Various Reflexivities in Sequence Spaces

G. C. Dubey¹, Atarsingh Meena²

¹Department of Mathematics, Govt. M. G. M. Post-Graduate college, Itarsi (M.P.), India. ² Research scholar, Govt. M. G. M. Post-Graduate college, Itarsi (M.P.), India.

Abstract: In this paper, we investigate that for each p, $1 \le p \le \infty$, space ℓ^p , equipped with the normed topology, is both (i) B-reflexive, and (ii) inductively reflexive. We also discuss that the locally convex spaces ℓ^p [$\tau_s(\ell^q)$], where $1 \le p \le \infty$ and 1/p + 1/q = 1, are semi-reflexive (and so polar semi-reflexive) and the locally convex space ℓ^1 [$\tau_k(c_0)$] is inductively semi-reflexive.

Keywords- Bornological, B-reflexive, inductively reflexive, normed topology, polar reflexive, sequence space.

I. Introduction

Semi-reflexivity and reflexivity are well known properties in locally convex spaces. There are other types of reflexivity, namely, polar semi-reflexivity and polar reflexivity in [1], inductive semi-reflexivity and inductive reflexivity introduced by I.A. Berezanskij [2] and B-semireflexivity, B-reflexivity in [3]. The notions of p-completeness and p-reflexivity introduced by Kalman Brauner [4] are nothing but polar semi-reflexivity and polar reflexivity, respectively. In this paper we discuss these reflexivities in sequence spaces. For a locally convex space $E[\tau]$, which we always consider Hausdorff, the dual is denoted by E'. The strong dual of $E[\tau]$ is $E'[\tau_b(E)]$ and the bidual of $E[\tau]$ is $E''=(E'[\tau_b(E)])'$. We follow the notion of Köthe [1] for notations and

terminology, unless specifically mentioned. A locally convex space $E[\tau]$ is called semi-reflexive if E = E''. A semi-reflexive locally convex space

$$\begin{split} E[\tau] \text{ is called reflexive provided } \tau = \tau_b(E') \,. \\ & \text{Let } \tau^o \text{ be the topology on } E' \text{ of uniform convergence over the class of } \tau\text{-precompact sets (in } E). We \\ \text{have } \tau^o \leq \tau_b(E). \text{ The topology on } (E'[\ \tau^o])' \text{ of uniform convergence over the class of } \tau^o \text{-precompact subsets of } E'[\ \tau^o] \text{ is denoted as } \tau^{oo} \,. \end{split}$$

1.1. Definition (Köthe [1]): A locally convex space $E[\tau]$ is called polar semi-reflexive if $E = (E'[\tau^o])'$. Polar semi-reflexive space $E[\tau]$ is called polar reflexive if $\tau = \tau^{oo}$ i.e. $(\tau^o)^o$.

Consider a locally convex space $E[\tau]$ and a base $\{U_{\alpha}: \alpha \in I\}$ of τ -neighborhoods of 0 consisting of closed absolutely convex neighborhoods. Let U_{α}° be the polar of U_{α} in E' and E'_{u\alpha} be the linear subspace of E' spanned by U_{α}° equipped with the norm topology with U_{α}° as unit ball. Let E' $[\tau^*]$ be the inductive limit of the system $\{E'_{u\alpha}\}$ and the embeddings: $E'_{u\alpha} \rightarrow E'$. Note that τ^* is the finest locally convex topology on E' making all embeddings: $E'_{u\alpha} \rightarrow E'$ continuous. Starting from the locally convex space $E'[\tau^*]$, the topology $\tau^{**} = (\tau^*)^*$ is defined on $(E'[\tau^*])'$. The topology τ^* constructed this way is due to [2].

1.2. Definition (Berezanskii [2]): If $(E'[\tau^*])' = E$, then $E[\tau]$ is called inductively semi-reflexive. If, in addition, $\tau = (\tau^*)^*$, then $E[\tau]$ is called inductively reflexive.

Following P.K. Raman [3], we define that an absolutely convex bounded subset B of the dual E' of a l.c. space $E[\tau]$ is called reflective if the span E'_B is a reflexive Banach space with B as unit ball. The class of all reflective sets is denoted by \mathcal{R} . The topology on E of uniform convergence over the saturated class of sets generated by \mathcal{R} is called the reflective topology of E and is denoted by τ_r . The polars of the sets of \mathcal{R} i.e. the class{K_o : K $\in \mathcal{R}$ } forms a base of neighborhoods of the origin **o** for $E[\tau_r]$.

1.3. Definition (Raman [3]): If a locally convex space $E[\tau]$ is barreled and $E \Box$ = the completion of $E[\tau_r]$, then $E[\tau]$ is said to be B-semireflexive if $E = E \Box$ algebraically.

If, in addition, $\tau = \tau_r$, we say that $E[\tau]$ is B-reflexive.

Let us denote

 ℓ^{∞} = The set of all bounded sequences x={ ξ_k } of real or complex numbers.

c = The set of all convergent sequences $x = \{\xi_k\}$ of real or complex numbers. c_0 = The set of all sequences $x = \{\xi_k\}$ of real or complex numbers which are convergent to 0. ℓ^1 = The set of all sequences $x = \{\xi_k\}$ of real or complex numbers with $\sum_{k=1}^{\infty} \xi_k < \infty$.

 ℓ^p , $1 \le p \le \infty$, = The set of all sequences $x = \{\xi_k\}$ of real or complex numbers for which $\sum_{k=1}^{\infty} |\xi_k|^p$ converges.

If a bounded sequence $x = \{\xi_k\}$ is considered as a coordinate vector $x = (\xi_k)$, then the coordinate-wise addition and scalar multiplication i.e. for all $x = \{\xi_k\}$, $y = \{\eta_k\} \in \ell^{\infty}$ and $\alpha \in K$, $x + y = \{\xi_k + \eta_k\}$ and $\alpha x = =\{\alpha \xi_k\}$, define a vector space structure on ℓ^{∞} (and on c, c_0 , ℓ^p , $1 \le p < \infty$, as well). Such vector spaces are known as sequence spaces. In subspace relationship, we have $\ell^1 \subset c_0 \subset c \subset \ell^{\infty}$. The (usual) norm on ℓ^{∞} is $\|$ $\|_{\infty}$ which is defined by $\| x \|_{\infty} = \sup |\xi_k|$. On ℓ^p , $1 \le p < \infty$, the norm $\| \|_p$ is given by is $\| x \|_p = (\sum_{k=1}^{\infty} |\xi_k|^2)^{1/p}$. In particular, on ℓ^1 , the norm $\| \|_1$ is given by is $\| x \|_1 = \sum_{k=1}^{\infty} |\xi_k|$ and on ℓ^2 , the norm $\| \|_2$ is given by is $\| x \|_2 = (\sum_{k=1}^{\infty} |\xi_k|^2)^{1/2}$.

1.4. Following facts are well known:

(i) Each of ℓ[∞], c, and c₀, equipped with the norm || ||_∞, is a (B)-space.
(ii) ℓ^p, 1≤ p < ∞, with the norm || x ||_p are (B)-spaces.

1.5. Further, we have the following dual relationships between ℓ^{∞} , c, and c₀, ℓ^1 and ℓ^p , $1 \le p \le \infty$: $(\ell^1)' = \ell^{\infty}$; $(c_0)' = \ell^1$; $(c)' = \ell^1$ and for each p, $1 \le p \le \infty$, $(\ell^p)' = \ell^q$ where, 1/p + 1/q = 1. For details of these results see [1], §14,7& 8.

1.6. It is observed that $(c_0)'' = (\ell^1)' = \ell^\infty$ therefore c_0 is not reflexive. Similarly ℓ^1 and ℓ^∞ are also nonreflexive. However for each p, $1 \le p \le \infty$, $(\ell^p)' = \ell^q$, where, 1/p + 1/q = 1, and so, $(\ell^p)'' = (\ell^q)' = \ell^p$ and therefore each ℓ^p is a reflexive (B)-space.

In this paper, we discuss polar reflexivity, B-reflexivity, Inductive reflexivity on these sequence spaces considered with their normed topologies, and sometimes with weak or Mackey topology.

II. Results

We know that (F)-spaces are always polar reflexive ([1], §23,9(5)). So each of the (B)-spaces ℓ^{∞} , c, and c_0 (equipped with the norm $\| \|_{\infty}$) and ℓ^p , $1 \le p \le \infty$ (equipped with the norm $\| \|_{p}$) is polar reflexive.

Let τ_p be the usual normed topology on the (B)- space ℓ^p , $1 \le p \le \infty$, with respect to the norm $\|\|_p$ given by $\|\| x \|_p = (\sum_{k=1}^{\infty} |\xi_k|^p)^{1/p}$. Now we have the following assertion:

2.1. Theorem: For each p, $1 \le p \le \infty$, the locally convex space $\ell^p[\tau_p]$ is both (i) B-reflexive, and (ii) inductively reflexive.

Proof: (i) It is already known that $\ell^p[\tau_p]$ is a reflexive (B)-space (see 1.6). So its strong dual $\ell^q[\tau_b(\ell^p)]$, where 1/p + 1/q = 1, is also a reflexive (B)-space. Thus $\ell^p[\tau_p]$ is a reflexive and its strong dual is bornological. Hence, by [3], theorem 17, $\ell^p[\tau_p]$ is B-semireflexive. Further, the fact that $\ell^p[\tau_p]$ is a reflexive (B)-space implies that for the unit ball S of $\ell^p[\tau_p]$, the polar S^o in the dual ℓ^q is a reflective set. Hence the reflective topology τ_r on ℓ^p is finer than the normed topology τ_p and consequently we have $\tau_p = \tau_r$. Hence $\ell^p[\tau_p]$ is B-reflexive.

(ii) Since B-semireflexivity implies inductive semi-reflexivity ([5], theorem 2.4), $\ell^p[\tau_p]$ is inductively semi-reflexive. Further, $\ell^p[\tau_p]$ is a (B)-space and so it is bornolgical. A locally convex space which is inductively semi-reflexive and bornological is inductively reflexive ([2], theorem 1.7]. Hence $\ell^p[\tau_p]$ is inductively reflexive. In particular, for p = 2, we have

2.2. Corollary: The (B)-space ℓ^2 is both B-reflexive and inductively reflexive.

2.3. Theorem: The locally convex space $\ell^p[\tau_s(\ell^q)]$, where $1 \le p \le \infty$ and 1/p + 1/q = 1, is semi-reflexive.

Proof: Consider the locally convex space $\ell^p [\tau_s(\ell^q)]$. Its dual is ℓ^q . On this dual, the strong topology $\tau_b(\ell^p)$] is nothing but the usual normed topology τ_q . Therefore, $(\ell^q [\tau_b(\ell^p)])' = (\ell^q [\tau_q])' = \ell^p$. It means $\ell^p [\tau_s(\ell^q)]$ is semi-reflexive.

2.4. Corollary: $\ell^p[\tau_s(\ell^q)]$, where $1 \le p \le \infty$ and 1/p + 1/q = 1, is polar semi-reflexive.

Proof: It follows from the fact that every semi-reflexive locally convex space is polar semi-reflexive ([1], \$23,9(3)).

For p = 2, we obtain

2.5. Corollary: The locally convex space $\ell^2[\tau_s(\ell^2)]$ is semi-reflexive.

Though the (B)-space ℓ^1 (with the norm topology) is nonreflexive, but if we consider the space ℓ^1 with the Mackey topology or the weak topology, then it holds some reflexivities as asserted in the following two theorems-

2.6. Theorem: The locally convex space $\ell^1[\tau_k(c_0)]$ is inductively semi-reflexive. Proof: Consider the locally convex space $\ell^1[\tau_k(c_0)]$. Its dual is c_o . On this dual, the topology $(\tau_k(c_0))^*$ is nothing but the usual normed topology and therefore, $(c_o[(\tau_k(c_0))^*)' = (c_o)' = \ell^1$. Hence $\ell^1[\tau_k(c_0)]$ is inductively semi-reflexive.

2.7. Corollary: The locally convex space ℓ^1 [$\tau_k(c_0)$] is semi-reflexive. **Proof:** Inductively semi-reflexive locally convex space is always semi-reflexive, by ([2], (1.6)).

2.8. Theorem: The locally convex space $\ell^1[\tau_s(c_0)]$ is semi-reflexive.

Proof: Consider the locally convex space ℓ^1 [$\tau_s(c_0)$]. We have $(\ell^1 [\tau_s(c_0)])' = c_0$. On this dual, the strong topology $\tau_b(\ell^1)$ is its norm topology. Therefore, $(c_0[\tau_b(\ell^1)])' = \ell^1$ (see 1.5). Hence $\ell^1[\tau_s(c_0)]$ is semi-reflexive. Using the fact that semi-reflexivity implies polar semi-reflexivity, we have

2.9. Corollary: The locally convex space ℓ^1 [$\tau_s(c_0)$] is polar semi-reflexive.

III. Conclusion

Each of the sequence space ℓ^p , $1 \le p \le \infty$, (and , in particular, ℓ^2) is both B-reflexive and inductively reflexive. On the other hand, on the dual c_0 of $\ell^1[\tau_s(c_0)]$, the polar topology $(\tau_s(c_0))^o$ of uniform convergence on $\tau_s(c_0)$ -precompact subsets of ℓ^1 is the usual normed topology. Now, in c_0 , the set $S = [1, \frac{1}{2}, ..., 1/n, ...\}$ is precompact for the normed topology and so $(\tau_s(c_0))^o$ -precompact. But S is not finite dimensional. It implies that the topology $(\tau_s(c_0))^{oo}$ of uniform convergence on $\tau_s(c_0)^o$ -precompact subsets of c_o is strictly finer than $\tau_s(c_0)$. Therefore, $\ell^1[\tau_s(c_0)]$ can't be polar reflexive.

References

- [1]. G. Köthe, Topological vector spaces I (Springer-Berlin Heidelberg New Yark , 1983).
- I. A. Berezanskij, Inductively reflexive, locally convex spaces, Sov. Math. Dokl., 9, (1968) 1080-1082; Translation from Dokl. Akad. Nauk SSSR 182, (1968) 20-22.
- P. K. Raman, On a Class of Reflexive Spaces Related to Ulam's conjecture on measurable cardinals, J.Reine Angew. Math. 245, (1970), 188-200.
- [4]. Kalman Brauner, Dual of Fréechet spaces and a generalization of Banach Dieudonnée theorem, Duke Math J. 40,(1973), 845-855.
- [5]. Atarsingh Meena, G.C. Dubey, Various reflexivities in locally convex spaces, Int. J. Pure.Appl. Math.Sci., Vol.8, No.1(2015), 31-36.