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Abstract: In this paper, we have discussed imbibition phenomenon in double phase flow through porous media. 

Numerical solution of non linear partial differential equation governing the phenomenon of imbibition in a 

homogeneous medium with magnetic fluid has been obtained by finite element method. Finite element method is 

a numerical method for finding an approximation solution of differential equation in finite region or domain. A 

Matlab code is developed to solve the problems and the numerical results are obtained at various time levels. 
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I. Introduction 

It is well known that when a porous medium filled with some fluid is brought into contact with another 

fluid which preferentially wets the medium, there is a spontaneous flow of the wetting fluid into the medium and 

a counter flow of the resident fluid from the medium. Such a phenomena arising due to difference in wetting 

abilities is called counter-current imbibition. These phenomena have been formally discussed by Brownscombe 

and Dyes [4], Enright [5], Braham and Richarson [6], Rijik [7], Rijik et al [9], for homogeneous porous 

medium. 

Bokserman, Zhelton and Kocheshkev [10] have described the physics of oil-water flow in a cracked 

media and Verma [11,12] has investigated two specific oil-water displacement process from analytical point of 

view. Verma has obtained solution by performing a perturbation technique. He has also investigated this 

problem in the presence of randomly oriented pores in the fractured medium renders the differential equation 

highly non-linear due to an additional non-linear term. He has also considered the presence of heterogeneity in 

the medium marginally. 

 

II. Statement of the Problem 
We consider here a cylindrical mass of porous matrix of length L (=1) containing a viscous oil, is 

completely surrounded by an impermeable surface except for one end of the cylinder which is labeled as the 

imbibitions phase and this end is exposed to an adjacent formation of „injected‟ water. It is assumed that the 

injected water and the viscous oil are two immiscible liquids of different salinities with small viscosity 

difference; the former represents the preferentially wetting and less viscous phase. This arrangement gives rise 

to the phenomenon of linear counter-current imbibitions, that is, a spontaneous linear flow of water into the 

porous medium and a linear counter flow of oil from the medium. 

 

III. Mathematical formulation of the problem 

We take the injected liquid containinga thin layer of magnetic fluid where magnetization M is assumed 

to the directly proportional to the magnetic field intensity H (i.e. M = H) and the microscopic behavior of 

fingers is governed by a statistical treatment. Then the additional pressure exerted due to presence of a layer of 

magnetic fluid in the displacing liquid (w) represented by 
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Also, equation of filteration velocity (Vo) of native liquid is      
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  … … … 

(2)Where, K = the permeability of the homogeneous medium, 

          Kw = relative permeability of water, which is functions of Sw  

          Ko = relative permeability of oil, which are functions of So 

           Sw = the saturation of water , So = the saturation of oil , Pw  = pressure of water , Po = pressure of oil 

w  ,o = constant kinematics viscosities, g = acceleration due to gravity. 

Regarding the phase densities to be independent of magnetic field H, and to be constant, the equations of 

continuity of the two phases can be written as 0
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medium. The analytical condition (Scheidegger , 1960) governing imbibitions phenomenon is, 

 Vo = - Vw. Also, from the definition of phase saturation, it is obvious that Sw + So = 1  … … … (4). 

 

The capillary pressure Pc  is defined as ,          Pc = -o Sw      and  Pc = Po- Pw              … … … (5) 

Where, Pc  is a capillary pressure coefficient and o is a constant quantity. Now, combining equation (1), (2),  

(3), (4) and (5) we get, 
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At this state, for definiteness of the mathematical analysis, we assume standard relationship due to Muskat [13] 

and Jones [14],between phase saturation and relative permeability as, 
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This is the desired non linear differential equation of motion which describes the linear counter current 

imbibition phenomena in a homogeneous porous medium with effect of magnetic fluid. Now considering the 

magnetic fluid H in the x-direction only, we may write, 
nx


 H   where   is a constant parameter and n is an 

integer. Using the value of H for n = -1 in equation (8), we get, 
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A set of suitable boundary conditions associated to problem (9) are, 

 Sw(x,0) = 0 ,        for all  x > 0 ; … … … (10)    

   Sw(0,t) = Sw0  ;     Sw(L,t) = Sw1       for all   t   0 ;          … … … (11)  

 

 Equation (9) is reduced to dimensionless form by setting  
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Asterisks are dropped for simplicity. 

The initial and boundary conditions (10) and (11) now becomes, 

Sw(x,0) = 1 ,                for all  x > 0                                            …… … (13)    

 

Sw(0,t) =1- Sw0  ;     Sw(L,t) = 1-Sw1          for all   t   0     … … … (14)  

 

Equation (12) is desired nonlinear differential equation of motion for the flow of two immiscible liquids in 

homogeneous medium wit effect of magnetic fluid. 

A Matlab Code is prepared and executed with Co = 4.046   10
-11  

, h =1/15 , k = 0.002223 for 225 time levels, 

Sw0 = 0.5 and Sw1 = 0 .The numerical value are shown by table .Curves indicating the behavior of Saturation of 

injected fluid with respect to various time period. 

 

4. Finite Element Method: For the problem under consideration, the length variable x varies between 0 and L 

(figure 1(a)). The domain is divided in to set of linear elements (figure 1(b)). 

 
Figure 1(a). 

 
 

Figure 1(b). 

Now, the variational form of given partial differential equation (12) is, 
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Choose an arbitrary linear element R
(e) 

= [S1
(e)

 ,  S2
(e)

 ] and obtain interpolation function for R
(e)

using Lagrange 

interpolation method such as, 
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and N1 , N2 are shape function for linear element. 

 

Now, apply Variational Method to R
(e)

, therefore equation  (15) becomes, 
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For minimization, first differentiate equation (18) with respect to 
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From Gauss Legendre Quadrature Method, we evaluate these integral. Thus element matrix transform to 
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Where, zI and WI are corresponding gauss points and gauss weights.Then, the element matrix becomes, 
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4.1.Assembling of elements: The assembly of linear elements is carried out by imposing the following two 

conditions: 

(a) The continuity of primary variable requires    
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(b) The balance of secondary variables at connecting nodes requires 
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The inter-element continuity of primary variable can be imposed by simply renaming the variables of all 

elements connected to common node. For example, for a mesh of N linear finite element connected in series, we 

have 

 

For a uniform mesh of N elements, by equation (19) and (20), the assembled equation becomes  
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Equation (21) represents the assembled equation. 

 

4.2.Time approximation: We introduced  family of approximations which approximates weighted average of 

a dependent variable of two consecutive time steps by linear interpolation of the values of the variable at the two 
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time steps such as,
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For a uniform mesh of N elements, by equation (22) and above global equation takes the form,    
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where K is called global stiffness matrix and F is called global generalized force vector  and N+1 is total number 

of global nodes . 

 

4.3.Imposing boundary conditions: We now apply the boundary condition (14) to the global equation (25) of 

the problem and simplifying, we get, 

F
nn

K 
 )1(

)]
)1(

([  ……….(26) 

 

where   
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Thus, equation (26) is the resulting system of nonlinear algebraic equation. 

 

4.4.Solution of nonlinear algebraic equation: In the previous section, we obtained the assembled equation 

which is nonlinear. The assembled nonlinear equation after imposing boundary conditions is given by equation 

(26).We seek an approximate solution by the linearization which based on scheme 

  F
nn

K 
 )1(

)
)(

(                                                    … ... … (27) 

 

where 
)(n

  denotes the solution of  the n iteration. Thus, the coefficient Kij are evaluated using the solution 

)(n
  from the previous iteration and the solution at the (n+1)

th
 iteration can be obtained by solving equation 

(26) using Gauss Elimination Method. At the beginning of the iteration (i.e. n=0), we assume the solution 
(0)

 

from initial condition (13) which requires to have S1
(0)

= S2
(0)

=…………….= SN+1
(0)

= 1. 

 

5. Graphical representation:A Matlab Code isprepared for 15 elements model and resulting equation (27) for 

N = 15 is solved by Gauss Elimination method.  

Saturation of injected liquid at t = 0.1, 0.2, 0.3, 0.4 and 0.5 seconds are 

 
5.0000e-001 5.0000e-001 5.0000e-001 5.0000e-001 5.0000e-001 

4.0544e-001 4.3033e-001 4.4043e-001 4.4503e-001 4.4718e-001 

3.2910e-001 3.7082e-001 3.8824e-001 3.9625e-001 4.0002e-001 

2.6604e-001 3.1908e-001 3.4170e-001 3.5218e-001 3.5711e-001 

2.1355e-001 2.7365e-001 2.9974e-001 3.1186e-001 3.1758e-001 

1.6987e-001 2.3353e-001 2.6160e-001 2.7465e-001 2.8080e-001 

1.3368e-001 1.9797e-001 2.2670e-001 2.4005e-001 2.4634e-001 

1.0319e-001 1.6636e-001 1.9459e-001 2.0769e-001 2.1385e-001 

7.9602e-002 1.3816e-001 1.6489e-001 1.7725e-001 1.8305e-001 

5.9986e-002 1.1291e-001 1.3726e-001 1.4848e-001 1.5373e-001 

4.4219e-002 9.0167e-002 1.1140e-001 1.2115e-001 1.2570e-001 

3.1680e-002 6.9504e-002 8.7050e-002 9.5066e-002 9.8794e-002 

2.1579e-002 5.0529e-002 6.3951e-002 7.0053e-002 7.2884e-002 

1.3383e-002 3.2858e-002 4.1878e-002 4.5960e-002 4.7878e-002 

6.3668e-003 1.6129e-002 2.0624e-002 2.2649e-002 2.3584e-002 

0 0 0 0 0 
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figure 8. 

 

Solution is obtained with Co = 4.046   10
-11  

, h =1/15 , k = 0.002223 for 225 time levels.It is clear 

from graph that Sw = S0(=0.5) at layer x =0 and there is no saturation of injected liquid at other end (x =1) 

irrespective of time.It is clear from graph that, at particular time, saturation of injected liquid involving magnetic 

fluid decrease with increase in value of x(or as we move ahead)  and  at  x = 1,saturation is decreased to zero 

and and at particular point x of observed region,saturation of injected fluid increases with increase in time but 

rate of increase of the saturation slows down at each point as time increases . 
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