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Abstract: In this paper, we considered a generalized class of Szegd polynomials arising from Gauss
hypergeometric function using the approach of three term recurrence relation. Formulas for moments and
weight function are given explicitly. [2000] Orthogonal polynomials; Hypergeometric Functions, Recurrence
relation

I. Introduction

Szegd started with a distribution function u(z)=u(ele) with infinitely many point of increase defined the
following inner product on the unit circle
2n
i0 i0
<fe= [1e) e@”) du). (1)
0
These polynomials which bear the the name of Szegé have been studied extensively by many others

and find useful applications in digital signal processing, frequency analysis, and probability theory. We cite for
example [3, 5, 8, 9] as some of their useful contribution and application and the classical book[13] of G. Szegd.

. 0 . . L
If we orthogonalize the sequence {zn}n:0 with respect to a positive measure p on the unit circle

T={zeC:|z|=1}={z=ele:OS6S2n} by using the inner product (1), we obtain a sequence of monic polynomials

{d)n(z)}fzo satisfying the orthogonality

21
. P |
7 o @duer [0 @ aue® 8 0<i<n,
T 0

where k;2=|<|)n|2= f M)n(z)\zdu(z). This sequence of polynomials is called Szegd polynomials and the

T
orthonormal Szegd polynomials are given by wn(z)=kn¢n(z),n20.

Szegd polynomials satisfy the following recurrence relations for n>0,

0, =20 (@0 (@) )
0, =b @+ a 7o @) (3)

%
Eliminating (I)n_l(z) from the above recurrence relation, we can get

0,0 =a b @1 Pz @), (4)

* 1
where ¢O(z):1, an:q)n(O) and (I)n(z):zn [0} n( E). The numbers {an} are called reflection coefficients.

These coefficients satisfy the following conditions

n 2. 2 Dn
\an\<1 and Ho I1 (l—|am| )=kn =D for n>0, &)
m=1 n—1
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where, the Toeplitz determinates Dn are such that

Ho My oo Hy
D, =p,and D, = Ptl “:0 u’:”*l
Mo Mag 0 Ho
2w
Here w, are called moments and defined by n= f e_ingdu(eie) and satisfy n_= _;,L o n>1.
0

Szegd polynomials and associated Szegd polynomials have the following determinantal representation

Ho My .o Ho,
1 Hl H.o Hin+1
¢n(Z)=D oo nzl g (2)=1,
il TR T Ho
1z z"
and
Ho My oo Ho,
1 Hl P-.o “7.n+l
o, (Z):D : Dot n2l 6% (2)=1.
e Haa ot Mo
" z"™ 1

From the above representation, the following orthogonality relation can be easily obtained

' 0 j=0123...... n-1,
<$,(2),2' >4, = D, j=n
D, -1
and
D
. _—n i=0
<¢*, (2),2 >4 =1D, -1 J
0 j=123...... n

Szegd polynomials are completely characterized by the reflection coefficients {an}, and given by the Favard’s
theorem [2,11].

Theorem 1.1 [11] Given an arbitrary sequence of complex numbers {an}go, with |ay|< 1,n > 1, associated
with this sequence there exist a unique measure p on the unit circle such that the polynomials {¢n} generated

by the recurrence relation (2,3) are the respective Szegd polynomials.
The zeros of d)n(z) are in the unit disk and if

¥ 0 [ 2T, @b, (W)]Idu(w), n20,
T

then
()
|
o =R [ T du(w) ©)
0, (2) T
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uniformly on compact subset of D. The function F(z) is called the Carathéodory function of the measure p.. The
function F(z) maps the open unit disk D={zeC:|z|<1} on the closed right half planes Re(z)>0 and normalized by
the condition that Re(f(z))€(0,00) and has the following series expansion in terms of the moments

0 k
F(z)=p,0+2k:lp.kz . (7
The current paper deals with a generalized class of Szeg6 polynomials which follows the work of A. Sri Ranga
[12] as a particular case, if we take f=b+1 and y=b+ b +I1.

II.  Three Term Recurrence Relation For Szegé Polynomials
In this section we will characterize the Szeg6 polynomials by three term recurrence relations.
Theorem 2.1 A sequence of polynomials {(I)n} generates the sequence of Szegd polynomials polynomials

with respect to a distribution function on the unit circle if and only if these polynomials satisfy a three term
recurrence relation

¢n+1(Z)Z(Z+Bn+1 )d)n(z)_anJrlZd)n—l(Z)’ 1’121, (8)
with BnHiO, caniO and satisfy

o
+1
0< =16 (O  Vn2l. )
B nt+1
Proof. First, let us consider {¢ ,,(z)} be the sequence of Szegd polynomials then by using the three term
recurrence relation (2,3 & 4), we have

0n1(2) =26, (2)+ 2,49, (2)
¢(Z) :an¢*n (Z)+(1_| a, |2 Z¢n—l(z)

eliminating ¢*, (z) form above, we can get

001 (2) =29, (Z)+%[¢n (2)-0-la, [)z¢,, ()]

b0 (2) = (z+%)¢n (2)-(1-|a, m%z% @)

¢n+l (Z) = (Z + Bn+l) d)n (Z) —Qny Z(i)n—l (Z)!

where

a ,.a
Bn+1=aL:1' Olnyg =(1_|an| )an_;rl

Hence

B0, Gy #0 <20 = (1 |a, )
n+l
A converse result is already proved by A. Sri Ranga in [12], in which he established the existence of
the p measure under the condition of Theorem 2.1.

O
bn_
The coefficient of the three term recurrence relations satisfy Blz— H_’
0
S 20 @du@) S 7% (2)du(z)
n o n
o = T and ntl T n>1
1’1+1_ - . _1 s =1
Su, @du@ P 270Dy @du)
T T
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-2
Again the value of the normalizing factor is given by kO = f |(|)O(z)|2du(z):u0,
T

Opl3 Oy

-2 2 —
k= { 6@ du(2)= { R Wt

and

f 20 (2)dn(2)=p B oy0ty 0t | 120,
T

III.  Szego6 Polynomials From Hypergeometric Functions
For a,b,ceC and c#0,—1,-2,---, the hypergeometric function 2Fl(a,b;c;z) is defined by the series expansion

o (@) (b) n
SF @bezy= X . nl

n=0 n

for |z|<1 and by analytic continuation for other values of zeC.

1
A representation of the hypergeometric function for Re(z)< 5 is given by the Pfaff’s transformation

— Z
2F1(a,b;c;z)=(l—z) azF1 (a,c—b;c;;) (10)
Another useful transformation is given by Pfaff is
(e-b),
2F1(—n,b;c;x)= WZFI(—n,b;bﬂ—n—c;l—x). (11
If |z|<1 and if Re(c)>Re(b)>0, Then ,F,(a,b;c;z) has the integral representation
I'(c) 1 b b
e c —1,, c-b-1. _.-a
F@bie0~ [ T o) S a0 -z (12)
0

For more details of hypergeometric series, we refer to the book of Andrews, Askey and Roy [1].
Let us consider the following contiguous relations obtained by Gauss in [1]

a-b+1

2F (a,b;c2) =[1+ z) R (@+1bic+12)

—(a+1) (c-b+1)

D) z,F (a+2,b;c+2;2) (13)
(c-a),Fi(a-1,b;c;z)= (c-2a-(b-a)z),F (a,b;c;z) +a(1-z) ,F (a+1,b;c;z) (14)
If we define the monic polynomials
RByvz= W crop.q_ 15
n(B:ysz) (B) 2 Fl [ n,B, 'Y,l Z], n= 0 ( )

Replacing a=—n, b=f, c=y,and z=z—1 in contiguous relation (14), we get

(vtn)Fi(-n-1LB;y;1-z)= [ y+2n- (B+n)(1-2)LFi(-n,B;y;1-2) - nzoF (-n+1,Bsy;1-2).
Then by using (15), we can get

By ®), B,
(ytn) mRn +1:[n+y—B+(B+n)z] (Y)an—nz (y)n_an_l.

Thus, we can find that Rn(B,y;z) satisfies the following recurrence relation
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Rn+ 1 (BaYQZ):(Z+B(H+ 1 ’R))Rn(BaY;Z)_a(n_,_ 1,R) ZRn_l(Bay;Z)a (16)
with 3 (n+1,R) and a(n +1,R) denote the coefficient of three term recurrence relation
RoB.r:2)=l,  Ry(Br2)=zthq )

nty—p-1 n(nt+y-1)

B(n,R): B+n—1 and %l R) (B)(Bn-1) n>1.

o
Under the condition p#0,—1,-2,--- and y—p#0,—1,-2,--- such that —R) s real and positive. Then by
(n+L,R)

Theorem 2.1 {RH(B,y;z)};OZO form a class of Szegd polynomials if and only if this sequence of polynomials

satisfy the following relation

) OL(n+1,R)
1-|R_(B,y;0 = !
RBrOf =
. (-B), 2 ___n(nty-1)
e, = (Bn-D(-pny
(np-Dr-Pla-B) | *=B-D-BIP), I~ (17)

Theorem 3.1 Let {Rn(B,y;z)}C::O are monic Szegd polynomials defined by

—_ _2 .
J 2 R BanduBara- (K )8 Osjsn. (18)
T

with respect to the positive measure u(B,y,z) on the unit circle. The coefficient K, g, =[|R,(B,v;2) [* and

a(n’R):Rn(B»V;O) associated with these polynomials satisfy

(B),(-B+D),, o-B),
K(n,R): ol (Y)n , a(n,R): (B)n , n=0. (19)
Moreover,
_Qn(B'ylZ) _ (Y)nn' n n+l
R B o NV M 20

© . © :
where L(B,y:z)= '§0 HGi.R) 7 and L (B.y;2)=— jz iR 7, with moments

hory = J dnBro=l
T

S . (—B+1).
— —_ . - .
HoR) o TGRS { Z 3du(B.y.2)= (1—B ﬂ)j’ j>0.

Here Q,(B,y,z) is the associated Szegd polynomials of Rn(B,y;z).
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(-B+1);

Proof: We only need to show that pir) = ————
, (y-B+1) i

, 120, as the remaining results follow directly from

Section 2.
The contiguous relation (13) can be rewritten as

,R@+1bc+1z) 1
,F(a,b,c;2) 14 a—b+1z_ @+D(c—-b+1) . ,R@+2,bc+2;2) -
c c(c+1) ,R(@+1b,c+12)

Replacing b=-B+1 and c = y-B, we get

,F@+lb,c+1z) 1
,F.(a,b,c;2) l+a—b+12_(a+l)(c—b+1)Z ,R@+2,bc+2;,2)
c c(c+1) ,R(@+1b,c+12)

_ ,R@+n+1-B+Ly-B+n+17)
,R@+n-B+Ly—-B+n;z)
f,7] sz| f.Z

|1+glz_|1+g22 """" i |1+gnflz_|1+gnz—f K, (@ aB2)’

If we write K, (a,0,B,z) ,n=0,1,2... then

K()(a, a, B,Z):

n+l
where
_a+B+n-1 _ (a+n)y+n-1

y=B+n-1""""" (y-B+n-1(y-p+n)’

On

If we restrict ourself to the case in which a = 0, then
K0(39 (I,B,Z) = Fl(:L_B +:L Y _B +:L. Z)
1 f,| f,.7 f.7

B |1+glz B |1+gzz B - |:I'+gn—1Z |1+gnz _fn+1Kn(Ol a, Bl Z) ’

where

g = B+n-1 n(y+n-1)

- v T » N 2
y-Bp+n-1 (y=B+n-DI(y-p+n)
Equivalently, we can also write

a,Z o,z o ..zK (0, o,B;Z
K00z P _ @A o 0wk apia)]
|Z+B1 |Z+B2 |Z+Bn |[3n+1
where
1 f .
Bn = g_ = B(an) ! G'I’Hl =l - (x’(n+l,R)1 n>1.
n nYn+l

Using the theory of continued fraction, we obseved that

Q. (B,v,2) _ B(n+l,R) Q.(Bv.2)— a(n+1,R)ZKn 0,0,B,;2)Q,4(B,v,2) B Q. (B, v,2)

03 ,P5Z)- - ’
KO( ¢ B Z) Rn (B'Y' Z) B(n+1,R)Rn (Bl Y Z) _a(n+1,R)ZKn (O! a, Bl ; Z)Rn—l(B'yl Z) Rn (B'Y' Z)
Ko(0,0.:7)- Q. (B,v,2) _ Bar) %ezr) "'(x(n,R)(X(n+l,R)ZnKn((E)’(XIB;Z) ,
Rn (BIY'Z) B(n+l,R)Rn (Blylz) - (x(n+l,R)ZKn (Ol Q!Bl lZ)Rn—l (ByY:Z)
(Y)n n! Zn+O(Zn+1).

 G-P,(-B+D,
Hence Lo(B, v ;2)= ,R@~B+1y—P+12)and the theorem follows.

- 0 :
Again using MoR)” MGR) and  L_(By.z)= .§1 MRy 1 we get
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(B -1z !

L Byz=——— ,F (- _[3 +2, _y - B 42z
(y- B

-1)
The following asymptotic result also hold.

Theorem 3.2
lim K _ I'(y)
n—ow (,R) \/ T(B)[(y-B+1)

and

1

lim 2p—y

n—0

n

4n,R)

)-

@)
I'(y-B)

IV. More On The Measure And Related Functions

The following theorem gives exact expression for the measure uR(B,y;Z)

WR(B,Y;O) for the function R(B,y;2)

Theorem 4.1 The measure uR(B,y;z) can be given by duR(B,y;eie)=wR([3,y;9)d9

[—xn—e)gﬁg¥:l}[

WR(B.1:0)=1p e
The constant

27 r@yre-pr

R 2L (y)

Proof. Since

is such that

Ho,R)~1-

o
sin §j| , 0<6<L2~m.

2n 2n
Hiry = Je_IJeWR (B,v:0)do = jeIJeWR (B,vy:0)d0=p( gy, \
0 0

we have only to prove that
2n . 2B
i [F1(n=0)
— —ijo
Mr =T J€ e
0

.0
i~

0, i
With 2iSin(E):e2—e 2

7i(213*27*1)n 2n
KRy = TrE

0

y-1
2

2B~

j' e %

]

2

o
o g2 —

,iE
€€ "yide, j>o0.
|

2

. 0.4
Sin—=]""do =
[ 2]

2n
Miry = T [0 P0[” — 1] do.
0

Where,

We can write this in the following form

. 2B—y-1

2 )" (Zi)*(vfl)_

(-B+1),

(’Y_B_’_l)j.

2n
T —i(j+y—p+ i 1 i :
. :TRje (POl _1]72jei®dp, j> 0.
0

then be integration by parts we establish the relation

j+y-B+1
Hirpy = Hiry —
[ —B+j+1
H(jaRr) 7—PB+j+l

j+y-B+1

]u(m), j=0.

MRy

, where

(22)

in terms of the weight function
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Therefore, the proof will be complete if we can prove gy =1, equivalently, if we can show that

B+ B+
Wir) = I W Ry = for some particular value of j.
Gp+D (v—B+1)
Using moment expression, we have

2n
B iry = Hor) = Tr Je7 0 P°[” —1]7d6, j>0.
0

- ETe‘M’E’e [e‘9 —1];71d9,
0

_ ETei(jﬂ—E)e [1 _ei® ];*1 do,
0

Where
(2B—y-1 2By
— eil[ 2 ] — [ J ( 1)|3 v
” =R = = 2?—1
27 (-1 2 21 (-1) 2
Thus,
T ) Ly i .
Heir) = —R( -~ Ie“ - B)"[1 ee]Y do, j=o0.
2 0
With z=e® , one can write
_ a(_]-)&y J+l B -1 dZ
M ir) = 2;_1 L‘ 1 [1 Z] -
L e = I T
2?—1 SHES

where the branch cut in (—z)H and (1— z);_1 are along the postive real axis such that
(2P =z *if O<arg(z)<2n
Q-2) =-7if -n<arg@)<n

Hence we choose a j such that Re (] —B +1) >0 and evaluate the integral by contour integration using[4,8],
F 1
_1R sicinm B 1
Beim =2 2iSin(B —1)n£t 1-1t)"dt.

(-B+1),
(vy—B+1),
Eular's reflection formula, we obtain,

_ 27T (y-p+1)
RO 2nl(y)
This complete the proof of the theorem.

Again, if we take p ;) = and using the definition of gamma function and beta function and the

is such that pgg =1.
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*
Theorem 4.2 The polynomials Rn(B,y;z) and their reciprocals Rn(B,y;z) can be given by

1

I _ _R_

R = Tnite; J P 0-0" P ima-ora
0

* T +n 1 — e -
R (Biz) =—= (rm fo 7= P oy P igPa
TCB Iy - B )Y,
We now give an expression for the associated Szeg6 function
21 ip
1 etz .

DB.vzyexp | 3~ o 1oB(Br0)d0

0

in the following result.
Theorem 4.3 The associated Szegd function for the polynomial Rn(B,y;z) is given by

F'(BIry—-p+1
D(B.1:z)y o

Proof. Using the result in [3], we have the following result
KorRa(B.1:2) >[D(B,y;2)] "as n >0
uniformly on the compact subset of D. With the substitution u=nt in Theorem 4.2, we have,

(-2 ¥~ B

e Ciy+n) P pg . p, ode
K(n,R)Rn(B!Y’Z)_K(n,R) F(B‘i‘n)r(&_ﬁ)f‘)‘ n?fﬁq (1 n) (1 n(l Z)) n
(1), T() Vi M, B .
Ky =P L)y By B gyng
0 GG - "’ n g

TB) TW) T ipigtong,
-

=P
rG-pa-2

N ') _ gy
PR rpra Y

Hence the Theorem. O

!]Lm‘o K(n,R)R: B.v;2) = !Lrpo Kor)

[DB,y;2)] ™" = !Lrg Kor)

Using (6) and then Theorem (3.1), following result will obtain for associated Carathéodory function for z in the
compact subject of D,

lim 272Q,(B-v;2)

n—o * =1-F@)
¢, (B.v:2)
lim 2ZQn(BaY§Z)
- S =F(2)
o, (B.v:2)

) 25 k
“Ho,Rn) “k=1*Kk,R)*

- +25)° k
~HoO.R) FKk=0M(k,R)*
=1+Ly(B.v:2)
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= -142,F (1,-p+15y-pt+12)

Also using (15), Rn(B,y;z) have the following hypergeometric representation

R,(B1.2) = (y(g—)ﬁ)”zﬁ[—n,ﬁ:ml—n—v;l—Z]- 23)

Finally, we find the generating function for Rn(B,y;Z)

G(B.yz:t) ~(1-ty Ptz P

© o (B (B

F 5 e D
n=0 k=0 ’ ’

o 0GB By
(n-k)k! -7

n=0 k=0
© 0 D5G-B) B

N IEO IEO (n—k)IKI(1=y+p-n), * *

o (=), n (_1)kk! (B (zt)k
T 2 ek (ppomy K
o (y-PB)

_ n_!nzl:l(_n’ﬁ;l+[3—y—n;z)tn
n=0

o (B)
Y R (B
n=0

n:
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