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Abstract: In this paper, we investigate that for each p, 1   p  , space ℓ
p 

, equipped with the normed 

topology, is both (i) B-reflexive, and (ii) inductively reflexive. We also discuss that the locally convex spaces ℓ
p
 

[s(ℓ
q
)] , where 1  p   and 1/p + 1/q =1, are semi-reflexive ( and so polar semi-reflexive) and the locally 

convex space ℓ
1
 [k(c0)] is inductively semi-reflexive. 
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I. Introduction 
Semi-reflexivity and reflexivity are well known properties in locally convex spaces. There are other 

types of reflexivity, namely, polar semi-reflexivity and polar  reflexivity in [1], inductive semi-reflexivity and 

inductive reflexivity introduced by  I.A. Berezanskij [2] and B-semireflexivity, B-reflexivity in  [3]. The notions 

of  p-completeness and p-reflexivity introduced by Kalman Brauner [4] are nothing but polar semi-reflexivity 

and polar  reflexivity, respectively. In this paper we discuss these reflexivities in sequence spaces. For a locally 

convex space E[ ], which we always consider Hausdorff,  the  dual  is denoted by E′. The strong dual of E[ ] is 

E′[τb(E)] and the bidual of E[ ] is E′′=(E′[τb(E)])′. We follow the notion  of  Köthe [1] for notations and 

terminology, unless specifically mentioned.  

A locally convex space E[] is called semi-reflexive if  E  = E′′.  A semi-reflexive locally convex space 

E[] is called reflexive  provided  = b( E′ ) .  

Let 

 be the topology on E′  of uniform  convergence over the  class of -precompact sets (in E). We 

have 

  b(E). The topology on (E′[ 


])′ of uniform convergence over the class of 


 -precompact subsets of  

E′[ 

] is denoted as 


 .  

 

1.1.  Definition (Köthe [1]): A locally convex space E[] is called polar semi-reflexive if  E = (E′[ 

] )′.  Polar 

semi-reflexive space E[]  is called polar reflexive if   =
oo   

i.e. (
o
)

o 
.  

Consider a locally convex space E[] and  a base {U:  I} of -neighborhoods of 0 consisting of 

closed absolutely convex neighborhoods. Let U⁰ be the polar of U in E′
 
and E′u  be the  linear subspace of E′ 

spanned by U⁰equipped with the norm topology with U⁰ as unit ball. Let E′
 
[


] be the inductive limit of the 

system { E′u and  the embeddings: E′u → E′. Note that 

 is the finest locally convex topology on E′ making 

all embeddings: E′u → E′ continuous. Starting from the locally convex space E′[

], the topology 


=  (




is 

defined on (E′
 
[


] )′. The topology 


 constructed  this way is due to [2].  

 

1.2. Definition (Berezanskií [2]): If (E′[

])′  = E, then  E[]  is called inductively semi-reflexive. If, in addition, 

(



, then E[]  is called inductively reflexive.   

Following P.K. Raman [3],  we define that an absolutely convex bounded subset B of the dual E′ of a 

l.c. space E[] is called reflective if the span E′B  is a reflexive Banach space with B as unit ball. The class of all 

reflective sets is denoted by R .  The topology on E of uniform convergence over the saturated class of sets 

generated by R  is  called the reflective topology of E and is denoted by r . The polars of the sets of R  i.e. the 

class{K₀ : K Є R  } forms a base of neighborhoods of the origin o for E[r]. 

 

1.3. Definition (Raman [3]): If  a locally convex space E[] is barreled  and  E = the completion of E[r], then 

E[] is said to be B-semireflexive if  E = E algebraically.    

If, in addition,   = r , we say that  E[]  is B-reflexive.  

Let us denote     

ℓ
∞ 

= The set of all bounded sequences x={ k} of real or complex numbers.      
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c = The set of all convergent sequences x={ k} of real or complex numbers.                                                       

c0 = The set of all sequences x={ k} of real or complex numbers which are convergent to 0.                               

ℓ
1
  =

   
The set of all sequences x={ k} of real or complex numbers with k ∞. 

 ℓ
p
 ,1 p  , =

   
 The set of all sequences x={ k} of real or complex numbers for which  

k∣
p
   converges. 

If  a bounded sequence x={ k}is considered as a coordinate vector  x=( k), then the coordinate-wise 

addition and scalar multiplication  i.e. for all x= { k}, y={ k}  ℓ
∞ 

and  K , x+y = { k+ k}  and x = 

={ k}, define a vector space structure on ℓ
∞  

( and on c, c0, ℓ
p
 ,1 p  , as well). Such vector spaces are 

known as sequence spaces. In subspace relationship, we have ℓ
1
  

  
c0    c   ℓ

∞
. The (usual) norm on ℓ

∞ 
 is  

∞ which is defined by   ∞  = sup ׀ k ׀. On ℓ
p
 ,1 p  , the norm  p  is given by is  p  = 

( k∣
p

 )
1/p

. In particular, 
 
on ℓ

1
 ,  the norm  1  is given by is  1  = k∣  and on ℓ

2
 , the 

norm  2  is given by is  2  = ( k∣
2
 ) 

1/2 
. 

 

1.4.
 
 Following facts are well known:  

(i) Each of ℓ
∞ 

, c, and c0, equipped with the norm  ∞,  is a (B)-space. 

(ii) ℓ
p
 ,1 p  ,with the norm  p are (B)-spaces. 

 

1.5. Further, we have the following dual relationships between ℓ
∞
, c, and c0, ℓ

1
and ℓ

p
 ,1  p  : 

(ℓ
1
)′ = ℓ

∞
  ;  (c0)′ = ℓ

1 
;  (c)′ = ℓ

1
 and for each p, 1  p  , (ℓ

p
)′ =  ℓ

q
  where, 1/p + 1/q =1. For details of these 

results see [1], §14,7& 8.   

 

1.6. It is observed that (c0)″= (ℓ
1
)′= ℓ

∞
 therefore c0 is not reflexive. Similarly ℓ

1
and ℓ

∞
 are also nonreflexive. 

However for each p, 1  p  , (ℓ
p
)′ = ℓ

q
, where, 1/p + 1/q =1, and so, (ℓ

p
)″ =  (ℓ

q
)′ = ℓ

p
 and therefore each ℓ

p
 

is a reflexive (B)-space.  

      

In this paper, we discuss polar reflexivity, B-reflexivity, Inductive reflexivity on these sequence spaces 

considered with their normed topologies, and sometimes with weak or Mackey topology. 

 

II. Results 
We know that (F)-spaces are always polar reflexive ([1], §23,9(5)).  So each of the (B)-spaces ℓ

∞ 
, c, 

and c0  (equipped with the norm  ∞ ) and ℓ
p
 ,1 p   (equipped with the norm  p)  is polar reflexive.  

Let τp be the usual normed topology on the (B)- space ℓ
p
 , 1 p  , with respect to  the norm  p  

given by  p  = ( k∣
p

 )
1/p

. Now we have the following assertion: 

 

2.1. Theorem: For each  p, 1   p  , the locally convex space ℓ
p
[τp] is both (i) B-reflexive, and (ii) 

inductively reflexive. 

Proof: (i) It is already known that  ℓ
p
[τp] is a reflexive (B)-space (see 1.6). So its strong dual ℓ

q
 [b(ℓ

p
)] , where 

1/p + 1/q =1, is also a reflexive (B)-space. Thus ℓ
p
[τp] is a reflexive and its strong dual  is bornological. Hence, 

by [3], theorem 17, ℓ
p
[τp] is B-semireflexive. Further, the fact that ℓ

p
[τp] is a reflexive (B)-space implies that for 

the unit ball S of ℓ
p
[τp] , the polar S

o
 in the dual ℓ

q
 is a reflective set. Hence the reflective topology r on ℓ

p 
is 

finer than the normed topology τp and consequently we have τp  = r . Hence ℓ
p
[τp] is B-reflexive.  

(ii) Since B-semireflexivity implies inductive semi-reflexivity ([5], theorem 2.4), ℓ
p
[τp] is inductively semi-

reflexive. Further, ℓ
p
[τp] is a (B)-space and so it is bornolgical. A locally convex space which is inductively 

semi-reflexive and bornological is inductively reflexive ([2], theorem 1.7]. Hence ℓ
p
[τp] is inductively reflexive. 

     In particular, for p = 2, we have  

 

2.2. Corollary: The (B)-space ℓ
2 
 is both B-reflexive and inductively reflexive. 
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2.3. Theorem:  The locally convex space ℓ
p
 [s(ℓ

q
)] , where 1  p   and 1/p + 1/q =1, is semi-reflexive. 

Proof: Consider the locally convex space ℓ
p
 [s(ℓ

q
)]. Its dual is ℓ

q
 . On this dual, the strong topology b(ℓ

p
)] is 

nothing but the usual normed topology τq. Therefore, (ℓ
q
 [b(ℓ

p
)])´ = (ℓ

q
 [q])´= ℓ

p
. It means ℓ

p
 [s(ℓ

q
)]  is semi-

reflexive.  

 

2.4. Corollary: ℓ
p
 [s(ℓ

q
)] , where 1  p   and 1/p + 1/q =1, is polar semi-reflexive. 

Proof: It follows from the fact that every semi-reflexive locally convex space is polar semi-reflexive ([1], 

§23,9(3)).  

     For p = 2, we obtain 

 

2.5. Corollary:  The locally convex space ℓ
2
 [s(ℓ

2
)] is semi-reflexive.  

     Though the (B)-space ℓ
1
(with the norm topology) is nonreflexive, but if we consider the space ℓ

1  
with the 

Mackey topology or the weak topology, then it holds some reflexivities as asserted in the following two 

theorems- 

 

2.6. Theorem: The locally convex space ℓ
1
 [k(c0)] is inductively semi-reflexive. 

Proof: Consider the locally convex space ℓ
1
 [k(c0)]. Its dual is co. On this dual, the topology (k(c0))*  is nothing 

but the usual normed topology and therefore,  ( co[(k(c0))*)′ = (co)′ = ℓ
1
. 

Hence ℓ
1
 [k(c0)] is inductively semi-reflexive.  

 

2.7. Corollary: The locally convex space ℓ
1
 [k(c0)] is semi-reflexive. 

Proof: Inductively semi-reflexive locally convex space is always semi-reflexive, by ([2], (1.6)). 

 

2.8. Theorem: The locally convex space ℓ
1
 [s(c0)] is semi-reflexive.  

Proof: Consider the locally convex space ℓ
1
 [s(c0)]. We have (ℓ

1
 [s(c0)])′ = c0. On this dual, the strong 

topology b(ℓ
1
) is its norm topology. Therefore,   (c0[b(ℓ

1
) ])′ =  ℓ

1 
( see 1.5).  Hence  ℓ

1
[s(c0)] is semi-reflexive.  

Using the fact that semi-reflexivity implies polar semi-reflexivity, we have 

 

2.9. Corollary: The locally convex space ℓ
1
 [s(c0)] is polar semi-reflexive. 

 

III. Conclusion 

Each of the sequence space ℓ
p
 , 1  p   , (and , in particular, ℓ

2
)

 
 is both B-reflexive and inductively 

reflexive. On the other hand,  on the dual c0 of  ℓ
1
[s(c0)], the polar topology (s(c0))

o
 of uniform convergence on 

s(c0)-precompact subsets of ℓ
1
 is the usual normed topology. Now, in c0, the set  S =[1, ½, …, 1/n, …} is 

precompact for the normed topology and so (s(c0))
o
- precompact. But S is not finite dimensional. It implies that 

the topology (s(c0))
oo

 of uniform convergence on s(c0)
o
-precompact subsets of co is strictly finer than s(c0). 

Therefore, ℓ
1
 [s(c0)] can’t be polar reflexive.  
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