications in many fields, such as aeronautics (maximizing the lift of 

an airplane wing), sporting equipment design (minimizing air resistance on a bicycle helmet, optimizing the 

shape of a ski), mechanical engineering (maximizing the strength of a column, a dam, or an arch), boat design 

(optimizing the shape of a boat hull), physics (calculating trajectories and geodesics in both classical mechanics 

and general relativity), [13]. 

A huge amount of problems in the calculus of variations have their origin in physics where one has to 
minimize the energy associated to the problem under consideration. Nowadays, many problems come from 

economics. Here is the main point that the resources are restricted. There is no economy without restricted 

resources, [13]. 

Minimization principles form one of the most wide-ranging means of formulating mathematical models 

governing the equilibrium configurations of physical systems. Moreover, many popular numerical integration 

schemes such as the powerful finite element method are also founded upon a minimization paradigm, [17]. 

 

II. Preliminaries: 
Fuzzy set theory is a generalization of abstract set theory; it has a wider scope of applicability than 

abstract set theory for solving problems that involve to some degree subjective evaluation [2]. Zadeh in 1965 

[3], suggested a modified set theoretical approach in which an individual may have a degree of membership 

value which is ranged over a continuum grade of values ranging between 0 and 1, rather than exactly 0 or 1. 

The subjects of calculus of variation is concerned with solving extremal problems for a functionals. 

That is to say the maximum and minimum problems for functions whose domain contains functions, Y(x) (or 

Y(x0 ,··· x1), or n-tuples of functions). The range of the functional will be the real numbers R, [12]. 

In this section, the basic concepts, definitions and theorems related to fuzzy set theory and variational 

problems will be introduced. 
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Definition (2.1), [3]: 
Let Xbe a classical set of objects, called the universal set, whose generic elements are denoted by x. The 

membership in a classical subset A of X is often viewed as a characteristic function 
A

 from X into {0, 1}, such 

that: 


A
 x =  

1, ifx ∈ A
0, ifx ∉ A

  

{0, 1} is called a valuation set. If the valuation set is allowed to be the real interval [0, 1], then A is called a 

fuzzy set (which is denoted by A ), and 
A 
 x  is the grade of membership of x inA . 

Definition (2.2), [10]: 

A fuzzy number is a fuzzy set like M : R → I = [0, 1] which satisfies: 

1. M  is upper semi-continous, 

2. M  x = 0 outside some interval [a, d], 

3. There are real numbers a, d such that a ≤ b ≤ c ≤ d and 

a. M (x) is monotonic increasing on [a, b], 
b. M (x) is monotonic decreasing on [c, d], 
c. M  x = 1, b ≤ x ≤ c. 

The membership function of M  may be expressed as: 

μ x =

 
 

 
M L x , a ≤ x ≤ b,

1, b ≤ x ≤ c,

M R x , c ≤ x ≤ d,
0, otherwise

  

whereM L ∶  a, b → [0, 1] and M R :  c, d → [0, 1] are left and right membership functions of fuzzy number M . 

 

Definition (2.3), [24]: 

 Let f ∶  [a, b]  → RFand x0 ∈ (a, b) with f(x, α) and f(x, α) both differentiable at x0. 

−fis (i)-gH-differentiable at x0 if: 

 i fgH
′  x0  α =   f 

′
 x0 , α ,  f 

′
 x0 , α  , ∀α ∈ [0, 1] 

−fis (ii)-gH-differentiable at x0 if: 

(ii)fgH
′  x0  α =   f 

′
 x0 , α ,  f 

′
 x0 , α  , ∀α ∈ [0, 1] 

It is possible that f ∶  [a, b]  → RFis gH-differentiable at x0 and not (i)-gHdifferentiable nor (ii)-gH-

differentiable. 

 

Definition (2.4), [14]: 

Let R be the set of real numbers and Ω a set of functions. Then the function J ∶  Ω → R is called a functional. 

Lemma (2.1), [12]: 

Let M(x) ∈ Cn x0 , x1 , 0 ≤ n ≤ ∞. If  M x η x dx = 0
x1

x0
for all η(x) such that η x0 =  η x1 =  0, η x ∈

Cn ,  on [x0 , x1] then M(x)  =  0 at all points of continuity. 

Theorem (2.1), [14]:   
A necessary condition for 

J y =  F x, y, y′ dx
x1

x0

 

withy x0 = y0and y x1 = y1, to have an extremum at y is that y is a solution of 
∂F

∂y
−

d

dx

∂F

∂y′
= 0 

withx0 < x < x1 and F = F(x, y, y′). This is known as the Euler-Lagrange equation. 

 

III. Variational Problems with Fuzzy Integrands: 
In this section, variational problem with fuzzy function and variational problem with fuzzy boundary conditions 

are investigated. 

3.1 Unconstrained Fuzzy Variational Problem with Fuzzy Function: 

Consider the fuzzy variational problem (FVP) with fuzzy function y : A → B, which is to minimize the 

functional:  

J y  =   F x, y , y ′ dx
x1

x0
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whereA and B are subsets of R, x0 and x1are crisp fixed points and the boundary conditions y  x0 = y0 and 

y  x1 = y1 are fixed fuzzy number. The goal of FVP is to find an admissible fuzzy curve y ∗in a fuzzy weak 

neighborhood, if any exists, such that minimize J. The fuzzy curve y ∗ =  y ∗(x) is a minimizing curve for the 

FVP if for all admissible fuzzy curves y ∗in the fuzzy weak neighborhood, i.e., 

J y  ≥ J y ∗  
Corresponding to definition (1.9) and lemma (1.1) the fuzzy Euler-Lagrange conditions occur in the following 

two cases, [23]: 

Case (i): F is (i)-gH differentiable ((ii)-gH differentiable) with respect to y andy′ .  

∂F

∂y
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α −

d

dx
 
∂F

∂y′
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α  = 0 

∂F

∂y
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α −

d

dx
 
∂F

∂y
′  y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α  = 0 

∂F

∂y
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α −

d

dx
 
∂F

∂y′
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α  = 0 

∂F

∂y
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α −

d

dx
 
∂F

∂y
′  y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α  = 0 

Case (ii):F is (i)-gH differentiable ((ii)-gH differentiable) with respect to y and (ii)-gH differentiable ((i)-gH 

differentiable) with respect to y′ . 

∂F

∂y
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α −

d

dx
 
∂F

∂y′
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α  = 0 

∂F

∂y
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α −

d

dx
 
∂F

∂y
′  y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α  = 0 

∂F

∂y
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α −

d

dx
 
∂F

∂y′
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α  = 0 

∂F

∂y
 y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α −

d

dx
 
∂F

∂y
′  y∗,  y∗ 

′

, y
∗
, (y

∗
)′ , x, α  = 0 

 

3.2 Constrained Fuzzy Variational Problem with Fuzzy Function: 
The problem involving minimization of a fuzzy functional with fuzzy integral constraints is called the 

constrained fuzzy variational problemand it is stated as follows: 

MinimizeJ y  =   F x, y , y ′ dx
x1

x0
 

Subject to I y  =   H x, y , y ′ dx
x1

x0
≈ c 

y  x0 ≈ y0 , y (x1) ≈ y1 

wherec is a given fuzzy number. 

According to definition (1.9), and therefore, eight cases can be occur, [23]: 

Case (i):Fand Hare both (i)-gH differentiable ((ii)-gH differentiable) with respect to yand y′ . In this case, for all 

α ∈ [0, 1], we have: 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y′
 F z + λ1H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y
′  F z + λ2H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y′
 F z + λ2H z   = 0 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y
′  F z + λ1H z   = 0 
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Wherez = (y∗, (y∗)′ , y
∗
, (y

∗
)′ , x, α) and  λ1,λ1,λ2 and λ2 . 

Case (ii):H, F with respect to yand F with respect to with respect to y′  are both (i)-gH differentiable ((ii)-gH 

differentiable) and H is (ii)-gH differentiable ((i)-gH differentiable) with respect to y′ . 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y′
 F z + λ1H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y
′  F z + λ2H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y′
 F z + λ2H z   = 0 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y
′  F z + λ1H z   = 0 

Case (iii): H with respect to yand y′  is (ii)-gH differentiable ((i)-gH differentiable) and F is (i)-gH differentiable 

((ii)-gH differentiable) with respect to yand y′  . 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y′
 F z + λ1H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y
′  F z + λ2H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y′
 F z + λ2H z   = 0 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y
′  F z + λ1H z   = 0 

Case (iv):H, F with respect to y′  and F with respect to yare both (i)-gH differentiable ((ii)-gH differentiable) and 

H is (ii)-gH differentiable ((i)-gH differentiable) with respect to y. 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y′
 F z + λ1H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y
′  F z + λ2H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y′
 F z + λ2H z   = 0 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y
′  F z + λ1H z   = 0 

Case (v):H, F with respect to yand H with respect to y′  are both (i)-gH differentiable ((ii)-gH differentiable) and 

F is (ii)-gH differentiable ((i)-gH differentiable) with respect to y′ . 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y′
 F z + λ1H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y
′  F z + λ2H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y′
 F z + λ2H z   = 0 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y
′  F z + λ1H z   = 0 
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Case (vi):H, F with respect to yare both (i)-gH differentiable ((ii)-gH differentiable) and H, F are both (ii)-gH 

differentiable ((i)-gH differentiable) with respect to y′ . 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y′
 F z + λ1H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y
′  F z + λ2H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y′
 F z + λ2H z   = 0 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y
′  F z + λ1H z   = 0 

Case (vii): h with respect to y′  and F with respect to y are both (i)-gH differentiable ((ii)-gH differentiable) and 

Hwith respect to y and F with respect to y′   are both (ii)-gH differentiable ((i)-gH differentiable). 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y′
 F z + λ1H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y
′  F z + λ2H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y′
 F z + λ2H z   = 0 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y
′  F z + λ1H z   = 0 

Case (viii):g with respect to yis (i)-gH differentiable ((ii)-gH differentiable) and H, F with respect to y′and H 

with respect to yare both (ii)-gH differentiable ((i)-gH differentiable). 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y′
 F z + λ1H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y
′  F z + λ2H z   = 0 

∂

∂y
 F z + λ2H z  −

d

dx
 
∂

∂y′
 F z + λ2H z   = 0 

∂

∂y
 F z + λ1H z  −

d

dx
 
∂

∂y
′  F z + λ1H z   = 0 

 

IV. Variational Problems with Fuzzy Boundary Conditions: 
In this section, the variational problems with fuzzy boundary conditions is investigated. 

 

4.1The Centroid Method for Defuzzification: 

 The centroid method is the most popular methodfor defuzzification, i.e., transforming fuzzy problems 

into nonfuzzy problems, [27]. 

This method determines the centre of the area of the combined membership functions [33]. 

We use this approach when the fuzzy numberx 1is the union of two or more fuzzy numbers. So, the fuzzy 

number x 1 = [a1 , a2, a3 , a4]will be transformed into a crisp number x∗, by using the centroid method as follows: 

x∗ =
 μx 1

(t) t dt
x 1

 μx 1
(t)  dt

x 1

, a1 ≤ t ≤ a4 

where   
x 1

means that the integration of the membership function is carried over each line segment of the 

produced union fuzzy number. 
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Example (4.1): 

To find the minimum of the functional: 

J y =   −(y′)2  dx
x 1

0
                     (4.1) 

with 

y 0 ≈ 2 =  0, 2, 4 ,    y x 1 ≈ 4 =  2, 4, 6  
with x 1 = A1 ∪ A2 ∪ A3, where A1 =< 0, 1, 4, 5 >, A2 =< 3, 4, 6, 7 >, 

A3 =< 5, 6, 7, 8 >, then: 

 

 

 

 
   

 

 

 

 

 

 

 

 

 

 

 
 

 

x∗ =
 μx 1

(x) t dt
x 1

 μx 1
(x)  dt

x 1

, 0 ≤ x ≤ 8 

x∗ =    0.3 x xdx +
1

0

  0.3 x  dx +
3.6

1

  
x − 3

2
 xdx +

4

3.6

  0.5 xdx +
5.5

4

  x − 5 xdx +
6

5.5

 xdx
7

6

+  8 − x xdx
8

7

  

÷    0.3 x dx +
1

0

  0.3 dx +
3.6

1

  
x − 3

2
 dx +

4

3.6

  0.5 dx +
5.5

4

  x − 5  dx +
6

5.5

 dx +
7

6

  8 − x dx
8

7

 

= 4.9 
By representing the endpoint conditions in its α −cut sets: 

2α = [ 2,
1

α
2], 4α = [ 4,

1

α
 4] 

usingx∗which is a crisp number, thenequation (4.1) becomes: 

J y =   −(y′)2  dx
4.9

0

 

with 

y 0 ≈ 2 ,    y 4.9 ≈ 4  
then: 

y x = c1  x + c2 
Using the boundary conditions: 

c1 = 0.41 , c1 = 0.41
1


 

hence: 

y x, α = 0.41 x + 2 , y x, α = 0.41
1


 x + 2

1

α
 

Then: 

y(x)α =  y x, α , y x, α  =  0.41 x + 2 , 0.41
1


 x + 2

1

α
  

defines the α-level sets of a fuzzy number which minimizes J. 
 

4.2The Expected Interval for Defuzzification: 
 The interval of defuzification can be used as a crisp approximation set with respect to a fuzzy number 

or any fuzzy quantity. 

    𝜇 

  1  

 .5 

 

 .3 

 

 

 

    1       2       3       4    𝑥∗5       6       7       8 

Fig.(3.1) Membership function of example (3.1) 
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The α-cut of a fuzzy number x 1 (for simplicity set A = x 1) is, [28]: 

Aα =  A α , A α  , 
whereα ∈ [0, 1] and : 

A = inf x ∈ R: μA ≥ α ,A = sup x ∈ R: μA ≥ α , 
The expected interval EI(A) of a fuzzy number Ais defined by: 

EI A =  E∗ A , E∗ A  = [ A α  dα,
1

0

 A α  dα
1

0

] 

Fuzzy numbers with simple membership functions are preferred in practice. The most used such fuzzy numbers 

are the trapezoidal fuzzy numbers. A trapezoidal fuzzy number T, Tα =  T α , T α  , α ∈ [0, 1], is given by: 

T α = x1 +  x2 − x1 αandT α = x4 +  x4 − x3 α,  
where x1 , x2 , x3 , x4 ∈ R, x1 ≤ x2 ≤ x3 ≤ x4. When x2 = x3, we obtain a triangular fuzzy number. We denote: 

T = [x1 , x2 , x3 , x4], 
a trapezoidal fuzzy number and by FT R  the set of all trapezoidal fuzzy numbers. The expected interval for a 

trapezoidal fuzzy number T is: 

EI T =  
x1 + x2

2
,
x3 + x4

2
  

Example (4.2): 

Find the minimum of: 

J y =   −(y′)2  dx
x 1

0
(4.2) 

with 

y 0 ≈ 2 =  0, 2, 4 ,    y x 1 ≈ 4 =  2, 4, 6  
wherex 1 = [0, 1, 3, 4]is a trapezoidal fuzzy number. 

EI x 1 =  
0 + 1

2
,
3 + 4

2
 =  0.5, 3.5 = x∗ 

usingEI x 1  which is a crisp number, then equation (4.2) becomes: 

J y =   −(y′)2  dx
x∗

0

 

with 

yα 0 ≈ 2α ≈ [ 2,
1

α
 2],    yα x

∗ ≈ 4α ≈ [ 4,
1

α
 4] 

then: 

y x = c1  x + c2 
Using the boundary conditions: 

c1 = 4α, c1 = 0.57 α 

hence: 

y x, α = 4 x + 2 , y x, α = 0.57
1


 x + 2

1

α
 

Then: 

y(x)α =  y x, α , y x, α  =  4 x + 2 , 0.57
1


 x + 2

1

α
  

defines the α-level sets of a fuzzy number which minimizes J. 
 

4.3 Centroid Point Method for Defuzzification: 

 This method is used for extended fuzzy number. An extended fuzzy number A  is described as any 

fuzzy subset of the universe set U with membership function μA  defined as follow: 

 μA is a continuous mapping from U to the closed interval  0, w , 0 < 𝑤 ≤ 1. 

 μA (x) = 0, for all x ∈ (−∞, a1]. 
 μA is strictly increasing between [a1, a2]. 
 μA (x) = w, for all x ∈ [a2 , a3], w is a constant and 0 < 𝑤 ≤ 1. 

 μA is strictly decreasing between [a3, a4]. 
 μA (x) = 0, for all x ∈ [a1 , +∞]. 
In the above situations a1 , a2 , a3 and a4are real numbers. If a1 = a2 =  a3 =  a4, A becomes a crisp real number. 

The membership function μA  of the extended fuzzy number A  may be expressed as: 
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μA =

 
 
 

 
 fA 

L x , when a1 ≤ x ≤ a2

w, when a2 ≤ x ≤ a3

fA 
R x , when a3 ≤ x ≤ a4

0,                         otherwise

  

wherefA 
L x :  a1 , a2 ⟶ [0, w] and fA 

R x :  a3, a4 ⟶ [0, w]. Based on the basic theories of fuzzy numbers, is a 

normal fuzzy number if w = 1, whereas A is a non-normal fuzzy number if 0 < 𝑤 ≤ 1. Therefore, the extended 

fuzzy number A can be denoted as [a1, a2 , a3 , a4; w]. The image−A  ofA  can be expressed 

by[−a1, −a2 ,−a3 ,−a4; w]. 
If x 1 is extended fuzzy number, let gx 1

L  y :  0, w → [a1, a2] and gx 1

R  y :  0, w → [a3 , a4] be the inverse 

functions of fx 1

L andfx 1

R , respectively. Then gx 1

L (y) and gx 1

R (y) should be integrable on the closed interval [0, w]. 

In the other words, both  gx 1

L  y  dy
w

0
and  gx 1

R  y  dy
w

0
should exist. 

In the case of trapezoidal fuzzy number, the inverse functions gx 1

L (y) and gx 1

R (y) can be analytically expressed 

as: 

gx 1

L  y = a1 +
 a2−a1 y

w
, 0 ≤ y ≤ wandgx 1

R  y = a4 +
 a4−a3  y

w
, 0 ≤ y ≤ w. 

In order to determine the centroid point (x0(x 1), y
0

(x 1)) of a fuzzy number x 1.provided the following centroid 

formulae, [27]: 

x0 x 1 =
 x fx 1

L  x  dx +  (x w) dx +  x fx 1

R  x  dx
a4

a3

a3

a2

a2

a1

 fx 1

L  x  dx +  (w) dx +  fx 1

R  x  dx
a4

a3

a3

a2

a2

a1

 

y
0
 x 1 =

 y gx 1

R  y − gx 1

L (y) dy
w

0

  gx 1

R  y − gx 1

L (y) dy
w

0

 

For this trapezoidal fuzzy number, the following results are derived from(3.5) and (3.6), 

x0 =
1

3
 a1 + a2 + a3 + a4 −

a4a3 − a1a2

(a4 + a3) − (a1−a2)
  

y
0

= w
1

3
 1 +

a3 − a2

(a4 + a3) − (a1−a2)
  

 

Example (4.3): 
To find the minimum of the functional: 

J y =   −(y′)2  dx
x 1

0
(4.3) 

with 

y 0 = 2 =  0, 2, 4 , y x 1 = 4 =  2, 4, 6  
wherex 1 =  0, 1, 3, 4; 1 is a trapezoidal fuzzy number, then the centroid point (x0(x 1), y

0
(x 1)) of a fuzzy 

number x 1 is: 

x0 =
1

3
 a1 + a2 + a3 + a4 −

a4a3 − a1a2

(a4 + a3) − (a1−a2)
  

=
1

3
 0 + 1 + 3 + 4 −

 4  3 −  0  1 

 4 + 3 −  0 + 1 
 = 3.33 

y
0

= w
1

3
 1 +

a3 − a2

(a4 + a3) − (a1−a2)
  

= (1)
1

3
 1 +

3 − 1

 4 + 3 −  0 − 1 
 = 0.42 

Now, using the centroid point (3.33, 0.42) of a fuzzy number x 1, then equation (4.3) becomes: 

J y =   −(y′)2  dx
4.9

0

 

with 

y 0 ≈ 2 ,    y 3.33 ≈ 4  
then: 

y x = c1  x + c2 
Using the boundary conditions: 

c1 = 1.2andc1 = 0.6
1


 

hence: 

y x, α = 1.2x + 2 , y x, α = 0.6
1


x + 2

1


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Then: 

y(x)α =  y x, α , y x, α  =  1.2x + 2 , 0.6
1


x + 2

1


  

defines the α-level sets of a fuzzy number which minimizes J. 
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