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Abstract: In this paper, a prey-predator model with infectious disease in predator population involving 

Holling type II functional response is proposed and studied. The existence, uniqueness and boundedness of the 

solution of the system are studied. The existence of all possible equilibrium points is discussed. The local 

stability analysis of each equilibrium point is investigated. Finally further investigations for the global 

dynamics of the proposed system are carried out with the help of numerical simulations. 
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I. Introduction 
Mathematical models are divided into two main sections called the first ecology models where 

interested in studying the interactions between members of a particular community, for example, (humans or 

animals, etc.) and known model (lotka - volterra) [1,2] the basis for many of the studies in this field. The second 

type is called epidemiological models that care about the study and analysis of the spread of infectious diseases 

between humans and animals and the SIR  is the basis model for this type of models has been by Kermack and 

McKendric in 1927 [3]. In more studied showed that combines both these types where named eco-

epidemiological models, for example, in 1986 Anderson and May [4] were the first who merged the above two 

fields, ecological system and epidemiology system, they formulated a prey-predator model with infectious 

disease spread among prey by contact between them. In the subsequent time many researchers proposed and 

studied different prey-predator models with disease spread in prey population [5-8]. In addition to the above 

there are many investigations about prey-predator model with disease in the predator population. Haque [9] 

proposed a prey-predator model includes a Susceptible-Infected-Susceptible (SIS) parasitic infection in the 
predator population with linear functional response and nonlinear disease incidence rate. Haque and Venturino 

[10] considered a prey-predator model with SI epidemic disease spread in predators involving linear functional 

response. Das [11] studied a prey-predator model with SI epidemic disease in predators included Holling type-II 

as a functional response. Venturino [12] proposed and analyzed prey-predator model with SIS disease in 

predators included linear functional response and linear disease incidence. Haque and Venturino [13] considered 

a prey-predator model with SI epidemic disease spread in predators included ratio-dependent functional 

response and linear disease’s incidence rate. Dahlia [14] studied a prey-predator model with SIS epidemic 

disease in prey. In this paper we proposed and analyzed a mathematical model describing prey-predator model 

having SIS epidemic disease in the predator population involving Holling type-II functional response with the 

disease transmitted between the predator species by contact. 

 

II. The Mathematical Model 
Consider an eco-epidemiological model consisting of two preys and two predators is proposed for 

study. Let )(TX denotes to the density of the first prey population at time T , and )(TY  is the density of the 

second prey population at timeT . However, the predator is divided in to two classes namely, infected )(TZ  and 

susceptible )(TW  , here )(TZ  and )(TW  represent the population density at time T for the susceptible and 

infected predator respectively. Now in order to formulate the above model mathematically the following 

assumptions are considered: 
 

1. The preys )(TX  and )(TY  grow logistically in the absence of predation with intrinsic growth rates 

2,1;0  iri  with carrying capacity 0K  and 0L  respectively. 

2. The predators )(TZ and )(TW consume the prey )(TX  according to Lotka-Vollterra functional responses 

and Holling type II functional response with attack rates 0m  , 0p  and conversion rates 01 m , 

01 p  respectively, While 0b  is the half saturation constant. Further, it is assumed that the predator 
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)(TZ  consume the prey )(TY according to Lotka-Vollterra functional responses with attack rate 0n  and 

conversion rate 01 n  respectively. 

3. The disease transmitted within the population of predator only by contact between the predator individuals, 

according to simple mass action law with contact infected rate 0 .  

4. The infected predator )(TW  is recovered and they become susceptible )(TZ again with recover rate 

constant 0 . 

5. The predator populations (susceptible and infected) decrease due to the natural death rates 2,1;0  ii . 

6. The disease in infected predator )(TW  may causes mortality with a constant mortality rate represented 

by 03  . 

Moreover the dynamics of the above model can be represented by the following set of nonlinear first order 

differential equations: 
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Note that the above model contains (16) positive parameters in all, which makes mathematical analysis of the 

system very difficult. So in order to reduce the number of parameters and determined which parameter 

represents the control parameter, the following dimensionless variable are used: 
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Here 0)0( x , 0)0( y , 0)0( z and 0)0( w with the following constants represent the non dimensional 

parameters 
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It has been observed that the non dimensional system (2) contains (13) parameters only, while the original 

system (1) contains (16) parameters. Obviously the interaction functions 321 ,, fff  and 4f  of the system (2) are 

continuous and have continuous partial derivatives on the state space 4
R , therefore these functions are 

Lipschizian on its domain 4
R  and then the solution of system (2) with non negative initial condition exists and 

is unique. In addition, all the solutions of system (2) which initiate in 4
R  are uniformly bounded as shown in 

the following theorem. 

Theorem 1:  All the solutions of the system (2), which initiate in R4
  are uniformly bounded provided that 
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Where 

           131211 wwwB                                      (3b) 

Proof:  Let ))(),(),(),(( twtztytx be any solution of the system (2). Since 
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Clearly,   is positive constant under the sufficient condition (3a). By comparing the above differential 

inequality with the associated linear differential equation, we obtain: 
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hence, all the solutions of system (2) that initiate in R4
  are confined in the region 
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uniformly bounded, and then the proof is complete.                                                                                  ■ 

 

III. The Existence Of Equilibrium Points 
In this section, the existence of all possible equilibrium points of system (2) is discussed. It is observed that, 

system (2) has at most ten equilibrium points, namely )0,0,0,0(0 E , )0,0,0,1(xE , )0,0,1,0(yE , 

)0,0,1,1(xyE  always exist. While the existence of other equilibrium points are shown in the following:   

 The equilibrium point )0,,0,( zxExz  , where 
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exists uniquely in the 
2. RInt  of yz plane provided that: 
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The equilibrium point )0,ˆ,ˆ,ˆ( zyxExyz   exists in RInt 3.   of -xyz plane, where 
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 exists uniquely in the 3. RInt  of xyz plane provided that: 
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 represents the positive root of each of the following equation. 
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So by using Descartes rule of signs, Eq. (11) has a unique positive root say x


 provided that one set of the 

following sets of conditions hold:  

 0q and 0q 0,q 421                                 (12a)                                                                                 

      0q and 0q 0,q 431                                     (12b) 

 0q and 0q 0,q 421                                       (12c) 

 0q and 0q 0,q 431                                           (12d) 

Therefore, by substituting x


 in Equation (10), system (2) has a unique equilibrium point in the 3. RInt  of 
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While, x  represents the positive root of each of the following equation: 
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So by using Descartes rule of signs, Equation (15) has a unique positive root say x  provided that one set of the 

following sets of conditions hold:  

 0Q and 0Q0,Q 0,Q 5321                         (16a) 

      0Q and 0Q0,Q 0,Q 5421                      (16b) 

 0Q and 0Q0,Q 0,Q 5431                        (16c) 

 0Q and 0Q0,Q 0,Q 5431                                   (16d) 

     0Q and 0Q0,Q 0,Q 5421                              (16e) 

      0Q and 0Q0,Q 0,Q 5321                                           (16f) 

Therefore, by substituting x  in Equations (14a), (14b) and (14c), system (2) has a unique equilibrium point in 

the 4. RInt   by ),,,( *wzyxExyzw
 , provided that 
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Or, 
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IV. The Stability Analysis 
     In this section the stability locally analysis of the above mentioned equilibrium points of system (2) are 

investigated analytically. The Jacobian matrix of system (2) at each of these points is determined and then the 

eigenvalues for the resulting matrix are computed, finally the obtained results are summarized in the following: 

The Jacobian matrix of system (2) at the equilibrium point )0,0,0,0(0 E  can be written 

as 4,3,2,1,;][)( 4400   jicEJJ ij , where 111 c , 222 wc  , 833 wc  , 734 wc  , Bc 44  and zero 

otherwise. Then the eigenvalues of  0J  are: 

0101   
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0202  w                                                                            (18) 

0803  w 004  B                                                  

Therefore, the equilibrium point 0E  is a saddle point. 

The Jacobian matrix of system (2) at the equilibrium point )0,0,0,1(xE  can be written 
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Clearly, xE  is a saddle point. 

Now, the Jacobian matrix of system (2) at the equilibrium point  0,0,1,0yE  can be written 
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Hence, yE  is a saddle point. 
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Consequently, xyE  is locally asymptotically stable in the 4
R  if the following condition is satisfied. 
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However, xyE  will be saddle point in the 4
R  if we reversed of the above condition. 

Theorem 3: Assume that the equilibrium point )0,,0,( zxExz   of system (2) exists. Then it is locally 

asymptotically stable in 
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Proof: Note that, it is easy to check that the Jacobian matrix of system (2) at the equilibrium point xzE  can be 
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So, by substituting the values of ,ijg and then simplifying the resulting terms we obtain: 

 )( 321 zwwxA  , )( 3243 zwwzxwA   and  ]))([( 43232 zxwxzwwzwwx   

According to the Routh-Hurwitz criterion all the roots (eigenvalues) of third order equations have real parts 

provided that 3,1;0  iAi  and 0 . Note that, 3,1;0  iAi  and 0  provided that condition (23b) holds. 

Further 0
11
zx  provided that condition (23a) holds. Therefore all the eigenvalues of xzJ have negative real 

parts under the give conditions and hence the equilibrium point xzE  is locally asymptotically stable, which 

completes the proof.    ■ 

                                           

Theorem 4: Assume that the equilibrium point )0,~,~,0( zyEyz   of system (2) exists. Then it is locally 

asymptotically stable in 4
R  if one of the following sets of conditions hold 

    Bzw ~
10                                                                                (26a) 

     1~ z                                                                                               (26b) 

Proof: Note that, it is easy to check that the Jacobian matrix of system (2) at the equilibrium point yzE  can be 

written:  

4,3,2,1,;][)( 44   jihEJJ ijyzyz   

zh ~111  , ywh ~
222  , ywh ~

323  , zwh ~
431  , zwh ~

532  , zwwh ~
6734  , Bzwh  ~

1044  and zero 

otherwise. Therefore the characteristic equation can be written in the form:  

          0]
~~~

)[
~

( 32
2

1
3

44  CCCh                              

Consequently, either 

         Bzwzy  ~~
1011

  

Or     0
~~~

32
2

1
3  CCC                                        (27a) 

here 

      

3223113

322322112

22111 )(

hhhC

hhhhC

hhC







                                               (27b) 

and                        

 
32232222112211

321

)( hhhhhhh

CCC




                                   (28) 

So, by substituting the values of ,ijh and then simplifying the resulting terms we obtain: 

 )~1(~
21 zywC  , )~1(~~

533 zzywwC   and   ]~~)~~1)(~1[(~
5322 zywwywzzyw   

Again due the Routh-Hurwitz criterion all the roots (eigenvalues) of third order equations have real parts 

provided that 3,1;0  iCi  and 0 . Note that, 3,1;0  iCi  and 0  provided that condition (26b) holds. 

Further 0
~

11
zy  provided that condition (26a) holds. Therefore all the eigenvalues of yzJ have negative real 

parts under the give conditions and hence the equilibrium point yzE  is locally asymptotically stable, which 

completes the proof.      ■ 
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Theorem 5: Assume that the equilibrium point )0,ˆ,ˆ,ˆ( zyxExyz   of system (2) exists. Then it is locally 

asymptotically stable in 4
R  if the following condition hold: 

    Bzw
xw

xw



ˆ10ˆ

ˆ

1

9                                                               (29) 

Proof: Note that, it is easy to check that the Jacobian matrix of system (2) at the equilibrium point xyzE  can be 

written: 

 4,3,2,1,;][)( 44   jikEJJ ijxyzxyz   

xkk ˆ1311  , 
xw

xk
ˆ

ˆ
14

1
 , ywk ˆ222  , ywk ˆ323  , zwh ˆ431  , zwk ˆ532  , zwwk ˆ6734  , 

Bzwk
xw

xw



ˆ10ˆ

ˆ
44

1

9  and zero otherwise. Therefore the characteristic equation can be written in the form: 

         0]ˆˆˆ)[ˆ( 32
2

1
3

44  KKKk    

Consequently, either 

         Bzw
xw

xw
zyx 


ˆˆ

10ˆ

ˆ

1

9

111
  

Or     0ˆˆˆ
32

2
1

3  KKK                          (30a) 

here 

      

3122133223113

3113322322112

22111 )(

kkkkkkK

kkkkkkK

kkK







                               (30b) 

and 

322322

31131122112211

321

)(

kkk

kkkkkkk

KKK







                 (31)  

So, by substituting the values of ,ijh and then simplifying the resulting terms we obtain: 

 ywxK ˆˆ 21  , )(ˆˆˆ 42533 wwwwzyxK   and   ]ˆˆ[ˆ]ˆˆ[ˆ 532
2

242
2 zwwxwywzwywx   

According to the Routh-Hurwitz criterion all the roots (eigenvalues) of third order equations have real parts 

provided that 3,1;0  iKi  and 0 . Note that, 3,1;0  iKi  and 0  always as shown above. Further 

0ˆ
111
zyx  provided that condition (29) holds. Therefore all the eigenvalues of xyzJ  have negative real parts 

under the give condition and hence the equilibrium point xyzE  is locally asymptotically stable, which completes 

the proof.                  ■                                                                     

Theorem 6: Assume that the equilibrium point ),,0,( wzxExzw


  of system (2) exists. Then it is locally 

asymptotically stable in 4
R  if one of the following sets of conditions hold 

    zww


32                                                                           (32a)  

 
10

1091

767

1

2

4 2
1)(

)(
)(,.min

w

wwww

wwzww

xwzxw
xww






 














               (32b) 

     zww


67                                                                                  (32c) 

Proof:  Note that, it is easy to check that the Jacobian matrix of system (2) at the equilibrium point xzwE  can be 

written: 

 4,3,2,1,;][)( 44   jilEJJ ijxzwxzw   











 2

1 )(
11 1

xw

wxl 


, xl


13 , 
xw

xl 




1

14 , zwwl


3222  , zwl


431  , zwl


532  , 
z

ww
l 


7

33


 , 

zwwl


6734  , 
2

1

91

)(
41

xw

www
l 




 , wwl


1043   and zero otherwise. Therefore the characteristic equation can be 

written in the form:  

          0])[( 32
2

1
3

22  LLLl 


                            

Consequently, either 
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         zwwwzx


32111
  

Or    032
2

1
3  LLL 


                                                                  (33a) 

here      

)()(

)(

413343311441134311343

43344114311333112

33111

llllllllllL

llllllllL

llL







                                    (33b)                    

and                           

)(

)())((

3114343343

1334141141331131132211

321

lllll

lllllllllll

LLL







             (34) 

So, by substituting the values of ,ijl and then simplifying the resulting terms we obtain: 

 
z

ww

xw

wxL 




 7

2

1 )(
1 1 











          

    



































zxw

wwww

xw
x

xw

ww

xw

w

wzww

wzwwwxL















2

1

2

971

1

2

1

91

2

1

)(
104

)(
10

)(
673 1)(

 

and  















































































xw

zxw

z

wwzww

xw

w
xw

x

xw

wxww

xw

w
z

wxw

z

ww

xw

w

ww

zww

zxw

x









































1

4767

2

11
2

1

91

2

1

7

7

2

1

)(
10

67)()(

)(4

)(

)(1

1

1

 

 

According to the Routh-Hurwitz criterion all the roots (eigenvalues) of third order equations have real parts 

provided that 3,1;0  iLi  and 0 . Note that, 01 L  under the condition (32b), while conditions (32a)- 

(32c) ensure the positivity of 3L  (i.e. 03 L )  and 0 . Further 0
111
wzx


 provided that condition (32a) 

holds. Therefore all the eigenvalues of xzwJ  have negative real parts under the give condition and hence the 

equilibrium point xzwE  is locally asymptotically stable, which completes the proof. 

 

Theorem 7: Assume that the positive equilibrium point ),,,( *wzyxExyzw
 of system (2) exists and let the 

following inequalities hold:  

        21
  xww                                                              (35a) 

           zwwwzwxwwww
691101971

                                       (35b) 

      
 

  





















2

1

121 7
2

4
xw

wwww
                                             (35c) 

         wwwww 72
2

35 2                                                                   (35d) 

Then it is locally asymptotically stable in the 4. RInt . 

Proof. It is easy to verify that, the linearized system of system (2) can be written as 

             UEJ xyzwdt
dU

dt
dX )(  

here twzyxX ),,,(  and tuuuuU ),,,( 4321  where  xxu1 ,  yyu2 ,  zzu3  and  wwu4 . 

Moreover, 
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  





















2

1

111
xw

wxa ,  xa13 , 







xw

xa
1

14 ,  ywa 222 ,  ywa 323 ,  zwa 431 ,  zwa 532 , 






z

ww
a 7

33 ,  zwwa 6734 , 
 2

1

91

41 






xw

www
a ,  wwa 1043  and zero otherwise. Now consider the following 

positive definite function 

            









www

xwu

z

u

y

u

x

u
V

91

1

2

4

2

3

2

2

2

1

2

)(

222
 

It is clearly that 44:   RRV  and is a continuously differentiable function so that 0),,,(  wzyxV  and 

0),,,( wzyxV  otherwise. So by differentiating V with respect to 

 time t , gives  

         
dt

du

www

xwu

dt

du

z

u

dt

du

y

u

dt

du

x

u

dt
dV 4

91

14332211 )(









 

Substituting the values of 4,3,2,1; i
dt

dui  in the above equation, and after doing some algebraic manipulation; 

we get that: 

         

 

 
43

3235

2
22314

2
1

91

10167

2

2

37

2

1

)(

)1(1

uu

uuww

uwuuwu

ww

wxw

z

zww

z

uww

xw

w
dt
dV














































 

Obviously, due to conditions, we get that  

        

 

 
43

)(

2

222

2

21

91

1019167

37

37

2

1

1

uu

uw

u

zww

zwxwwwzww

z

uww

z

uww

xw

w
dt
dV


























































   

Clearly 0
dt

dV
, therefore the origin and then xyzwE  is locally asymptotically stable point in the 4. RInt  and 

hence the proof is complete.            ■ 

                                                                                                                            

V. Numerical Simulation 
In this section the global dynamics of system (2) is investigated numerically. The objectives are 

confirming our analytical results and discuss the role of the existence of disease in the intermediate predator 

population on the dynamical behavior of the system. For the following set of hypothetical, biologically feasible, 

set of parameters, definitely different set of hypothetical parameters can be chosen also, system (2) is solved 

numerically starting at different initial points as illustrated in Figure (2). 

 

      
0001.0;1.0;1.0;3.0;1.0

1.0;1.0;3.0;3.0;2.0;6.0;6.0;5.0

131211109

87654321





wwwww

wwwwwwww
         (36) 

 

Note that from now onward we will use solid line to describes the trajectory of the prey x ; the dashed 

line to describes the trajectory of prey y ; the doted line to describes the trajectory of infected predator z ; the 

dash dot to describes the trajectory of susceptible top predator w . 

The effect of varying the half saturation constant rate of the susceptible first prey 1w  on the dynamics 

of system (2) is studied and then the trajectories of the system (2) are drawn in figures (3a)-(3d), for the values 

of 9.0,7.0,5.01 w  with the other parameter fixed as given in equation (36). 
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According to the above figures, it is clear that as the half saturation constant rate of susceptible of first 

prey 1w  increase the solution of system (2) approaches asymptotically to the coexistence equilibrium point. 

However decreasing .1w  

Now the effect of varying the growth rate of the susceptible second prey 2w  on the dynamics of 

system (2) is studied and then the trajectories of the system (2) are drawn in figures (4a)-(4d), for the values of 

2.0,1,8.0,6.02 w  with the other parameter fixed as given in equation (36). 

According to the above figures, it is clear that as the growth rate of susceptible of second prey 2w  

increase the solution of system (2) approaches asymptotically to the coexistence equilibrium point. However 

decreasing 2w , say  2.00 2  w  , the solution of system (2) approaches asymptotically to xzwE  equilibrium 

point. 

The effect of varying the attack of second prey by the susceptible of predator 3w  on the dynamical 

behavior of system (2) is studied. The system (2) is solved numerically different values of the attack rate 

9.0,7.0,6.03 w  keeping other parameters fixed as given in equation (36), and then the solutions of system (2) 

are drawn in figures (5a)-(5c). 

Obviously, as the attack rate of second prey by the susceptible of predator 3w increase the value the 

first prey species started increase while the value of other species are decrease and the system (2) still has 

asymptotically stable coexistence equilibrium point. 

The effect of varying the conversion rate from first prey by susceptible predator 4w  on the dynamical 

behavior of system (2) is investigated by choosing 8.0,5.0,3.04 w  keeping other parameter fixed as given in 

equation (36) and then the solutions of the system (2) are drawn in figures (6a)-(6b). 

From the above figures, it is observed that, as the conversion rate between first prey and susceptible 

predator 4w  increases the all prey species starting decreases and all predator species increases but the system 

still has an asymptotically stable coexistence point. 

Now, the dynamical behavior of system (2) under the effect of varying the contact infection rate 

106, ww  is investigated. The system (2) is solved numerically for the set of parameters values given by equation 

(36) with 7.0,4.0,3.0106  ww  and then the trajectories of the system (2) are drawn in figures (7a)-(7c). 

Again, the system (2) has an asymptotically stable coexistence equilibrium point. In addition it is 

observed that, as the contact infection rate increases the second prey species and infected predator species 

started increase while the value of the first prey species and susceptible predator species decrease. 

Now, the effect of varying recovery rate 117 ww   on the dynamical behavior of parameters values 

given in equation (36) with   5.0,3.0,1.0117  ww   and then the results are shown in figures (8a)-(8c). 

Clearly, from the above figures, it is observed that increasing the value of recovery rate causes 
decreasing in the value of the second prey species and infected predator species while the values of the first prey 

species and susceptible predator species increasing. And then the system (2) has approaches asymptotically to 

the xyzE  equilibrium point. 

 

VI. Conclusions And Discussion 
In this paper, an eco-epidemiological model has been proposed and analyzed to study the dynamical 

behavior of a Holling-type II prey–predator model with the disease in predator species. The model consists of 

fore non-linear autonomous differential equations that describe the dynamics of fore different population’s 
namely first prey (X), second prey (Y), susceptible predator (Z), infected predator (W). In order to confirm our 

analytical results and understand the effect of varying the infection rate  10,6, iwi  and recovery 

rate  11,7, iwi , on the dynamical behavior of the system (2), system (2) has been solved numerically for 

different sets of initial points and different sets of parameters and the following observations are made:  

 

1. For the set of hypothetical parameters values given by Equation (36), the system (2) approaches 

asymptotically to globally stable point )17.0,62.0,37.0,06.0(xyzwE . 

2. For the value of the half saturation constant rate of susceptible of first prey 1w  increase the solution of 

system (2) approaches asymptotically to the coexistence equilibrium point and increase in values of zx, and 

w  while decrease value of y .  

3. For the values of the growth rate 2w  increase then the system (2) still approaches to coexistence  
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equilibrium point and the values of zy,  and w  increase while the value of x  decrease.  

4. The value of attack rate parameter 3w  increase then the system (2) still approaches to xyzwE  equilibrium 

point. And the value of x  increase but the values of zy,  and w  decrease. 

5. For increasing the value of conversion rate 4w  leads to increase in the values of wz,  while decreasing in 

the values of yx, species.  

6. In addition it is observed that, the system (2) has an asymptotically stable coexistence equilibrium point, as 

the contact infection rate increases the values of wy,  species started increase while the value of zx,  

species decrease. 

7. It is observed that increasing the value of recovery rate causes decreasing in the value of wy,  species while 

the values of zx, species increasing. And then the system (2) has approaches asymptotically to the xyzE  

equilibrium point. 

 
Figure (1): Bloke diagram of our proposed model. 

 

 
Figure (2): The solution of system (2) approaches asymptotically to the positive equilibrium point 

)17.0,62.0,37.0,06.0(xyzwE  for that data given by Eq. (36) starting from two different initial points (0.8, 0.7, 

0.4, 0.2) and (0.1, 0.3, 0.8, 0.6) for sold line and dashed line respectively. (a) Trajectories of x  . (b) Trajectories 

of y . (c) Trajectories of z  . (d) Trajectories of w . 
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Figure (3): Time series of solutions of the system (2). (a) 5.01 wfor , (b) 7.01 wfor , (c) 9.01 wfor . 

 

 
Figure (4): Time series of solutions of the system (2). (a) 6.02 wfor , (b) 8.02 wfor , (c) 12 wfor , (d) 

2.02 wfor . 
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Figure (5): Time series of solutions of the system (2). (a) 6.03 wfor , (b) 7.03 wfor , (c) 9.03 wfor .      

 

 
Figure (6): Time series of solutions of the system (2). (a) 3.04 wfor , (b) 5.04 wfor , (c) 8.04 wfor . 
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Figure (7): Time series of solutions of the system (2). (a) 3.0106  wwfor , (b) 4.0106  wwfor , (c) 

7.0106  wwfor . 
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Figure (8): Time series of solutions of the system (2). (a) 1.0117  wwfor , (b) 3.0117  wwfor , (c) 

5.0117  wwfor . 
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