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Abstract: In this paper, we considered a generalized class of Szegő polynomials arising from Gauss 

hypergeometric function using the approach of three term recurrence relation. Formulas for moments and 

weight function are given explicitly. [2000] Orthogonal polynomials; Hypergeometric Functions; Recurrence 

relation  

 

I. Introduction 

Szegő started with a distribution function (z)=(e
i

)  with infinitely many point of increase defined the 

following inner product on the unit circle  

 <f,g>= 

0

2

 f(e
i

)  g(e
i

)  d().  (1) 

These polynomials which bear the the name of Szegő have been studied extensively by many others 

and find useful applications in digital signal processing, frequency analysis, and probability theory. We cite for 

example [3, 5, 8, 9] as some of their useful contribution and application and the classical book[13] of G. Szegő. 

If we orthogonalize the sequence {z
n

}


n=0
 with respect to a positive measure  on the unit circle  

T={zC:|z|=1}={z=e
i

:02} by using the inner product (1), we obtain a sequence of monic polynomials 

{
n

(z)}


n=0
 satisfying the orthogonality  
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nj
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where k
2

n
=|

n
|
2

= 

T

 |
n
(z)|

2
d(z).  This sequence of polynomials is called Szegő polynomials and the 

orthonormal Szegő polynomials are given by 
n
(z)=k

n


n
(z),n0.  

Szegő polynomials satisfy the following recurrence relations for n0,  
 

 
n

(z) =z
n1

(z)+a
n


*

n1
(z)  (2) 

 
*

n
(z) =

*

n1
(z)+  a  

n
z

n1
(z).  (3) 

Eliminating 
*

n1
(z) from the above recurrence relation, we can get  

 

 
n
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n


*

n
(z)+(1|a

n
|
2
)z

n1
(z),   (4) 

where 
0

(z)=1, a
n

=
n

(0)  and 
*

n
(z)=z

n
    

n
( 

1

z
). The numbers {a

n
} are called reflection coefficients. 

These coefficients satisfy the following conditions  

 

 |a
n
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n
 (1|a

m
|
2
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n
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D
n

D
n1

 for n0,  (5) 
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where, the Toeplitz determinates D
n

 are such that  
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Here 
n

 are called moments and defined by 
n

= 

0

2

 e
in

d(e
i

) and satisfy 
n

=    
n

,  n1. 

Szegő polynomials and associated Szegő polynomials have the following determinantal representation  
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From the above representation, the following orthogonality relation can be easily obtained  
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Szegő polynomials are completely characterized by the reflection coefficients {a
n
}, and given by the Favard’s 

theorem [2,11].  

Theorem 1.1 [11] Given an arbitrary sequence of complex numbers {a
n
}


0
, with |an|< 1,n > 1,  associated 

with this sequence there exist a unique measure  on the unit circle such that the polynomials {
n
} generated 

by the recurrence relation (2,3) are the respective Szegő polynomials.  

The zeros of 
n
(z) are in the unit disk and if  

 

 
n
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T

  
z+w

zw
[

n
(z)

n
(w)]d(w), n0,  

then  
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n
 


*

n
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(z)

=F(z)= 

T

  
w+z

wz
d(w),  (6) 
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uniformly on compact subset of D. The function F(z) is called the Carathéodory function of the measure . The 

function F(z) maps the open unit disk D={zC:|z|<1} on the closed right half planes e(z)0 and normalized by 

the condition that e(f(z))(0,) and has the following series expansion in terms of the moments  
 

 F(z)=
0
+



k=1


k
z
k

. (7) 

The current paper deals with a generalized class of Szegő polynomials which follows the work of A. Sri Ranga 

[12] as a particular case, if we take =b+1 and =b+  b  +1.  

 

 

 

 

 

II. Three Term Recurrence Relation For Szegő Polynomials 
In this section we will characterize the Szegő polynomials by three term recurrence relations.  

Theorem 2.1  A sequence of polynomials {
n

} generates the sequence of Szegő polynomials polynomials 

with respect to a distribution function on the unit circle if and only if these polynomials satisfy a three term 

recurrence relation  
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(z)=(z+
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)
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with  
n+1

0, 
n+1

0  and satisfy  

 

 0< 


n+1


n+1

=1|
n

(0)|
2
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Proof. First, let us consider {ɸ n,(z)} be the sequence of Szegő polynomials then by using the three term 

recurrence relation (2,3 & 4), we have 
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 A converse result is already proved by A. Sri Ranga in [12], in which he established the existence of 

the µ measure under the condition of Theorem 2.1. 

The coefficient of the three term recurrence relations satisfy  
1
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Again the value of the normalizing factor is given by  k
2

0
= 
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2
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 n0. 

 

III. Szegő Polynomials From Hypergeometric Functions 

For a,b,cC and c0,1,2,, the hypergeometric function 
2
F

1
(a,b;c;z)  is defined by the series expansion  

 

 
2

F
1

(a,b;c;z)= 
n=0


  

(a)
n

(b)
n

(c)
n

 
z
n

n!
 

for |z|<1 and by analytic continuation for other values of zC. 

A representation of the hypergeometric function for e(z)< 
1

2
 is given by the Pfaff’s transformation  

 

 
2

F
1

(a,b;c;z)=(1z)
a

2
F

1
 




a,cb;c; 

z

z1
.  (10) 

Another useful transformation is given by Pfaff is  

 

 
2

F
1
(n,b;c;x)= 

(cb)
n

(c)
n

2
F

1
(n,b;b+1nc;1x).  (11) 

If |z|<1 and if Re(c)>Re(b)>0, Then 2F1(a,b;c;z) has the integral representation  

 

 F(a,b;c;z)= 
(c)

(b)(cb)
 

0

1

 t
b1

(1t)
cb1

(1zt)
a

dt.  (12) 

For more details of hypergeometric series, we refer to the book of Andrews, Askey and Roy [1]. 

Let us consider the following contiguous relations obtained by Gauss in [1]  
 

 )z;1c;b,1a(Fz
c

1ba
1)z;c;b,a(F 1212 







 
   

 )z;2c;b,2a(Fz
)1c(c

)1bc()1a(
12 




 (13)  

 (c-a)2F1(a-1,b;c;z)= (c-2a-(b-a)z)2F1(a,b;c;z) +a(1-z) 2F1(a+1,b;c;z) (14) 

 

If we define the monic polynomials  

 

 Rn(β,γ;z)= .0n],z1;,,n[F
)(

)(
12

n

n 



 (15) 

Replacing a=n,  b=,  c=, and  zz1 in contiguous relation (14), we get  
 

(γ+n)2F1(-n-1,β;γ;1-z)= [ γ+2n- (β+n)(1-z)]2F1(-n,β;γ;1-z) - nz2F1(-n+1,β;γ;1-z). 

Then by using (15), we can get  
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Thus, we can find that R
n
(,;z)  satisfies the following recurrence relation  
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(,;z)=(z+
(n+1,R)

)R
n

(,;z)
(n+1,R)

 zR
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(,;z),  (16) 

with 
(n+1,R)

 and 
(n+1,R)

 denote the coefficient of three term recurrence relation  
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)R,1n(

)R,1n(








 is real and positive. Then by 

Theorem 2.1 {R
n

(,;z)}


n=0
 form a class of Szegő polynomials if and only if this sequence of polynomials 

satisfy the following relation  
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Theorem 3.1  Let {R
n

(,;z)}


n=0
 are monic Szegő polynomials defined by  
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with respect to the positive measure (,,z) on the unit circle. The coefficient 1
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a
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where L
0

(,;z)= 
j=0


 

(j,R)
 z

j
and L


(,;z)= 
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 z
j

,  with moments  
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(+1)
j

(+1)
j
,    j0.  

Here Qn(β,γ,z) is the associated Szegő polynomials of R
n

(,;z).   
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Proof: We only need to show that µ(j,R) = ,0j,
)1(

)1(

j

j





as the remaining results follow directly from 

Section 2. 

The contiguous relation (13) can be rewritten as  
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Replacing  b = -β+1 and c = γ-β, we get 
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If we restrict ourself to the case in which a = 0, then 
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Using the theory of continued fraction, we obseved that 
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The following asymptotic result also hold.  

Theorem 3.2  
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IV. More On The Measure And Related Functions 
The following theorem gives exact expression for the measure 

R
(,;z)  in terms of the weight function 
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Therefore, the proof will be complete if we can prove )R,0( =1, equivalently, if we can show that 
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Theorem 4.2  The polynomials R
n

(,;z)  and their reciprocals R
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(,;z)  can be given by  
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n

(,;z)  is given by  

 D(,;z)=  
()(+1)

()
(1z)

        
.  

Proof. Using the result in [3], we have the following result 

  nas)]z;,(D[)z;,(RK 1*

n)R,n(  

uniformly on the compact subset of D. With the substitution u=nt in Theorem 4.2, we have, 

 

n

d
))z1(

n
1()

n
1(

n)()n(

)n(
K)z;,(RK n1

n

0

1

)R,n(

*

n)R,n( 1















 



 
 











 

  d))z1(
n

1()
n

1(
n)()()(

)()(
K n1

n

0

1

n

n
)R,n(  

 














0

)z1(1

)R,n(
n

*

n)R,n(
n

.de
))(()(

)()(
Klim)z;,(RKlim  










)z1)((

)(
Klim)]z;,(D[ )R,n(

n

1  

 

.)z1(
)1()(

)(
)z;,(D 




  

Hence the Theorem. 

 

Using (6) and then Theorem (3.1), following result will obtain for associated Carathéodory function for z in the 

compact subject of D,  
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  = -1+z2F1(1,-β+1;γ-β+1;z) 

Also using (15), R
n
(,;z)  have the following hypergeometric representation  
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Finally, we find the generating function for R
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