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I. Introduction 
The concept of fuzzy sets was introduced by Zadeh [12] and later Atanassov [1] generalized this idea to 

intuitionistic fuzzy sets using the notion of fuzzy sets. Coker [4] introduced intuitionistic fuzzy topological 

spaces using the notion of intuitionistic fuzzy sets. In this paper I introduce intuitionistic fuzzy perfectly alpha 

continuous mappings and studied some of their properties. Also I provide some characterizations of 
intuitionistic fuzzy perfectly alpha continuous mappings. 

 

II. Preliminaries 

Definition 2.1: [1]   An intuitionistic fuzzy set (IFS in short) A in X is an object having the form  

                                 A = { x, μA(x), νA(x)  / x X} 

where the functions μA(x): X  [0, 1] and νA(x): X  [0, 1] denote the degree of membership (namely μA(x)) 

and the degree of non -membership (namely νA(x)) of each element x X to the set A, respectively, and 0 ≤  

μA(x) + νA(x) ≤ 1 for each x  X. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X. 

 

Definition 2.2: [1] Let A and B be IFSs of the form   

A = { x, μA(x), νA(x)  / xX } and B = {  x, μB(x), νB(x)  / x  X }. Then 

(a)  A  B if and only if μA(x) ≤ μB (x) and νA(x) ≥ νB(x) for all x X 

(b)  A = B if and only if A   B and B   A 

(c)  Ac = {  x, νA(x), μA(x)  /  x  X }        

(d)  A  B = {  x, μA(x)  μB (x), νA(x)  νB(x)  / x  X } 

(e)  A  B = {  x, μA(x)  μB (x), νA(x)  νB(x)   / x  X } 

For the sake of simplicity, we shall use the notation A =  x, μA, νA instead of A = {  x, μA(x), νA(x)  /                    

x  X }. Also for the sake of simplicity, we shall use the notation A = {  x, (μA, μB ), (νA, νB)  } instead of A = 

 x, (A/μA, B/μB), (A/νA, B/νB) . 
 

The intuitionistic fuzzy sets 0~ = {  x, 0, 1  / x X } and  1~ = { x, 1, 0  / x  X}   are respectively the empty 
set and the whole set of  X. 

 

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the 

following axioms. 

(i)  0~, 1~  τ  

(ii)  G1   G2  τ for any G1, G2  τ 

(iii)   Gi  τ for any family { Gi /  i  J }   τ. 
 

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is 

known as an intuitionistic fuzzy open set (IFOS in short) in X.  

 

The complement Ac of an IFOS A in IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X. 

 

Definition 2.4:[3] Let ( X, τ) be an IFTS and  A =  x, μA, νA   be an IFS in X. Then the intuitionistic fuzzy 
interior and intuitionistic fuzzy closure are defined by  

int(A) =   { G / G is an IFOS in X and G  A }, 
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cl(A)  =   { K / K is an IFCS in X and A  K }. 
 

Note that for any IFS A in (X, τ), we have cl(Ac) = [int(A)]c and int(Ac) = [cl(A)]c. 

 

Definition 2.5:[6] An IFS A = {  x, μA, νA  } in an IFTS (X, τ) is said to be an 

(i)   intuitionistic fuzzy semi open set (IFSOS in short) if A  cl(int(A)), 

(ii)  intuitionistic fuzzy α-open set (IFOS in short) if A  int(cl(int(A))), 
 

Definition 2.6:[6] An IFS A =  x, μA, νA  in an IFTS (X, τ) is said to be an 

(i)   intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A))  A, 

(ii)  intuitionistic fuzzy α-closed set (IFCS in short) if cl(int(cl(A))  A, 
 

The family of all IFCS (respectively IFSCS, IFCS) of an IFTS (X, τ) is denoted by IFC(X) (respectively 

IFSC(X), IFC(X)). 
 

Definition 2.7:[12] Let A be an IFS in an IFTS (X, τ). Then  

int(A) =   { G / G is an IFOS in X and G  A }, 

cl(A)  =   { K / K is an IFCS in X and A  K }. 
 

Definition 2.8: An IFS A in an IFTS (X, τ)  is an 

(i)  intuitionistic fuzzy generalized closed set (IFGCS in short) if  cl(A)  U whenever A  U 
      and U is an IFOS in X[11]. 

(ii) intuitionistic fuzzy generalized semi-pre closed set (IFGSPCS in short) if spcl(A)  U 

      whenever A  U and U is an IFROS in X[ 9]. 

 

Definition 2.9:[10] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy generalized semi closed set 

(IFGSCS in short) if  scl(A)  U whenever A  U and U is an  IFOS in (X, τ). 
 

Definition 2.10:[8] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy alpha generalized closed set 

(IFGCS in short) if  cl(A)  U whenever A  U and U is an  IFOS in (X, τ). 

 

Result 2.11:[8] Every IFCS is an IFGCS, IFCS and IFGCS but the converses may not be true in general.  

 
Definition 2.12:[7] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy weekly generalized closed set 

(IFWGCS in short) if  cl(int(A)))  U whenever A  U and U is an  IFOS in (X, τ). 
 

Definition 2.13:[8] An IFS A is said to be an intuitionistic fuzzy alpha generalized open set (IFGOS in short) 

in X if the complement Ac is an IFGCS in X. 
 

Definition 2.14:[4] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be 

intuitionistic fuzzy continuous (IF continuous in short) if f -1(B)  IFO(X) for every B  . 

 

Definition 2.15:[6] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be  

(i)   intuitionistic fuzzy semi continuous (IFS continuous in short) if f -1(B)  IFSO(X) for     

       every B  . 

(ii)  intuitionistic fuzzy α- continuous (IF continuous in short) if  f -1(B)  IFO(X) for 

       every B  . 

(iii) intuitionistic fuzzy pre continuous (IFP continuous in short) if f -1(B)  IFPO(X) for 

      every B  . 
 

Definition 2.16:[5] A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy  continuous (IF continuous in 

short) if f -1(B) is an IFOS in (X, τ) for every B  . 
 

Definition 2.17:[11] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be an 

intuitionistic fuzzy generalized continuous (IFG continuous in short) if  f -1(B)  IFGCS(X) for every IFCS B in 
Y. 
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Definition 2.18:[10] A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy generalized semi continuous 

(IFGS continuous in short) if f -1(B) is an IFGSCS in (X, τ) for every IFCS B of (Y, ). 
 

Definition 2.19:[7] A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy weekly generalized continuous 

(IFWG continuous in short) if f -1(B) is an IFWGCS in (X, τ) for every IFCS B of (Y, ). 
 

Definition 2.20:[7] A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy perfectly weekly generalized 
continuous mapping (IF perfectly WG continuous in short) if f -1(B) is clopen in (X, τ) for every IFWGCS B of 

(Y, ). 
 

Definition 2.21:[8] A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy alpha generalized continuous 

(IFG continuous in short) if f -1(B) is an IFGCS in (X, τ) for every IFCS B of (Y, ). 
 

 

III. Intuitionistic Fuzzy Perfectly Alpha Continuous Mappings 

In this section I introduce intuitionistic fuzzy perfectly alpha continuous mapping and studied some of 
its properties. 

 

Definition 3.1: A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy perfectly alpha continuous (IFp 

continuous in short) if f -1(B) is clopen in (X, τ) for every IFCS B of (Y, ). 

 

Theorem 3.2: Every IFp continuous mapping is an IF continuous mapping but not conversely. 

Proof: Let us consider a mapping f: (X, τ)  (Y, ) be an IFp continuous mapping. Let B be an IFCS in Y. 

Clearly then B is an IFCS in Y. Since f is an IFp continuous mapping, f -1(B) is an intuitionistic fuzzy clopen 
in X. That is f -1(B) is an IFCS in X. Hence f is an IF continuous mapping. 

 

Example 3.3: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.1, 0.2), (0.9, 0.8) ,  G2 =  y, (0.1, 0.2), (0.9, 0.8) . 

Then τ = {0~, G1, 1~} and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping f: (X, τ)  (Y, 

) by f(a) = u and f(b) = v. The IFS B =  y, (0.9, 0.8), (0.1, 0.2)  is IFCS in Y. Then f -1(B) is also IFCS in X 

but not IFOS in X. Therefore f is an IF continuous mapping but not an IFp continuous mapping. 
 

Theorem 3.4: Every IFp continuous mapping is an IF continuous mapping but not conversely. 

Proof:  Let f: (X, τ)  (Y,) be an IFp continuous mapping. Let B be an IFCS in Y. Clearly then B is an 

IFCS in Y. Then by hypothesis f -1(B) is an IFCS in X. Since every IFCS is an IFCS, f -1(B) is an IFCS in 

X. Hence f is an IF continuous mapping. 

Example 3.5: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.4, 0.4), (0.4, 0.2)  and  G2 =  y, (0.8, 0.8), (0.2, 0.2) 

. Then τ = {0~, G1, 1~} and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping f: (X, τ)  (Y, 

) by f(a) = u and f(b) = v. Hence the mapping f an is IF continuous mapping. But f is not an IFp continuous 

mapping since an IFS B =  y, (0.1, 0.2), (0.9, 0.8)  is an IFCS in Y and an IFS B is not an intuitionistic fuzzy 
clopen in X. 

 

Theorem 3.6: Every IFp continuous mapping is an IFG continuous mapping but not conversely. 

Proof:  Let f: (X, τ)  (Y,) be an IFp continuous mapping. Let B be an IFCS in Y. Clearly then B is an 

IFCS in Y. Then by hypothesis f -1(B) is an IFCS in X. Since every IFCS is an IFGCS, f -1(B) is an IFGCS in 
X. Hence f is an IFG continuous mapping. 

 

Example 3.7: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.1, 0.3), (0.4, 0.5) , G2 =  y, (0.7, 0.7), (0.2, 0.3) . 

Then τ = {0~, G1, 1~} and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping                           

f: (X, τ)  (Y, ) by f(a) = u and f(b) = v. Hence the mapping f is IFG continuous mapping. But f is not an IFp 

continuous mapping since an IFS B =  y, (0.2, 0.2), (0.7, 0.8)  is an IFCS in Y and an IFS B is not an 
intuitionistic fuzzy clopen in X. 

 

Theorem 3.8: Every IFp continuous mapping is an IFGS continuous mapping but not conversely. 

Proof:  Let f: (X, τ)  (Y,) be an IFp continuous mapping. Let B be an IFCS in Y. Clearly then B is an 

IFCS in Y. Then by hypothesis f -1(B) is an IFCS in X. Since every IFCS is an IFGSCS, f -1(B) is an IFGSCS 
in X. Hence f is an IFGS continuous mapping. 
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Example 3.9: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.1, 0.2), (0.5, 0.5) , G2 =  y, (0.6, 0.7), (0.2, 0.3) . 

Then τ = {0~, G1, 1~} and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping                           

f: (X, τ)  (Y, ) by f(a) = u and f(b) = v. Hence the mapping f an is IFGS continuous mapping. But f is not an 

IFp continuous mapping since an IFS B =  y, (0.2, 0.2), (0.7, 0.7)  is an IFCS in Y and an IFS B is not an 
intuitionistic fuzzy clopen in X. 

 

Theorem 3.10: Every IFp continuous mapping is an IFG continuous mapping but not conversely. 

Proof:  Let f: (X, τ)  (Y,) be an IFp continuous mapping. Let B be an IFCS in Y. Then B is an IFCS in Y. 

Then by hypothesis f -1(B) is an IFCS in X. Since every IFCS is an IFGCS, f -1(B) is an IFGCS in X. Hence f 

is an IFG continuous mapping. 

 

Example 3.11: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.2, 0.2), (0.5, 0.5) , G2 =  y, (0.6, 0.6), (0.2, 0.3) . 

Then τ = {0~, G1, 1~} and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping                           

f: (X, τ)  (Y, ) by f(a) = u and f(b) = v. Hence the mapping f is an IFG continuous mapping. But f is not an 

IFp continuous mapping since an IFS B =  y, (0.2, 0.2), (0.7, 0.8)  is an IFCS in Y and it is not an 
intuitionistic fuzzy clopen in X. 

 

Theorem 3.12: Every IFp continuous mapping is an IFWG continuous mapping but not conversely. 

Proof:  Let f: (X, τ)  (Y,) be an IFp continuous mapping. Let B be an IFCS in Y. Then B is an IFCS in Y. 
Then by hypothesis f -1(B) is an IFCS in X. Since every IFCS is an IFWGCS, f -1(B) is an IFWGCS in X. Hence 

f is an IFWG continuous mapping. 

 

Example 3.13: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.4, 0.5), (0.6, 0.5) , G2 =  y, (0.7, 0.7), (0.2, 0.3) . 

Then τ = {0~, G1, 1~} and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping                             

f: (X, τ)  (Y, ) by f(a) = u and f(b) = v. Hence  f is an IFWG continuous mapping. But f is not an IFp 

continuous mapping since an IFS  B =  y, (0.2, 0.2), (0.7, 0.8)  is an IFCS in Y and an IFS B is not an 
intuitionistic fuzzy clopen in X. 

 

Theorem 3.14: Every IFp continuous mapping is an IFP continuous mapping but not conversely. 

Proof: Let us consider a mapping f: (X, τ)  (Y, ) be an IFp continuous mapping. Let B be an IFCS in Y. 

Clearly then B is an IFCS in Y. Since f is IFp continuous mapping, f -1(B) is an intuitionistic fuzzy clopen in 
X. That is f -1(B) is an IFCS in X. Since every IFCS is an IFPCS, f -1(B) is an IFPCS in X. Hence f is an IFP 

continuous mapping. 

 

Example 3.15: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.5, 0.2), (0.4, 0.4) ,  G2 =  y, (0.1, 0.6), (0.3,                 

0.4) . Then τ = {0~, G1, 1~} and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping                                    

f: (X, τ)  (Y, ) by f(a) = u and f(b) = v. Then f is an IFP continuous mapping. But f is not an IFp continuous 

mapping since an IFS B =  y, (0.2, 0.2), (0.7, 0.8)  is an IFCS in Y and it is not an intuitionistic fuzzy clopen 
in X. 

 

Theorem 3.16: Every IFp continuous mapping is an IF continuous mapping but not conversely. 

Proof: Let a mapping f: (X, τ)  (Y, ) be an IFp continuous mapping. Let B be an IFCS in Y. Clearly then B 

is an IFCS in Y. Since f is IFp continuous mapping, f -1(B) is an intuitionistic fuzzy clopen in X. That is f -

1(B) is an IFCS in X. Since every IFCS is an IFCS, f -1(B) is an IFCS in X. Hence f is an IF continuous 
mapping. 

 

Example 3.17: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.5, 0.2), (0.4, 0.4) , G2 =  y, (0.2, 0.6), (0.3,                  

0.4) . Then τ = {0~, G1, 1~} and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping                               

f: (X, τ)  (Y, ) by f(a) = u and f(b) = v. Then f is an IF continuous mapping. But f is not an IFp continuous 

mapping since an IFS B =  y, (0.2, 0.2), (0.7, 0.8)  is an IFCS in Y and an IFS B is not an intuitionistic fuzzy 
clopen in X. 

 

The relations between various types of intuitionistic fuzzy continuity are given in the following diagram. In this 

diagram ‘cts.’ means continuous. 
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           IFG cts. 

 

 

 

 

 

 IF cts.         IFpα cts.    IFGS cts. 
 

        

 

      

 

 

       IFG cts.  
 

 

The reverse implications are not true in general. 

 

Theorem 3.18: Every IFp continuous mapping is an IFGSP continuous mapping but not conversely. 

Proof:  Let f: (X, τ)  (Y,) be an IFp continuous mapping. Let B be an IFCS in Y. Then B is an IFCS in Y. 
Then by hypothesis f -1(B) is an IFCS in X. Since every IFCS is an IFGSPCS, f -1(B) is an IFGSPCS in X. 

Hence f is an IFGSP continuous mapping. 

 

Example 3.19: Let X = { a, b }, Y = { u, v } and G1 =  x, (0.5, 0.4), (0.5, 0.6) , G2 =  y, (0.2, 0.1), (0.8, 0.9) . 

Then τ = {0~, G1, 1~} and  = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping                           

f: (X, τ)  (Y, ) by f(a) = u and f(b) = v. Hence the mapping f is an IFGSP continuous mapping. But f is not an 

IFp continuous mapping since an IFS B =  y, (0.8, 0.9), (0.2, 0.1)  is an IFCS in Y and it is not an 
intuitionistic fuzzy clopen in X. 

 

Theorem 3.20: Every IF perfectly WG continuous mapping is an IFp continuous mapping. 

Proof:  Let f: (X, τ)  (Y,) be an IF perfectly WG continuous mapping. Let B be an IFWCS in Y. Then by 

hypothesis, f -1(B) is an intuitionistic fuzzy clopen set in X. Clearly from the definition of an IFCS, every 

IFCS is an IFWGCS. Hence the mapping f is an IFp continuous mapping. 

 

Theorem 3.21: A mapping f: X  Y is an IFp continuous if and only if the inverse image of each IFOS in Y 
is an intuitionistic fuzzy clopen in X. 

Proof: Necessary Part: Let a mapping f: X  Y is IFp continuous mapping. A be an IFOS in Y. This 

implies Ac is IFCS in Y. Since f is an IFp continuous, f -1(Ac) is an intuitionistic fuzzy clopen in X. Hence f -

1(A) is an intuitionistic fuzzy clopen in X. 

Sufficient Part:  Let B is an IFCS in Y. Then Bc is an IFOS in Y. By hypothesis f -1(Bc) is intuitionistic 

fuzzy clopen in X. This implies f -1(B) is an intuitionistic fuzzy clopen in X. Hence a mapping f is an IFp 
continuous mapping. 
 

Theorem 3.22: Let f : (X, τ)  (Y, ) be an IFp continuous mapping and g : (Y, )  (Z, )  is IFp 

continuous mapping, then  g o f : (X, τ)   (Z, )  is an IFp continuous mapping. 

Proof: Let A be an IFCS in Z. Then g-1(A) is an intuitionistic fuzzy clopen in Y, by hypothesis. This implies  

g-1(A)  is IFCS in Y. Since every IFCS is an IFCS, g-1(A) is an IFCS in Y. Since  f is an IFp continuous 

mapping, f -1(g-1(A)) is an intuitionistic fuzzy clopen in X. Hence g  f  is an IFp continuous mapping. 
 

Theorem 3.23: Let f : (X, τ)  (Y, ) be an IF continuous mapping and  g : (Y, )  (Z, )  is IFp continuous 

mapping, then  g o f : (X, τ)   (Z, )  is an  IF continuous mapping. 

Proof: Let A be an IFCS in Z. This implies A is an IFCS in Z. Since g is an IFp continuous mapping,     g-

1(A) is an intuitionistic fuzzy clopen in Y. Thus g-1(A) is IFCS in Y. Since f is an IF continuous mapping, f -1(g-

1(A))   is   an IFCS in X.  Hence g  f  is an IF continuous mapping. 
 

Theorem 3.24: Let f : (X, τ)  (Y, ) be an IF continuous mapping and g : (Y, )  (Z, )  is IFp 

continuous mapping, then  g o f : (X, τ)   (Z, )  is an IF continuous mapping. 
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Proof: Let A be an IFCS in Z. This implies A is an IFCS in Z. Then g-1(A) is an intuitionistic fuzzy clopen in 

Y, by hypothesis. Thus g-1(A) is IFCS in Y. Since f is an IF continuous mapping, f -1(g-1(A))   is   an IFCS in 

X.  Hence g  f  is an IF continuous mapping. 
 

Theorem 3.25: If  a mapping f: (X, τ)  (Y, )  is an IFp continuous mapping then cl(int(cl(f -1(int(A)))))  f 
-1(cl(A)) for every IFS B in Y. 

Proof:  Let B be an IFS in Y. Then cl(B) is an IFCS in Y. By hypothesis, f -1(cl(B)) is an intuitionistic 

fuzzy clopen in X. This implies f -1(cl(B)) is an IFCS in X. Therefore cl(f -1(cl(B)) = f -1(cl(B)).                       

Now cl(int(cl(f -1(int(B)))))  cl(int(cl(f -1(cl(B)))))  cl(f -1(cl(B))) = f -1(cl(B)).  Hence cl(int(cl(f -1 (int 

(B)))))  f -1(cl(B)) for every IFS B in Y. 
 

Theorem 3.26: Let f: (X, τ)  (Y, ) be a mapping from an IFTS X into an IFTS Y. Then the following 
conditions are equivalent. 

(i)  f is an IFp continuous mapping. 

(ii) If A is an IFCS in Y then f -1(A) is an intuitionistic fuzzy clopen in X. 

(iii) int(f -1(cl(B))) = f -1(cl(B)) = cl(f -1(cl(B))) for every B  in Y. 
 

Proof:   

(i)  (ii): is obviously true. 
 

(ii)  (iii): Let B be any IFS in Y. Then cl(B) is an IFCS in Y. By hypothesis, f -1(cl(B)) is an intuitionistic 

fuzzy clopen in X. Thus f-1(cl(B)) is IFCS in X. Hence   f -1(cl(B)) is an intuitionistic fuzzy open set in X. 

That is int(f -1(cl(B)) = f -1(cl(B)). Also f -1(cl(B)) is an intuitionistic fuzzy closed set                   in X. That 

is cl(f -1(cl(B)) = f -1(cl(B)). Hence int(f -1(cl(B))) = f -1(cl(B)) = cl(f -1(cl(B))) for every B  in Y. 
 

(iii)  (i): Let B be an IFS in Y. Then cl(B) is an IFCS in Y. By hypothesis, int(f -1(cl(B)) =                                

f -1(cl(B))= cl(f -1(cl(B))).  This implies f -1(cl(B)) is IFOS in X and also an IFCS in X. That is                                  

f -1(cl(B)) is an intuitionistic fuzzy clopen in X. Hence f is an IFp continuous mapping. 
 

Theorem 3.27: If  a mapping f: (X, τ)  (Y, )  is an IFp continuous mapping then f -1(cl(B))  int(cl(int(f -

1(cl(B)) for every IFS B in Y. 

Proof:  Let B be an IFS in Y. Then cl(B) is an IFCS in Y. By hypothesis, f -1(cl(B)) is an intuitionistic 

fuzzy clopen in X. This implies f -1(cl(B)) is an IFOS in X. Therefore int(f -1(cl(B)) = f -1(cl(A)). Now int(f -

1(cl(B)))))  int(cl(int(f -1(cl(B)))))  int(cl(int(f -1(cl(B))))). This implies f -1(cl(B))  int(cl(int(f -1(cl(B)) 
for every IFS B in Y. 
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