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Abstract: In this paper, a prey-predator model with infectious disease in predator population involving
Holling type 11 functional response is proposed and studied. The existence, uniqueness and boundedness of the
solution of the system are studied. The existence of all possible equilibrium points is discussed. The local
stability analysis of each equilibrium point is investigated. Finally further investigations for the global
dynamics of the proposed system are carried out with the help of numerical simulations.
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I.  Introduction

Mathematical models are divided into two main sections called the first ecology models where
interested in studying the interactions between members of a particular community, for example, (humans or
animals, etc.) and known model (lotka - volterra) [1,2] the basis for many of the studies in this field. The second
type is called epidemiological models that care about the study and analysis of the spread of infectious diseases
between humans and animals and the SIR is the basis model for this type of models has been by Kermack and
McKendric in 1927 [3]. In more studied showed that combines both these types where named eco-
epidemiological models, for example, in 1986 Anderson and May [4] were the first who merged the above two
fields, ecological system and epidemiology system, they formulated a prey-predator model with infectious
disease spread among prey by contact between them. In the subsequent time many researchers proposed and
studied different prey-predator models with disease spread in prey population [5-8]. In addition to the above
there are many investigations about prey-predator model with disease in the predator population. Haque [9]
proposed a prey-predator model includes a Susceptible-Infected-Susceptible (SIS) parasitic infection in the
predator population with linear functional response and nonlinear disease incidence rate. Haque and Venturino
[10] considered a prey-predator model with Sl epidemic disease spread in predators involving linear functional
response. Das [11] studied a prey-predator model with Sl epidemic disease in predators included Holling type-I1
as a functional response. Venturino [12] proposed and analyzed prey-predator model with SIS disease in
predators included linear functional response and linear disease incidence. Haque and Venturino [13] considered
a prey-predator model with Sl epidemic disease spread in predators included ratio-dependent functional
response and linear disease’s incidence rate. Dahlia [14] studied a prey-predator model with SIS epidemic
disease in prey. In this paper we proposed and analyzed a mathematical model describing prey-predator model
having SIS epidemic disease in the predator population involving Holling type-1l functional response with the
disease transmitted between the predator species by contact.

Il.  The Mathematical Model
Consider an eco-epidemiological model consisting of two preys and two predators is proposed for
study. Let X(T) denotes to the density of the first prey population at timeT , and Y (T) is the density of the

second prey population at timeT . However, the predator is divided in to two classes namely, infected Z(T) and
susceptibleW (T) , here Z(T) and W(T) represent the population density at time T for the susceptible and

infected predator respectively. Now in order to formulate the above model mathematically the following
assumptions are considered:

1. The preys X(T) and Y(T) grow logistically in the absence of predation with intrinsic growth rates
r; >0;i=12 with carrying capacity K >0 and L >0 respectively.

2. The predators Z(T)and W (T) consume the prey X(T) according to Lotka-Vollterra functional responses
and Holling type Il functional response with attack rates m>0 , p>0 and conversion rates m >0,
pp >0 respectively, While b >0 is the half saturation constant. Further, it is assumed that the predator
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Z(T) consume the preyY (T) according to Lotka-Vollterra functional responses with attack rate n>0 and

conversion rate m >0 respectively.

3. The disease transmitted within the population of predator only by contact between the predator individuals,
according to simple mass action law with contact infected rate 5 >0.

4. The infected predator W(T) is recovered and they become susceptible Z(T)again with recover rate
constante > 0.

5. The predator populations (susceptible and infected) decrease due to the natural death rates 4 > 0;i =12.

6. The disease in infected predator W(T) may causes mortality with a constant mortality rate represented
by H3 > 0.

Moreover the dynamics of the above model can be represented by the following set of nonlinear first order
differential equations:

ax X pXW
X

=Y (1‘YE) -nYz
o )
Feb (M X +mY)Z — PNZ + oW — 1427

W _ pXW
dT = b+X

+ PWZ - oW —(up + u3)W

Note that the above model contains (16) positive parameters in all, which makes mathematical analysis of the
system very difficult. So in order to reduce the number of parameters and determined which parameter
represents the control parameter, the following dimensionless variable are used:

- _X y_Y ,_mz ,_PW
t—r]_T,X—K,Y—L,Z— r1 yW_rlK
Accordingly, system (1) can be rewritten in the following non dimensional form:
%:x(l—x)—xz—ﬂzxfl(x, Y, Z,W)
dt Wy + X
dy
——=Way(d-y)-wzyz = yfa(x,y,z,W)
& @
d—i =Wy XZ + W5 YZ — WgWZ + W7 W —WgZ = zf3(X, Y, Z, W)
dw _ Wowx + W oWz — (Wy 1 + W2 + Wy 3)w = Wfg(X, Y, Z,W)
dt wy +x 10 11 12 13 4%, Y, 2,

Here x(0)>0, y(0)>0, z(0)>0and w(0)>0with the following constants represent the non dimensional

parameters

_b _b =N W=
M=y W=7 W=y Wa=

le n1L ﬁk amK H P,
—_, Wg = — s = s Wq = — s Wo = — s =
po MOT T Wy e T Mo Mo

ERReY

H M

Wp=5, W=, W=t

1 1 1
It has been observed that the non dimensional system (2) contains (13) parameters only, while the original
system (1) contains (16) parameters. Obviously the interaction functions f1, fp, f3 and f4 of the system (2) are
continuous and have continuous partial derivatives on the state space Rf, therefore these functions are
Lipschizian on its domain Rf and then the solution of system (2) with non negative initial condition exists and
is unique. In addition, all the solutions of system (2) which initiate in Rf are uniformly bounded as shown in
the following theorem.
Theorem 1: All the solutions of the system (2), which initiate in Ri are uniformly bounded provided that

WoW;
W,

B> (32)
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Where
B=wi1+Wo+w3 (3b)
Proof: Let (x(t), y(t), z(t), w(t)) be any solution of the system (2). Since
dx dy

o <X@-x), m <woy(l-vy)
Thus by solving these differential inequalities:
lim; 0o SUp X(t) <1=x(t) <L VE>0
limi 0o SUp y(t) <1= y(t) <L Vvt >0
Now, consider the function:

W, W,
U(X,Y,Z,W) =WgX+—=Yy+Z+—=W
W3 W9

Then the time derivative of U (-) along the solution of the system (2) is:
du

< g
dt_syU

W, W,
S:Z{W4+ 2 5}
W3

and y = min.{l, W2,W8,( —%)}
4

Clearly, y is positive constant under the sufficient condition (3a). By comparing the above differential
inequality with the associated linear differential equation, we obtain:

limg_y0 Sup.U (t) s%:ua) s%w >0

Where

hence, all the solutions of system (2) that initiate in Ri are confined in the region
Q={(x, y,z,w)eRf_':U :W4x+%y+z+%ws§} under the given condition, thus these solutions are
3 9

uniformly bounded, and then the proof is complete. u

I11.  The Existence Of Equilibrium Points
In this section, the existence of all possible equilibrium points of system (2) is discussed. It is observed that,
system (2) has at most ten equilibrium points, namely Eg=(0,0,0,0), Ex =(10,0,0), Ey= (01,0,0),

Exy = (1,1,0,0) always exist. While the existence of other equilibrium points are shown in the following:
The equilibrium point Ey, =(X,0,Z,0) , where

g=N 7_1 W
x_WA,z—l W, 4
exists uniquely in the Int.th of Xz —plane provided that:
Wa
W <1 ®)
The equilibrium point Ey, =(0,Y,Z,0), where
SoW o Wy (W)
y= w, ' Z= W,W, ©)

exists uniquely in the Int.Rf of yz—plane provided that:
W5 > Wg ()
The equilibrium point Eyy; = (X, ¥,2,0) existsin Int.R§r of xyz- plane, where

W W, —W, (W5 *Ws)

R = (8a)
W, W, +W, W,

9 — W2W4_W3[W4 _Ws] (Sb)
W, W, +W, W
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(8¢)

Wz[W4+W57Ws]
W, W, +W, W,
exists uniquely in the Int.Rff of xyz — plane provided that:
(92)
(9b)

2:

w, > max {w,, w,}

W, + W, > W,
The equilibrium point Ey,, = (X,0,Z, W) exists in Int.Rﬂ”r of xaw - plane, where

B H(B-W)X g
(W1+X)W10
(10)

N)

(W, ~w, X [ B, +(B-w; )X]
Wl[W7W10_We B]+[W7W10_W5 (B_Wg )])A(

W
While, X represents the positive root of each of the following equation.
11)

< +gpx% + O3X+04 =0

where:
o1 = We (B —Wg) —wywig
B-w, j:l

—wi[w7wy g —WeB]+W4[B —wo]
a3 = wy[(w7wy o — wg[B —wg])[l_wiw}
+[wywi g —Wg B][l— wy — I:BV;_f})
+ W4B] —W8[B — Wg]

Ag =wy[wy (Wywo - WaB)(l—W%j —WgB]
So by using Descartes rule of signs, Eq. (11) has a unique positive root say X provided that one set of the
following sets of conditions hold:
g1 >0,02>0and gg <0 (12a)
01 >0,03<0and gy <0 (12b)
01 <0,02 <0andqgq >0 (12¢)
(12d)

01<0,03>0and gy >0
in Equation (10), system (2) has a unique equilibrium point in the Int.Rff of

Therefore, by substituting X
xzw - plane given by Ey,=(X,0,Z,W), provided that
(13a)

Wg > WgX, WywW g > Wg max.{B, B—wg}

Or,
Wg < WgX, WyW g < Wg min.{B, B —wg}

(13b)
Finally the coexistence equilibrium point Eyyzy = (X", y", 2%, w) existsin Int.R?, where

* _ W1[W2W10_W3 B]+[W2W10_W3(B_W9 )X (143.)
(W +X" )W, W
* BW{"(B_WQ)X*
PR BA . Vi 14b
(W, +X")wW; )
W o BZ[BM+(B—VYQ)X ) (14c)
W, W, o (W, +X") B,
Where
By = wawy o(wy + X" )(Wg — WX " —Ws)
2
41 | Page
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B, = w,[w,w,, —w,B]+[w,w,, —w, (B —w,)]x"
While, x* represents the positive root of each of the following equation:
le4 +Q2x3 +Q3x2 +Qux+Q5=0 (15)
where:
Q= —Wowy o[ Wywy o — We (B —Wo)]
Q2 =Wa[wywy o — We (B —Wo)]
x[(1-2wy)wyg - (B-wg)]
— Wow o[ wy (W7Wy o — WgB)
— (B —wg)wy]
Q3 = W [(w7wy g —We[B —Wg])
x(2wyo(1—wy) — 2B +wg)
+[wywy o —wgB]
x[wyo(l—wp) —(B—wg)]
+(B-wg)
x[wywy (W —wg) — (B — wg )waws ]
Qa = WW,[(Wywy o —we[B —wo)[wyo - B]
+W12 Wo[w7wy g — WeB]
x[Wio(2—wp) —2B +wg)]
— 2w WawW5B(B —wg)
Qs = waz[W7Mo —WgB][wy o - B]
— W B[Wow; o(Wg — Ws) + WawisB]

So by using Descartes rule of signs, Equation (15) has a unique positive root say x* provided that one set of the
following sets of conditions hold:

Q1>0,Q2>0,Q3>0and Qg <0 (16a)
Q1>0,Q2>0,Q4<0andQ5<0 (lﬁb)
Q1>0,Q3<0,Q4<0andQ5<0 (160)
Q1<0,Q3>0,Q4>0andQ5>0 (lﬁd)
Q1<0,Q2<0,Q4>OandQ5>0 (166)
Q1<0,Q2<0,Q3<0andQ5>0 (le)

Therefore, by substituting x* in Equations (14a), (14b) and (14c), system (2) has a unique equilibrium point in
the IntR? by Exyzw = (X7, y", 2*,w"), provided that

w,w,, > w, max {B, B—w,} (17a)
By >0and B3 >0 (17h)
Or,
By <0and B3 <0 (17¢)

IV.  The Stability Analysis
In this section the stability locally analysis of the above mentioned equilibrium points of system (2) are
investigated analytically. The Jacobian matrix of system (2) at each of these points is determined and then the
eigenvalues for the resulting matrix are computed, finally the obtained results are summarized in the following:
The Jacobian matrix of system (2) at the -equilibrium point Ep=(0,0,0,0) can be written
asJg =J(Ep) =[Cij]4x4 i1,]=1234, whereciy=1, Cop=Wp, C3z=-Wg, C34=Wy, C44=—-B and zero
otherwise. Then the eigenvalues of Jg are:

/101=1>0
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/102 =Wo > 0 (18)

Ap3=-Wg <0 dgg =-B <0

Therefore, the equilibrium point Eg is a saddle point.

The Jacobian matrix of system (2) at the equilibrium point Ey=(10,0,0) can be written

as Jy = J(Ex) =[djjlaxa;i, j=1234, where dyj=dijz=-1, d14:w__-1u dpp=wp, dzgz=ws—wg |,

d3g=wy, dgg = ij’rl — B and zero otherwise. Hence, the eigenvalues of Jy are:
1
W,
Ay, =—1<0, Ay, =Wp >0, Ay =ws—wg and /1X4=W111—B (19)

Clearly, Ey is a saddle point.

Now, the Jacobian matrix of system (2) at the equilibrium point Ey=(O,L0,0) can be written
asJy=J(Ey)=[eij]4x4;i,j=L2,3,4, where e1=1, expp=-Wy, ey3=—-W3, e€33=W5—Wg, €34 =Wy,
e44 =—B and zero otherwise. The eigenvalues of J are:

/”Lyl =1,/1y2 =—-W» <O,/1y3 =W5 —Wg,

Ay, =-B (20)

Hence, Ey isa saddle point.

Now, the Jacobian matrix of system (2) at the equilibrium point Exy=(1,1,0,0) can be written
as JXy = J(Exy) =[fij]4x4;i, j=12,3,4, where

Wo

f11="fa=-1, fl4:ﬁ , foo=-wy, fog=-wg, fag=wy+ws-wg, fzgg=wy and fyu= W1+1—B and
zero otherwise. Therefore, the eigenvalues of Jyy are given by:

W,
Axy, =LAy, = W2 <0, Ay y, =Wa+W5—Vg, Ayy, =7 7B 1)

Consequently, Exy is locally asymptotically stable in the Rf if the following condition is satisfied.

Wy + W5 < Wg (22a)
W9
W <B (22b)

However, Eyy will be saddle point in the Rf if we reversed of the above condition.
Theorem 3: Assume that the equilibrium point Ey; =(X,0,Z,0) of system (2) exists. Then it is locally

asymptotically stable in Rf_‘ if one of the following sets of conditions hold

ng -
WX +WZ<B (23a)
Wo <W3Z (23b)

Proof: Note that, it is easy to check that the Jacobian matrix of system (2) at the equilibrium point E,, can be
written Jy; = J(Exz) =[0ijlaxa;i, 1 =1234

: 022 =Wp —W3Z, 031=W4Z, 032 =Ws52Z , 034 =Wy —WgZ ,

% -X
911=913=X, 914 =3 0%
1

W, X - . - . S
044 =———=+WZ—B and zero otherwise. Therefore the characteristic equation can be written in the form:
W, +X

(9aa=A)2° + A% + Pl + Ag] =0
Consequently, either

W, X -
/,Lxlzl = _W1+X +VVlOZ - B
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or A3+ A1%+Ad+Ag=0 (24a)
Here

A =—(911+922)

Ag = 911822 — 913931 (24b)

A3 = 013922931
and

A=M~ho—Ag
=—(911+922)911922 + 911913931
So, by substituting the values of 9ij and then simplifying the resulting terms we obtain:
AL =X—(Wp —W3Z), Ag=-WyXZ(Wy —w3Z) and A=X[(Wp —W3Z)(Wp —W3Z —X) +WyXZ]
According to the Routh-Hurwitz criterion all the roots (eigenvalues) of third order equations have real parts
provided that A >0;i=13 and A >0. Note that, A >0;i=13 and A >0 provided that condition (23b) holds.

Further lezl <0 provided that condition (23a) holds. Therefore all the eigenvalues of Jy; have negative real

(25)

parts under the give conditions and hence the equilibrium point Ey, is locally asymptotically stable, which
completes the proof. m

Theorem 4: Assume that the equilibrium point Eyz =(0,¥,Z,0) of system (2) exists. Then it is locally

asymptotically stable in Rf if one of the following sets of conditions hold
WoZ <B (26a)

Z>1 (26b)
Proof: Note that, it is easy to check that the Jacobian matrix of system (2) at the equilibrium point Eyz can be

written:
Jyz =J(Eyz) =[hijlaxa;i, i =1234
M1=1-7, hpp=-wWoy, hp3=-wW3y, hgy=wsZ, hgp=wsZ, hgg=wy —WeZ, hgg=wyoZ —B and zero
otherwise. Therefore the characteristic equation can be written in the form:
(h44 —Z)[Zs + Clj:z + sz + C3] =0
Consequently, either

ﬂylzl = Wloz -B

or  23+C A% +Cpi+C3=0 (27a)
here

Cp=—(m1+h22)

Co =Mm1h2 —hpghgr (27b)

C3 =M 1ho3h3
and

A=CCyr-C3

(28)
=—(M1+hp2)M 1o +hpoho3hgo

So, by substituting the values of h;j, and then simplifying the resulting terms we obtain:

Cr=woy —(1-7), C3=-wawsyZ(1-2) and A =wpy[(1-Z)(1-Z —WyY)+Waw5yZ]
Again due the Routh-Hurwitz criterion all the roots (eigenvalues) of third order equations have real parts
provided that C; >0;i=13 and A >0. Note that, C; >0;i=13 and A >0 provided that condition (26b) holds.

Further Zylzl <0 provided that condition (26a) holds. Therefore all the eigenvalues of Jy; have negative real
parts under the give conditions and hence the equilibrium point Ey; is locally asymptotically stable, which
completes the proof. =
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Theorem 5: Assume that the equilibrium point Eyy; =(X,¥,2,0) of system (2) exists. Then it is locally

asymptotically stable in Rf if the following condition hold:
W, X
W, +X

Proof: Note that, it is easy to check that the Jacobian matrix of system (2) at the equilibrium point Exyz can be

+WgZ<B (29)

written:

Ixyz = I (Exyz) =[kijlaxa;i, j=1,234
kip=kig=—X, k14:ﬁ, kppg=-Wpy, Kpz=-W3y, hgi=wyZz, Kzp=WsZ, K3gq=W7—-WgZ,
W, X

kgqa =—— +WgZ — B and zero otherwise. Therefore the characteristic equation can be written in the form:

W, +X

(k44 —i)[ﬂts + K]_j:z + Kzﬂt + K3] =0
Consequently, either

A WX A
/,Lxlylzl __W1+)2 +VV]_OZ B

or  B+KA2+Kodl+Kg=0 (30a)
here
Ky =—(kp1+k22)
K2 =ky1kp2 —ko3k3o —ki3k3y (30b)
K3 =k 1ko3k32 +ky3kookss
A=K1Ko -K3
and =—(kq1+ko2)ky1ko2 + k1 1k13K31 (31)
+kookoakso

So, by substituting the values of hij, and then simplifying the resulting terms we obtain:

Ki=X+Woy, K3 =5R92(waws +Wowy) and A= )22[W2§/+W42] +W292[W2>2+W3W52]
According to the Routh-Hurwitz criterion all the roots (eigenvalues) of third order equations have real parts
provided that Kj >0;i=13 and A >0. Note that, K;>0;i=13 and A>0 always as shown above. Further

/ixiylzl <0 provided that condition (29) holds. Therefore all the eigenvalues of Ixyz have negative real parts

under the give condition and hence the equilibrium point Exyz is locally asymptotically stable, which completes

the proof. [
Theorem 6: Assume that the equilibrium point Ey,y=(X,0,Z,w) of system (2) exists. Then it is locally

asymptotically stable in Rf if one of the following sets of conditions hold

Wo < ng (323-)
[ WXz (W, +X) N2 WWg W W
mm.{w, W —WGZ)W7\7V} <(w +X)° < BT (32b)

Wy < WgZ (32¢)
Proof: Note that, it is easy to check that the Jacobian matrix of system (2) at the equilibrium point Ey,, can be
written:

Ixaw = I (Exzw) =[lijlaxaii, j=1234

~ G W, W
hi=X -1+—Y— 1|, hz=-X, lha=—2, lop=wpr—-w3Z, I31=wsZ, Izp=wsz, I33=—7—,
11 ( (W1+)?)z] 13 U=y g 22=W2—Ws 31=Wq 32=Ws 33—

- W, Wy W _ . - .
34 =Wy —WgZ, Ig1= i) l43=wy oW and zero otherwise. Therefore the characteristic equation can be
1

written in the form:
(|22 —ﬂt)[is + Llﬂtz + Lzﬂt + L3] =0
Consequently, either
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Ax z.w, = W2 —WaZ

or B+ +1pi+1lg=0 (33a)
Ly =—(h1+133)
here Lo =hal3z—halz1 —hala1—I34la3 (33b)
L3 =134(1 1143 —h3la1) —h4(l31143 - 133l41)
A=LLy-L3
and = (l11+122)(l13l31 — 1 1133) +141(l1 1114 +134113) (34)

+143(133134 + h4l31)
So, by substituting the values of ;j, and then simplifying the resulting terms we obtain:

Ly =—>?(—1+ W 2]+W+W
(W, +X) z

(W, +X)* (W, +%)°

L3:>“<v“v(w7—w62)K—1+ W jw10+ Wity }

X

+ % |:W4W102W+

W, W, W, W }

{ (W1+)A()22

+ WlWQ)EVZ [w_fi(_lJr W j—(w7 —Wﬁ)}

(W, +X)*

| —(W, —W,Z)W, W W, XZ
+ Wy oW, = - =
"o [ z W, +X

According to the Routh-Hurwitz criterion all the roots (eigenvalues) of third order equations have real parts
provided that Lj; >0;i=13 and A>0. Note that, Ly >0 under the condition (32b), while conditions (32a)-

(32c) ensure the positivity of L3 (i.e. L3>0) and A>0. Further /iXJlWl <0 provided that condition (32a)

holds. Therefore all the eigenvalues of Jy,,, have negative real parts under the give condition and hence the
equilibrium point Ey,,y is locally asymptotically stable, which completes the proof.

Theorem 7: Assume that the positive equilibrium point Exyzw = "y, z*,w*) of system (2) exists and let the
following inequalities hold:

wh < (W]_ + x*)2 (35a)
W w, + (WX W 27 < wow,w,z" (35b)
2 * w’
wy —-1)° <2wpw' | 1-———;
( 4 ) 7 ( (W1+X* )2 ] (35C)
(w5 —wg ) < 2wowyw* (35d)

Then it is locally asymptotically stable in the Int.Rﬁ .
Proof. It is easy to verify that, the linearized system of system (2) can be written as

dX _du _
T odt J(Exyzw)V

here X =(x,y,z,w)! and U = (uj,up,us,us)t where iy =x—x*, up=y—y*, u3=z-2" and uy =w-w".
Moreover,
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—X* * * * *
T @2=-Wpy , ap3=-Wgy , ag1=WqZ , a32=WsZ ,

* w* *
=X |-1+———— , 43=—X , Y4gq=
11 ( (W1+X*)2J 13 14 W, +X

agy = W , g4 =Wy —WGZ* , ag1 = MW ay3 = wlow* and zero otherwise. Now consider the following
positive definite function

- !
2 (w,+x)
2 2 2

_U U U (W)

2x 2y 277 2ww,w

It is clearly that V : R —R? and is a continuously differentiable function so that V (x*,y*,z*,w*)=0 and

V(x,y,z,w) >0 otherwise. So by differentiating V with respect to

time t, gives
av_U du U, du ug du u(wex) du,

dt — x dt y dt - dt  owww dt

du,

Substituting the values of W;i =1,2,3,4 in the above equation, and after doing some algebraic manipulation;

we get that:

av w 2 2
= =—1-—— Uy +(Wg —1)uquz —wWou
at [ (W1+X*)zj1 (wg —I)uguz —wous

W, W'u?
+ (w5 —W3)uous ——72*2 :

N {wasz* N (Wl+x*)\N10}u3u4

z' W; Wy

Obviously, due to conditions, we get that

2

dv w’ W7W* Us
v o 1 U — =2
o {\/ e PV ]
- 2

— W, W u

+ (W7—WGZ*)W1W9+(*W1+X*)\N1 z Usls
W,WyZ

Clearlycjj—\:<0, therefore the origin and then Exyzw is locally asymptotically stable point in the Int.Rf:' and

hence the proof is complete. [

V.  Numerical Simulation
In this section the global dynamics of system (2) is investigated numerically. The objectives are
confirming our analytical results and discuss the role of the existence of disease in the intermediate predator
population on the dynamical behavior of the system. For the following set of hypothetical, biologically feasible,
set of parameters, definitely different set of hypothetical parameters can be chosen also, system (2) is solved
numerically starting at different initial points as illustrated in Figure (2).

W =05;w=06;w3=06;w;=02; wg=03; wg=03;w;=01;wg=0.1 (36)
wg=0.1;wp=03;w1=01;wy=01; w3=0.0001

Note that from now onward we will use solid line to describes the trajectory of the prey X; the dashed
line to describes the trajectory of prey Y ; the doted line to describes the trajectory of infected predator z ; the

dash dot to describes the trajectory of susceptible top predator w.
The effect of varying the half saturation constant rate of the susceptible first prey Wy on the dynamics

of system (2) is studied and then the trajectories of the system (2) are drawn in figures (3a)-(3d), for the values
of wy =0.5, 0.7, 0.9 with the other parameter fixed as given in equation (36).
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According to the above figures, it is clear that as the half saturation constant rate of susceptible of first
prey wy increase the solution of system (2) approaches asymptotically to the coexistence equilibrium point.
However decreasing wy.

Now the effect of varying the growth rate of the susceptible second prey wo on the dynamics of
system (2) is studied and then the trajectories of the system (2) are drawn in figures (4a)-(4d), for the values of
w» =0.6, 0.8, 1, 0.2 with the other parameter fixed as given in equation (36).

According to the above figures, it is clear that as the growth rate of susceptible of second prey wsy
increase the solution of system (2) approaches asymptotically to the coexistence equilibrium point. However
decreasing Wy , say (O <wy < 0.2) , the solution of system (2) approaches asymptotically to Ey,y, equilibrium
point.

The effect of varying the attack of second prey by the susceptible of predator ws on the dynamical
behavior of system (2) is studied. The system (2) is solved numerically different values of the attack rate
wg =0.6, 0.7, 0.9 keeping other parameters fixed as given in equation (36), and then the solutions of system (2)
are drawn in figures (5a)-(5c).

Obviously, as the attack rate of second prey by the susceptible of predator wsincrease the value the

first prey species started increase while the value of other species are decrease and the system (2) still has
asymptotically stable coexistence equilibrium point.

The effect of varying the conversion rate from first prey by susceptible predator w4 on the dynamical
behavior of system (2) is investigated by choosing wy =0.3, 0.5, 0.8 keeping other parameter fixed as given in
equation (36) and then the solutions of the system (2) are drawn in figures (6a)-(6b).

From the above figures, it is observed that, as the conversion rate between first prey and susceptible
predator wy increases the all prey species starting decreases and all predator species increases but the system
still has an asymptotically stable coexistence point.

Now, the dynamical behavior of system (2) under the effect of varying the contact infection rate
Wg, W g is investigated. The system (2) is solved numerically for the set of parameters values given by equation
(36) with wg =wyg=0.3, 0.4, 0.7 and then the trajectories of the system (2) are drawn in figures (7a)-(7c).

Again, the system (2) has an asymptotically stable coexistence equilibrium point. In addition it is
observed that, as the contact infection rate increases the second prey species and infected predator species
started increase while the value of the first prey species and susceptible predator species decrease.

Now, the effect of varying recovery rate w; =w; 1 on the dynamical behavior of parameters values

given in equation (36) with wy; =wq1=0.1, 0.3, 0.5 and then the results are shown in figures (8a)-(8c).

Clearly, from the above figures, it is observed that increasing the value of recovery rate causes
decreasing in the value of the second prey species and infected predator species while the values of the first prey
species and susceptible predator species increasing. And then the system (2) has approaches asymptotically to
the Exy; equilibrium point.

VI.  Conclusions And Discussion
In this paper, an eco-epidemiological model has been proposed and analyzed to study the dynamical
behavior of a Holling-type Il prey—predator model with the disease in predator species. The model consists of
fore non-linear autonomous differential equations that describe the dynamics of fore different population’s
namely first prey (X), second prey (), susceptible predator (Z), infected predator (W). In order to confirm our

analytical results and understand the effect of varying the infection rate (w Jd :6,10) and recovery
rate(w Jd :7,11), on the dynamical behavior of the system (2), system (2) has been solved numerically for
different sets of initial points and different sets of parameters and the following observations are made:

1. For the set of hypothetical parameters values given by Equation (36), the system (2) approaches
asymptotically to globally stable point Eyy;,, = (0.06,0.37,0.62,0.17) .

2. For the value of the half saturation constant rate of susceptible of first prey wy increase the solution of
system (2) approaches asymptotically to the coexistence equilibrium point and increase in values of x,z and
w while decrease value of y .

3. For the values of the growth rate wo increase then the system (2) still approaches to coexistence
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equilibrium point and the values of y,z and w increase while the value of x decrease.

4. The value of attack rate parameter ws increase then the system (2) still approaches to Exyzw equilibrium
point. And the value of x increase but the values of y,z and w decrease.

5. For increasing the value of conversion rate w, leads to increase in the values of z,w while decreasing in
the values of x,y species.

6. In addition it is observed that, the system (2) has an asymptotically stable coexistence equilibrium point, as
the contact infection rate increases the values of y,w species started increase while the value of x,z

species decrease.
7. Itis observed that increasing the value of recovery rate causes decreasing in the value of y,w species while

the values of X,z species increasing. And then the system (2) has approaches asymptotically to the Exyz
equilibrium point.

Figure (1): Bloke diagram of our proposed model.

(a) ()
08 0.7

04 - - " 0

Figure (2): The solution of system (2) approaches asymptotically to the positive equilibrium point
Exyzw = (0.06,0.37,0.62,0.17) for that data given by Eq. (36) starting from two different initial points (0.8, 0.7,

0.4,0.2) and (0.1, 0.3, 0.8, 0.6) for sold line and dashed line respectively. (a) Trajectories of X . (b) Trajectories
of y. (c) Trajectories of z . (d) Trajectories of w.
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Figure (3): Time series of solutions of the system (2). (a) for wy =0.5, (b) for wy =0.7, (c) for wy =0.9.
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Figure (4): Time series of solutions of the system (2). (a)

1000 2000 3000 4000 35000 60OO 7000 8000 9000 10000

Time

(@)

(&)

Population

0
0

1000 2000 3000 4000 5000 G000 7000 8000 9000 10000
Time

(A

Population

for wy =0.2.

08

Population
2 = = 2 I
g s g & 2

2

01

10000 15000

(b)

Population

0
0

1000 2000 3000 4000 5000 6000 7000 G000 9000 10000
Time

for wo =0.6, (b) for w, =0.8, (c) for wy =1, (d)

DOI: 10.9790/5728-11233853

www.iosrjournals.org

50 | Page



Staibilty Of A Prey-Predator Model With Sis Epidemic Disease In Predator Involving...

08

07

Population

0.1

Time

! I ! I ! I ! I !
0 1000 2000 3000 4000 3000 6000 7000 8000 9000 10000

Figure (5): Time series of solutions of the system (2). (a) for w3 =0.6, (b) for w3 =0.7, (c) for w3 =0.9.
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Figure (6): Time series of solutions of the system (2). (a) for wgq =0.3, (b) for wy =0.5, (c) for wy =0.8.
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Figure (7): Time series of solutions of the system (2). (a) for wg =wyg=0.3, (b) for wg =wyg=0.4, (c)

for wg =wyg=0.7.
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Figure (8): Time series of solutions of the system (2). (a) for w; =wq1=0.1, (b) for w; =wy1=0.3, ()
for wy =wy1=0.5.
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