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I. Introduction 
Levine[8] introduced and investigated the concept of strong continuity in topological spaces. Sundaram 

[10] introduced strongly g-continuous maps and perfectly g-continuous maps in topological spaces.In [10], 

Sundaram introduced the concept of GO-compact space by using g-open covers.Antony Rex Rodrigo and 

Mariappan[3] introduced the characterizations and properties of 𝑔#-closed sets in ideal topological spaces.In 

this paper,we introduce the notion of 𝑇𝐼
𝑔#

-space,𝑇𝐼
𝑔#
∗  -space, strongly𝐼𝑔#-continuous  maps,perfectly  𝐼𝑔#-

continuous and 𝐼𝑔#-compactness in ideal topological spaces and obtain some of its properties. 

An ideal 𝐼 on a topological space ( 𝑋 , 𝜏 ) is non-empty collection of subsets of 𝑋 which satisfies 

(i)𝐴 ∈ 𝐼 and 𝐵 ⊂ 𝐴 ⇒ 𝐵 ∈ 𝐼 and (ii) 𝐴 ∈ 𝐼 and 𝐵 ∈ 𝐼 ⇒ 𝐴 ∪ 𝐵 ∈ 𝐼.Given a topological space (  𝑋 , 𝜏 ) with an 

ideal 𝐼 on 𝑋 and if ℘(𝑋) is the set of all subsets of 𝑋, a set operator (.)* :℘(𝑋) → ℘(𝑋) ,called a local function 

[4] of A with respect to 𝜏 and 𝐼 is defined as follows: for 𝐴 ⊆ 𝑋, 𝐴∗ 𝐼, 𝜏 = {𝑥 ∈ 𝑋: 𝑈 ∩ 𝐴 ∉ 𝐼 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑈 ∈
𝜏 𝑋 } where 𝜏 𝑋 = {𝑈 ∈ 𝜏: 𝑥 ∈ 𝑈}.We will make use of the basic facts about the local functions[1,Theorem 

2.3] without mentioning it explicitly. A Kuratowski closure operator cl*(.) for a topology 𝜏∗(𝐼, 𝜏), called the ∗-

topology, finer than 𝜏 is defined by cl* 𝐴 = 𝐴 ∪ 𝐴∗(𝐼, 𝜏)[12].When there is no chance for confusion, we will 

simply write A* for 𝐴∗(𝐼, 𝜏) and 𝜏∗ for 𝜏∗(𝐼, 𝜏). If 𝐼 is an ideal on 𝑋, then (  𝑋 , 𝜏, 𝐼) is called an ideal space. 

 

II. Preliminaries 
Definition 2.1:A subset A of a topological space (  𝑋 , 𝜏 ) is an 𝛼-open set [8]if𝐴 ⊆ 𝑖𝑛𝑡(𝑐𝑙 𝑖𝑛𝑡 𝐴  ). 

 

Definition 2.2:A subset A of a topological space(  𝑋 , 𝜏 ) is called 

(i)Generalized closed (briefly g-closed) [11] if 𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is open in 𝑋. 

(ii)𝛼-generalized closed (briefly 𝛼g-closed) [2] if 𝛼-𝑐𝑙(𝐴) ⊆U whenever 𝐴 ⊆ 𝑈 and 𝑈 is open in 𝑋. 

(iii)𝑔#-closed [6] if𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is 𝛼𝑔-open in 𝑋. 

 

Definition 2.3:A function f :  𝑋 , 𝜏   →    𝑌, 𝜎   is called  

(i)Strongly continuous [8] if 𝑓−1(𝑉) is both open and closed in 𝑋 for each subset 𝑉in 𝑌. 

(ii)Perfectly continuous [13] if 𝑓−1(𝑉) is both open and closed in 𝑋 for each open set 𝑉in 𝑌. 

 

Definition 2.4:A topological space 𝑋 is called 𝑇1/2-space [7] if every g-closed set of 𝑋 is closed in 𝑋. 

 

Definition 2.5:A subset A of an ideal space (  𝑋 , 𝜏 , 𝐼 )  is said to be 𝐼𝑔#-closed [3] if 𝐴∗ ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 

and 𝑈 is 𝛼g-open in 𝑋. 

 

Definition 2.6:A function 𝑓: (𝑋, 𝜏, 𝐼) → (𝑌, 𝜎) is called 𝐼𝑔#-continuous [3] if the inverse image of every closed 

set in 𝑌is 𝐼𝑔#-closed in 𝑋. 
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Definition 2.7:A function 𝑓: (𝑋, 𝜏, 𝐼) → (𝑌, 𝜎, 𝐽) is called 𝐼𝑔#-irresolute [3] if the inverse image of every 𝐼𝑔#-

closed set in 𝑌 is 𝐼𝑔#-closed in 𝑋. 

 

III. Separation Axioms In Ideal Topological Space 
Definition 3.1:An ideal topological space (  𝑋 , 𝜏 , 𝐼 )  is called  a  𝑇𝐼

𝑔#
-space if every 𝐼𝑔#-closed set of 𝑋 is 

closed in 𝑋 . 

 

Definition 3.2: An  ideal  Topological  space    𝑋 , 𝜏 , 𝐼    is called  a 𝑇𝐼𝑔
- space  if  every  𝐼𝑔-closed  set of  𝑋 is  

closed  in  𝑋 .  

 

Definition 3.3:An  ideal  Topological  space    𝑋 , 𝜏 , 𝐼    is  called  a  𝑇𝐼
𝑔#
∗  -space  if  every  𝐼𝑔-closed  set  of  𝑋 

is  𝐼𝑔# - closed  in  𝑋.  

 

Theorem 3.4: If   𝑋 is  𝑇𝐼𝑔
then  it  is  𝑇𝐼

𝑔#
  but  not  conversely .  

 

Proof Let  𝑋be  a𝑇𝐼𝑔
 – space  and  A  be  a  𝐼𝑔# - closed  set  in  𝑋. Since  every𝐼𝑔# - closed   set  is  𝐼𝑔- closed  

and  𝑋  is  𝑇𝐼𝑔
 ,  A is  closed  in  𝑋. Hence  𝑋 is  𝑇𝐼

𝑔#
 .  

             The  converse  need  not  be  true  as  seen  from  the  following  example. 

 

Example 3.5:Let  𝑋 =  𝑎 , 𝑏, 𝑐, 𝑑 , 𝜏 = { ∅ , 𝑋,  𝑏  ,  𝑐  ,  𝑏, 𝑐  ,  𝑏, 𝑐, 𝑑 }and 𝐼 = {∅,  𝑎 }.Then 

  𝑋 , 𝜏 , 𝐼  is𝑇𝐼
𝑔#

-space but not 𝑇𝐼𝑔
-space.Since 𝐼𝑔#-closed sets of  𝑋  are closed in 𝑋 but the 𝐼𝑔-closed set {d} is 

not closed in  𝑋.   

 

Theorem 3.6:If  𝑋 is  𝑇𝐼
𝑔#

then  it  is  𝐼
𝑔#
∗   but  not  conversely  .  

 

Proof.Let  𝑋be  a𝑇𝐼
𝑔#

 -  space  and  A  be  a  𝐼𝑔   -  closed  set  in  𝑋  .  Since  X  is  𝑇𝐼
𝑔#

 -  space  and  every  

closed  set  is  𝐼𝑔# - closed  .  Hence  𝑋  is  𝑇𝐼
𝑔#
∗   . The  converse  need  not  be  true  as  seen  from  the  

following  example .  

 

Example 3.7:  Let  𝑋 =  𝑎, 𝑏, 𝑐  , 𝜏 = { ∅, 𝑋,  𝑎 ,  𝑏 ,  𝑎, 𝑏 } and 𝐼 = {∅,  𝑎 }.Then    𝑋 , 𝜏 , 𝐼   is 𝑇𝐼
𝑔#
∗ space but 

not 𝑇𝐼
𝑔#

-space. Since𝐼𝑔# ,𝐼𝑔-closed sets of 𝑋are∅, 𝑋,  𝑎 ,  𝑐 ,  𝑏, 𝑐 ,  𝑎, 𝑐 andclosed sets of 𝑋are 

∅, 𝑋,  𝑐 ,  𝑏, 𝑐 ,  𝑎, 𝑐 . 
 

Remark 3.8:𝑇1/2  and𝑇𝐼𝑔
#  spaces   are  independent  from  the following  example. 

 
Example 3.9:.This is obvious from remark 2.4[3]. 

 

Theorem 3.10:If a function  f  :   𝑋 , 𝜏, 𝐼   →    𝑌, 𝜎, 𝐽   is continuous and Y is a 𝑇𝐼
𝑔#

 -  space, then  f is   𝐼𝑔# - 

irresolute. 

 

Proof.Assume that f is continuous.Let G be any 𝐼𝑔# - closed set in Y. Since Y is a  𝑇𝐼
𝑔#

 - space, then G is closed 

in Y. Hence f-1(G) is closed in X. But every closed set is 𝐼𝑔#-closed. Therefore f is   𝐼𝑔# - irresolute. 

 

Theorem 3.11:If a function  f  :   𝑋 , 𝜏, 𝐼   →    𝑌, 𝜎, 𝐽   is continuous and Y is a  𝑇𝐼
𝑔#

 -  space, then  f is   

strongly 𝐼𝑔# -continuous. 

 

Proof.Assume that f is continuous.Let G be any 𝐼𝑔# - closed set in Y. Since Y is a  𝑇𝐼
𝑔#

 - space, then G is closed 

in Y. Hence f-1(G) is closed in X. Therefore f isstrongly 𝐼𝑔# -continuous. 
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IV. Strongly g
#
-Continuous And Perfectly g

#
-Continuous Maps In Ideal Topological Spaces 

 

Definition 4.1:A function   f  :   𝑋 , 𝜏   →    𝑌, 𝜎, 𝐽  is said to be strongly 𝐼𝑔#-continuous  if the inverse  image  

of  every  𝐼𝑔#  -  closed  set  in  Y  is  closed  in  X  . 

 

Remark 4.2:WhenY  is  𝑇𝐼
𝑔#

 ,strongly  𝐼𝑔# - continuity  coincides with continuity. 

 

Theorem 4.3:If  a  map  f :   𝑋 , 𝜏  →   𝑌 , 𝜎 , 𝐽   from  a  topological  space    into  an ideal  topological  space    

is  strongly  𝐼𝑔# - continuous  then  it  is  continuous  but  not  conversely  .  

 

Proof.Assume that  f  is  strongly  𝐼𝑔#  -  continuous .  Let  G  be  any  open  set  in  Y  .  Since  every  open  set  

is  𝐼𝑔# -  open  , G  is  𝐼𝑔# - open  in  Y .  Since  f  is  strongly  𝐼𝑔# -  continuous  ,  𝑓−1 ( G )  is  open  in  𝑋.  

Therefore  f  is  continuous.   
                 The  converse  need  not  be  true  as  seen  from  the  following  example . 

 

Example 4.4: Let 𝑋 = 𝑌 = {𝑎, 𝑏, 𝑐} with the  topologies 𝜏 = { ∅, 𝑋,  𝑎 ,  𝑏 ,  𝑎, 𝑏 },𝜎 = {∅, 𝑋,  𝑎 ,  𝑎, 𝑏 }and 

𝐽 = {∅,  𝑏 }.Define a map  f :   𝑋 , 𝜏  →   𝑌 , 𝜎 , 𝐽  by f(a)=b, f(b)=a, f(c)=c then f is continuous. But f is not 

strongly𝐼𝑔# - continuous.Since  f-1({b})={a} is not closed in𝑋,where {b] is 𝐼𝑔# - closed in Y. 

 

Theorem 4.5:A function  f :   𝑋 , 𝜏  →   𝑌 , 𝜎 , 𝐽   from  a  topological  space    𝑋 , 𝜏   into  an  ideal  

topological  space  (𝑌 , 𝜎 , 𝐽 )  𝑖𝑠  𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦  𝐼𝑔#  -  continuous  if  and  only  if  the  inverse  image  of  every  𝐼𝑔# 

- closed  set  in  Y  is  closed  in  X .  

 

Proof.Assume  that  f  is  strongly  𝐼𝑔# - continuous . Let  Fbe  any  𝐼𝑔#  -  closed  set  in  Y . Then  𝐹𝐶  is  𝐼𝑔# - 

open  in  Y . Since f  is  strongly  𝐼𝑔# - continuous ,  𝑓−1  ( 𝐹𝐶 )  is  open  in  X . But  𝑓−1 𝐹𝐶 =   𝑋 −

 𝑓−1 𝐹  ,𝑓−1 𝐹  is closed in X. Converslyassume  that  the  inverse  image  of  every  𝐼𝑔# - closed  set  in  Y  is  

closed  in  X .  Let  G  be  any  𝐼𝑔# 𝑜𝑝𝑒𝑛  𝑖𝑛  𝑌 . 𝑇𝑒𝑛  𝐺𝐶   𝑖𝑠  𝐼𝑔#-closed in Y. By assumption  ,𝑓−1( 𝐺𝐶  )  is  

closed  set  in  X .  But  𝑓−1 𝐺𝐶 = 𝑋 −  𝑓−1( 𝐺 )and  so𝑓−1  (𝐺 )  is  open  in  X .Therefore  f  is  strongly  𝐼𝑔# - 

continuous .  

 

Theorem 4.6:If    a  function  f  :   𝑋 , 𝜏  → ( 𝑌 , 𝜎 , 𝐽 )  is  strongly  continuous ,  then  it  is  strongly 𝐼𝑔# -  

continuous  but  not  conversely .  

 

Proof.Let  G  be  any  𝐼𝑔#  -  open  set  in  Y  .  Since  f  is  strongly  continuous  ,  𝑓−1 ( G )  is  open  in X  ( by  

Definition ) .  Hence  f  is  strongly  𝐼𝑔# -  continuous  .   

                     The  converse   need  not  be  true  as  seen  from  the  following  example . 

 

 Example 4.7: Let 𝑋 = 𝑌 = {𝑎, 𝑏, 𝑐} with the  topologies  𝜏 = { ∅, 𝑋,  𝑎 ,  𝑎, 𝑏 ,  𝑎, 𝑐 }, 𝜎 = {∅, 𝑋,  𝑎 ,  𝑎, 𝑏 } 
and 𝐽 = {∅,  𝑏 }.Define a map  f :   𝑋 , 𝜏  →   𝑌 , 𝜎 , 𝐽    by f(a)=a, f(b)=c, f(c)=b, then f is strongly continuous. 

But f is not strongly continuous. Since for the set {a} in Y,              f-1({a})={a} is open but not closed in 𝑋. 

 

Theorem 4.8: If   a  map  f  :     𝑋 , 𝜏  → ( 𝑌 , 𝜎 , 𝐽 ) is  strongly  𝐼𝑔#- continuous  and  a  map  g :   𝑌 , 𝜎 , 𝐽  →

 𝑍 , 𝛾   is 𝐼𝑔#-continuous,then  the  composition 𝑔 ∘ 𝑓 ∶   𝑋 , 𝜏  →   𝑍 , 𝛾   is continuous. 

 

Proof .Let  G  be  any  open  set  in  Z . Since g  is𝐼𝑔#-continuous , 𝑔−1  𝐺   is 𝐼𝑔# -open in Y.Since  f  is  

strongly  𝐼𝑔#-continuous𝑓−1𝑔−1  𝐺     is  open  in  X  . But  𝑓−1𝑔−1  𝐺  = (𝑔 𝑜𝑓 )−1  ( 𝐺 ). Therefore  g of  is  

continuous .  

 

Theorem 4.9:If   a  map  f  :     𝑋 , 𝜏  → ( 𝑌 , 𝜎 , 𝐽 ) is  strongly  𝐼𝑔#-  continuous  and  a  map  g :   𝑌 , 𝜎 , 𝐽  →

 𝑍 , 𝛾, 𝐾   is  strongly 𝐼𝑔#-continuous, then  the  composition 𝑔 ∘ 𝑓 ∶   𝑋 , 𝜏  →   𝑍 , 𝛾, 𝐾   is strongly 𝐼𝑔#-

continuous. 

           (i.e)Composition of two strongly 𝐼𝑔#-  continuous functions  is strongly 𝐼𝑔#-  continuous. 
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Proof.Let  G  be  any  𝐼𝑔#-open  set  in  Z . Since g is strongly 𝐼𝑔#-continuous ,𝑔−1  𝐺   is  open in Y. Since  f  is  

strongly  𝐼𝑔#-continuous  and every open set is 𝐼𝑔#-open,   𝑓−1𝑔−1  𝐺      is  open  in  X  . But   𝑓−1𝑔−1  𝐺  =

(𝑔 𝑜𝑓 )−1  ( 𝐺 ).Therefore  g of  is  strongly 𝐼𝑔#-  continuous .  

 

Theorem 4.11:If   a  map  f  :     𝑋 , 𝜏, 𝐼  → ( 𝑌 , 𝜎 , 𝐽 ) is𝐼𝑔#-  continuous  and  a  map  g :   𝑌 , 𝜎 , 𝐽  →

 𝑍 , 𝛾, 𝐾   is  strongly 𝐼𝑔#-continuous, then  the  composition 𝑔 ∘ 𝑓 ∶   𝑋 , 𝜏, 𝐼  →   𝑍 , 𝛾, 𝐾   is 𝐼𝑔#-irresolute. 

 

Proof.Let  G  be  any  𝐼𝑔#-open  set  in  Z . Since g is strongly 𝐼𝑔#-continuous ,𝑔−1  𝐺   is  open in Y. Since  f  is   

𝐼𝑔#-continuous, 𝑓−1𝑔−1  𝐺   is 𝐼𝑔#-open  in  X . But 𝑓−1𝑔−1  𝐺  = (𝑔 𝑜𝑓 )−1  ( 𝐺 ). Therefore   g of  is𝐼𝑔#-  

irresolute. 

 

Theorem 4.12:If   a  map  f  :     𝑋 , 𝜏  → ( 𝑌 , 𝜎 , 𝐽 ) is  strongly𝐼𝑔#-  continuous  and  a  map  g :   𝑌 , 𝜎 , 𝐽  →

 𝑍 , 𝛾, 𝐾   is  𝐼𝑔#-irresolute, then  the  composition 𝑔 ∘ 𝑓 ∶   𝑋 , 𝜏, 𝐼  →   𝑍 , 𝛾, 𝐾   is continuous. 

 

Proof.Let  G  be  any  open  set  in  Z . Since g is  𝐼𝑔#-irresolute and every open set is  𝐼𝑔#-open    ,  𝑔−1  𝐺   is  

𝐼𝑔#-open in Y. Since  f  is strongly𝐼𝑔#-continuous,  𝑓−1𝑔−1  𝐺    is open  in  X .  But   𝑓−1𝑔−1  𝐺  =

(𝑔 𝑜𝑓 )−1  ( 𝐺 ).Therefore  g of  is continuous. 

 

Definition 4.13:.A map 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎, 𝐽) is said to be perfectly 𝐼𝑔#-continuous if the inverse image of every 

𝐼𝑔#-open set in (𝑌, 𝜎, 𝐽)   is both open and closed in  𝑋, 𝜏 . 

 

Theorem 4.14:. A map  𝑓: (𝑋, 𝜏) → (𝑌, 𝜎, 𝐽) from a topological space (𝑋, 𝜏) into an ideal topological space 

(𝑌, 𝜎, 𝐽) is perfectly 𝐼𝑔#-continuous then it is strongly  𝐼𝑔#-continuous but not conversely. 

 

Proof. Assume that 𝑓 is perfectly 𝐼𝑔#-continuous. Let G be any  𝐼𝑔#-open set in (𝑌, 𝜎, 𝐽).Since 𝑓 is perfectly 𝐼𝑔#-

continuous , 𝑓−1(𝐺) is open in (𝑋, 𝜏).Therefore 𝑓 is strongly  𝐼𝑔#-continuous. 

       The converse of the above theorem need not be true as seen from the following  example. 

 

Example4.15:Let𝑋 = 𝑌 = {𝑎, 𝑏, 𝑐} with the topologies 𝜏 = {∅, 𝑋,  𝑎 ,  𝑎, 𝑏 ,  𝑎, 𝑐 } and 𝜎 = {∅, 𝑋,  𝑎 ,  𝑎, 𝑏 } 

and 𝐽 = {∅,  𝑏 }.Define a map 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎, 𝐽) as the identity map. Then 𝑓 is strongly  𝐼𝑔#-continuous but 

not perfectly 𝐼𝑔#-continuous.For the 𝐼𝑔#-open set {a} of 𝑌,𝑓−1  𝑎  = {𝑎} which is open but not closed in 𝑋. 

 

Theorem 4.16: A map  𝑓: (𝑋, 𝜏) → (𝑌, 𝜎, 𝐽) from a topological space (𝑋, 𝜏) into an ideal topological space 

(𝑌, 𝜎, 𝐽) is perfectly 𝐼𝑔#-continuous iff𝑓−1(𝐺) is both open and closed in (𝑋, 𝜏) for every  𝐼𝑔#-open set in 

(𝑌, 𝜎, 𝐽). 

 

Proof. Assume that 𝑓 is perfectly 𝐼𝑔#-continuous. Let F be any  𝐼𝑔#-closed set in (𝑌, 𝜎, 𝐽).Since 𝑓 is perfectly 

𝐼𝑔#-continuous , 𝑓−1(𝐹𝑐) is both open and closed in (𝑋, 𝜏).But  𝑓−1 𝐹𝑐 = 𝑋 − 𝑓−1(𝐹)  andso  𝑓−1(𝐹) is both 

open and closed in (𝑋, 𝜏).Conversely  assume that  the inverse image of every  𝐼𝑔#-closed is both open and 

closed in (𝑋, 𝜏).Let G be any 𝐼𝑔#-open set in (𝑌, 𝜎, 𝐽).Then 𝐺𝑐  is 𝐼𝑔#-closed set in (𝑌, 𝜎, 𝐽).By assumption  

𝑓−1(𝐺𝑐) is both open and closed in (𝑋, 𝜏). But  𝑓−1 𝐺𝑐 = 𝑋 − 𝑓−1(𝐺)  andso  𝑓−1(𝐺) is both open and closed 

in (𝑋, 𝜏).Therefore 𝑓  is perfectly 𝐼𝑔#-continuous. 

 

Remark 4.17:From the above observations we have the following implications. 

 

V. g
#
-Compactness in Ideal Topological Space 

Deinition 5.1:A collection {𝐴𝑖 ; 𝑖 ∈ 𝐼} of 𝐼𝑔#-open sets in an ideal topological space (𝑋, 𝜏, 𝐼) is called a 𝐼𝑔#-open 

cover of a subset B in 𝑋if 𝐵 ⊆  𝐴𝑖𝑖∈𝐼 . 

 

Definition 5.2:An ideal topological space (𝑋, 𝜏, 𝐼) is 𝐼𝑔#-compact if every 𝐼𝑔#-open cover of 𝑋 has a finite 

subcoverof  𝑋. 
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Definition 5.3: A subset B of an ideal topological space (𝑋, 𝜏, 𝐼)is called 𝐼𝑔#-compact relative to 𝑋 ,if for every 

collection {𝐴𝑖 ; 𝑖 ∈ 𝐼} of 𝐼𝑔#-open subsets of 𝑋 such that  𝐵 ⊆  𝐴𝑖𝑖∈𝐼  ,there exist a finite subset 𝐼0 of 𝐼 such that 

𝐵 ⊆  𝐴𝑖𝑖∈𝐼0
. 

 

Definition 5.4:A subset B of an ideal topological space (𝑋, 𝜏, 𝐼)is called 𝐼𝑔#-compact if B is 𝐼𝑔#-compact as the 

subspace of 𝑋. 

 

Theorem 5.5: A 𝐼𝑔#-closed subset of 𝐼𝑔#-compact space is 𝐼𝑔#-compact relative to 𝑋. 

 

Proof.Let A be a 𝐼𝑔#-closed subset of 𝐼𝑔#-compact space 𝑋.Then 𝐴𝑐  is 𝐼𝑔#-open in 𝑋.Let S be a 𝐼𝑔#-open cover 

of A in 𝑋.Then ,S along with 𝐴𝑐  form a 𝐼𝑔#-open cover of 𝑋.Since 𝑋 is  𝐼𝑔#-compact ,it has a finite subcover, 

say {𝐺1 , 𝐺2,𝐺3 ……… . . 𝐺𝑛}.If this subcover contains 𝐴𝑐 ,we discard it.Otherwise leave the subcover as it is.Thus 

we have obtained a finite subcover of A and so A is 𝐼𝑔#-compact relative to 𝑋. 

 

Theorem 5.6:A 𝐼𝑔#-continuous image of a 𝐼𝑔#-compact space is compact. 

 

Proof.Let 𝑓: (𝑋, 𝜏, 𝐼) → (𝑌, 𝜎) be a 𝐼𝑔#-continuous map from a 𝐼𝑔#-compact space 𝑋 onto a topological space 

𝑌.Let {𝐴𝑖 ; 𝑖 ∈ 𝐼} be an open cover of 𝑌.Then {𝑓−1 𝐴𝑖 ; 𝑖 ∈ 𝐼} is a 𝐼𝑔#-open cover of 𝑋.Since 𝑋 is 𝐼𝑔#-compact, 

it has a finite subcover say {𝑓−1 𝐴1 , 𝑓−1 𝐴2 ……… . . 𝑓−1(𝐴𝑛 )}.Since f is onto, {𝐴1 , 𝐴2,𝐴3 ……… . . 𝐴𝑛} is an 

open cover of Y and so Y is compact.. 

 

Theorem 5.7:If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎, 𝐽) is strongly 𝐼𝑔#-continuous map from a compact space 𝑋 onto an ideal 

topological space  ,then𝑌 is 𝐼𝑔#-compact. 

 

Proof.Let  {𝐴𝑖 ; 𝑖 ∈ 𝐼} be an 𝐼𝑔#-open cover of 𝑌. Then {𝑓−1 𝐴𝑖 ; 𝑖 ∈ 𝐼} is a open cover of  𝑋, Since f is strongly 

𝐼𝑔#-continuous.Since𝑋 is compact, it has a finite sub cover say {𝑓−1 𝐴1 , 𝑓−1 𝐴2 ……… . . 𝑓−1(𝐴𝑛)} and since 

f is onto ,{𝐴1 , 𝐴2,𝐴3 ……… . . 𝐴𝑛}is a finite subcover of 𝑌.Therefore 𝑌 is 𝐼𝑔#-compact.. 

 

Theorem 5.8:If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎, 𝐽) is perfectly 𝐼𝑔#-continuous map from a compact space 𝑋 onto an ideal 

topological space 𝑌,then𝑌 is 𝐼𝑔#-compact 

 

Proof.It follows from theorem 5.7. 

 

Theorem5.9:  Let (𝑋, 𝜏, 𝐼) be an ideal space. If A is an 𝐼𝑔-closed subset of 𝑋,then A is 𝐼-compact.[5,Theorem 

2.17] 
 

Corollary 5.11:Let (𝑋, 𝜏, 𝐼) be an ideal space. If A is an 𝐼𝑔#-closed subset of 𝑋, then A is 𝐼-compact. 
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