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I. Introduction 
Norman Levine [1] introduced the concepts of generalized closed sets in topological spaces.Closed sets 

are fundamental objects in a topological space. For example, one can define the topology on a set by using either 

the axioms for the closed sets or the Kuratowski closure axioms. By definition, a subset A of a topological space 

X is called generalized closed if clA⊆U whenever A⊆U and U is open. This notion has been studied by many 

topologists because generalized closed sets are not only natural generalization of closed sets but also suggest 

several new properties of topological spaces. Nakaoka and Oda[2,3,4] have introduced minimal open sets and 

maximal open sets, which are subclasses of open sets. Later on many authors concentrated in this direction and 

defined many different types of minimal and maximal open sets. Inspired with these developments we further 

study a new type of closed and open sets namely Minimal M-g**Open sets, Maximal M-g** Closed sets. In this 

paper a space X means a Minimal space (X, M). For any subset A of X its M-interior and M-closure are denoted 

respectively by the symbols M-int(A) and  M-cl(A). 

 

II. Preliminaries 

Definition 1A is said to be M-g**closed (M-generalized double star closed) if M-cl(A)  U whenever A  U and 

U is M-g*open. 

 

Definition2A is said to be M-g**open(M-generalized double star open) if M-cl(A)  U whenever A  U and U 

is M-g*closed. 

 

Theorem3EveryM-closed set is M-g**closed. 

ProofLet A be an M-closed subset of X.Let A  U and U be M-g*open.Since A is M-closed, then M-cl(A) =A.  

So M-cl(A)  U.Thus A is M-g**closed. 

Converse is not true 

 

Theorem4If A is M-g**closed and A  B M-cl(A), then B is M-g**closed. 

ProofSince B M-cl(A), M-cl(B) M-cl(A). Let B  U and U be M-g*open.Since A  B, A is M-g**closed 

and U is M-g*open.  Gives M-cl(A)  U. Since B M-cl(A), M-cl(B) M-cl(A).  M-cl(B)  U.Hence B is M-

g**closed. 

 

Theorem5EveryM-open set is M-g**open. 

ProofLet A be a M-open set of X.Then Ac is M-closed set. By Theorem3, Ac is M-g**closed, then A is M-

g**open. 

 

Converse is not true 

Theorem6If A is M-g**open and M-int(A)  B  A.  Then B is M-g**open. 

ProofA is M-g**open.  Hence Ac is M-g**closed.  Also M-Int(A)  B  A gives[M-Int(A)]c BcAc.  So Ac 

BcM-cl(Ac).  Thus Bc is M-g**closed and hence B is M-g**open. 

 

Theorem7IfA and B are M-g**closed sets in X and M-cl(AB) = M-cl(A) M-cl(B), then AB is also M-

g**closed set in X. 
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ProofSuppose that 𝑈is M-g*open and 𝐴∪𝐵⊆𝑈.  Then A⊆𝑈 and 𝐵⊆𝑈.Since 𝐴 and 𝐵 are M-g**closed subsets in 

X,M-cl(𝐴)⊆𝑈 and M–cl(𝐵)⊆𝑈.Hence M-(𝐴) ∪M-(𝐵)⊆𝑈. GivenM-cl(𝐴∪𝐵) = M-𝑐𝑙(𝐴) ∪M-𝑐𝑙(𝐵) ⊆𝑈. Therefore 

𝐴∪𝐵 is alsoM-g**closed set in X. 

 

Definition8A Interior minimal space (X, M) is said to be aM-g**T0space if for every pair of points x ≠ y in X 

either there existsM-g**open set U such that x U, y U or y U, x U. 

 

Theorem9EveryM-T0space is M-g**T0space but not conversely. 

Proof is obvious since every M-open set is M-g**open. 

 

Definition10An Interior minimal space (X, M) is said to be a M-g**T1space if for every pair of points x ≠ y in X 

there existsM-g**open sets U and V such that x U, y U and y V, x V. 

 

Theorem11EveryM-T1space is M-g**T1space. Proof is obvious since every M-open set is M-g**open. 

 

Definition12An Interior minimal space(X, M) is said to be a M-g**T2 space if for every pair of distinct points x, 

y in X there exists disjointM-g**open sets U and V in X such that U∩V = . 

 

Theorem13EveryM-T2space is M-g**T2space. Proof is obvious since every M-open set is M-g**open. 

 

Theorem14EveryM-g**T2space is M-g**T1space but not conversely. 

Proof is obvious from the definitions. 

 

Theorem15Any singleton set in an Interior minimal space is either M-semiclosed or M-g**open 

ProofLet {x} be a singleton set in an Interior minimal space X.If {x} is M-semiclosed, then proof is over.If {x} 

is not a M-semiclosed set, 

Then {x}c is not M-semiopen.Therefore X is the only M-semiopen set containing {x}c and{x}c is M-g**closed. 

Hence {x} is M-g**open. Thus {x} is M-semiclosed or M-g*s*open. 

 

Definition16An Interior minimal space X is called M-g**T1/3space if every M-gclosed set in X is M-g**closed 

in X. 

Theorem17An Interior minimal space X is M-g**T1/3 if and only if every M-gopen set is M-g**open. 

ProofLet X be M-g**T1/3. Let A be M-gopen set.To prove, A is M-g**open.Since A is M-gopen then Ac is M-

gclosed.Thus Ac is M-g**closed. [X is M-g**T1/3] givesA is M-g**open.Conversely,Suppose every M-gopen is 

M-g**open.Then every M-gclosed set is M-g**closed.Hence X is M-g**T1/3. 

Definition18An Interior minimal space X is called M-g**T1/2space if every M-g**closed set is M-closed. 

Theorem19An Interior minimal space X is M-g**T1/2 if and only if every M-g**open set is M-open. 

ProofLet X be M-g**T1/2 and let A be M-g**open.Then Ac is M-g**closed and so Ac is M-closed.Thus A is M-

open. 

Conversely,Suppose every M-g**open set is M-open.Let A be any M-g**closed set.Then Ac is M-g**open gives 

Ac is M-open and A is M-closed.Thus every M-g**closed set is M-closed set.Hence X is M-g**T1/2. 

3. Minimal M-g**open sets and Maximal M-g**closed sets 

We now introduce Minimal M-g**open sets and Maximal M-g**closed sets in Interior minimal spaces as 

follows.  

Definition1A proper nonempty M-g**open subset U of X is said to be a Minimal M-g**open set if any M-

g**open set contained in U is  or U. 

RemarkMinimalM-open set and Minimal M-g**open set are independent to each other. 

Theorem2 

(i) Let U be a Minimal M-g**open set and W be aM-g**open set. Then U ∩ W =  or UW. 

(ii) Let U and V be Minimal M-g**open sets.  
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Then U ∩ V =  or U = V.  

Proof 

(i) Let U be a Minimal M-g**open set and W be aM-g**open set.If U ∩ W = , then there is nothing to prove. 

If U ∩ W ≠ . Then U ∩ W  U. Since U is a Minimal M-g**open set, we have U ∩ W = U. Therefore U  

W. 

(ii) Let U and V be Minimal M-g**open sets.  If U ∩ V ≠ , then UV and VU by (i). Therefore U = V.  

Theorem3Let U be a Minimal M-g**open set.  If x ∈ U, then U  W for some M-g**open set W containing x. 

ProofLet U be a Minimal M-g**open set and x∈U.Let W be any other M-g**open set. U ∩ W = or UW. If 

UW ≠ x ∈ U  x ∈ W. Since W is arbitrary, there exists aM-g**open set W containing x such that U  

W. 

Theorem4Let U be a Minimal M-g**open set.Then U = ∩ {WW is a M-g**open set of X containing x} for any 

element x of U.  

ProofBy Theorem3, and U is a Minimal M-g**open set containing x, then U  W for some M-g**open set W 

containing x.We have U  ∩ {WW is a M-g**open set of X containing x}  U. Thus U = ∩ {WW is a M-

g**open set of X containing x}  U. 

Theorem5Let V be a nonempty finite M-g**open set.  Then there exists at least one (finite) Minimal M-

g**open set U such that U  V. 

ProofLet V be a nonempty finite M-g**open set. If V is a Minimal M-g**open set, we may set U = V. If V is 

not a Minimal M-g**open set, then there exists (finite) M-g**open set V1 such that  ≠ V1V. If V1 is a 

Minimal M-g**open set, we may set U = V1. If V1 is not a Minimal M-g**open set, then there exists (finite)M-

g**open set V2 such that  ≠ V2  V1. Continuing this process, we have a sequence of M-g**open sets V⊃ V1⊃ 

V2⊃ V3⊃ .....⊃Vk⊃ ......Since V is a finite set, this process repeats only finitely. Then finally we get a Minimal 

M-g**open set U = Vn for some positive integer n. Hence there exists atleast one Minimal M-g**open set U 

such that UV. 

[An Interior minimal space X is said to be M-locally finite space if each of its elements is contained in a finite 

M-g**open set.]  

Corollary6Let X be aM-locally finite space and V be a nonempty M-g**open set. Then there exists at least one 

(finite) Minimal M-g**open set U such that U  V. 

ProofLet X be a M-locally finite space and V be a nonempty M-g**open set.Let x  V.Since X is M-locally 

finite space, we have a finite M-open set Vx such that x Vx.Then VVx is a finite M-g**open set. By 

Theorem5, there exists at least one (finite) Minimal M-g**open set U such that UV∩Vx.That is UV∩VxV. 

Hence there exists at least one (finite) Minimal M-g**open set U such that UV.  

Corollary7Let V be a finite Minimal M-open set. Then there exists at least one (finite) Minimal M-g**open set 

U such that UV. 

ProofLet V be a finite Minimal M-open set. Then V is a nonempty finite M-g**open set. By Theorem5, there 

exists at least one (finite) Minimal M-g**open set U such that U  V.  

Theorem8Let U; Uλ be Minimal M-g**open sets for any element λ∈Γ.  If Uλ∈ΓUλ, then there exists an 

element λ ∈Γ such that U = Uλ.  

ProofLet Uλ∈ΓUλ.  Then U (λ∈ΓUλ) = U. That is λ∈Γ(U ∩ Uλ) = U.Also by Theorem2 (ii), U ∩ Uλ =  or 

U = Uλ for any λ∈Γ.Then there exists an element λ∈Γ such that U = Uλ.  

Theorem9Let U; Uλ be Minimal M-g**open sets for any λ∈Γ.  If U = Uλ for any λ∈Γ, then (∪λ∈ΓUλ) ∩ U = . 

ProofSuppose that (λ∈ΓUλ) ∩ U≠  for any λ∈Γ such that U ≠ Uλ. That is λ∈Γ(Uλ ∩ U) ≠ .  Then there exists 

an element λ∈Γ such that U ∩ Uλ≠ .By Theorem2(ii), we have U = Uλ, which contradicts the fact that U ≠ Uλ 

for any λ∈Γ.Hence (λ∈ΓUλ)∩U = .  

We now introduce Maximal M-g**closed sets in Interior Minimal spaces as follows.  

Definition10A proper nonempty M-g**closed set FX is said to be Maximal M-g**closed setif any M-
g**closed set containing F is either X or F.  
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RemarkEvery Maximal M-closed sets are Maximal M-g**closed sets.  

Theorem11A proper nonempty subset F of X is Maximal M-g**closed set if and only if X\F is a Minimal M-
g**open set. 

ProofLet F be a Maximal M-g**closed set. Suppose X\F is not a Minimal M-g**open set. Then there exists aM-

g**open set U ≠ X\F such that  ≠ U X\F. That is F X\U and X\U is aM-g**closed set gives a contradiction 

to F is a Maximal M-g**closed set.So X\F is a Minimal M-g**open set.  

Conversely, Let X\F be a Minimal M-g**open set. Suppose F is not a Maximal M-g**closed set. Then there 

exists aM-g**closed set E ≠ F such that F E ≠ X. That is  ≠ X\E  X\F and X\E is aM-g**open set gives a 

contradiction to X\F is a Minimal M-g**open set. Thus F is a Maximal M-g**closed set.  

Theorem12 

(i) Let F be a Maximal M-g**closed set and W be aM-g**closed set. Then F∪W = X or WF.  

(ii) Let F and S be Maximal M-g**closed sets. Then F ∪ S = X or F = S.  

Proof(i)Let F be a Maximal M-g**closed set and W be a M-g**closed set. If F∪ W = X, then there is nothing to 

prove.Suppose F ∪ W ≠ X. Then FF∪ W.Therefore F∪W= F implies WF.  

(ii) Let F and S be Maximal M-g**closed sets.If F∪S ≠ X, then we have FS and SF by (i).Therefore F = S.  

Theorem13Let Fα, Fβ, Fδ be Maximal M-g**closed sets such that Fα ≠ Fβ. If Fα FβFδ, then either Fα = Fδ or Fβ 

= Fδ 

ProofGiven that Fα ∩ FβFδ. If Fα = Fδ then there is nothing to prove. If Fα ≠ Fδ then we have to prove Fβ = 
Fδ.Now Fβ ∩ Fδ = Fβ ∩ (Fδ∩ X)  

= Fβ ∩ (Fδ ∩ (Fα∪ Fβ)(by Theorem12(ii))  

= Fβ ∩ ((Fδ ∩ Fα) ∪ (Fδ ∩ Fβ)) 

= (Fβ ∩ Fδ ∩ Fα) ∪ (Fβ ∩ Fδ ∩ Fβ)  

= (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) (by Fα ∩ FβFδ) 

= (Fα∪Fδ) ∩ Fβ 

= X ∩ Fβ 

(Since Fα and Fδ are Maximal M-g**closed sets by Theorem12(ii), Fα∪Fδ = X)= Fβ. 

That isFβ∩ Fδ = Fβ implies FβFδ . 
Since Fβ and Fδ are Maximal M-g**closed sets, we have Fβ = Fδ 

Therefore Fβ = Fδ 

 

Theorem14Let Fα, Fβ and Fδ be different Maximal M-g**closed sets to each other. Then (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ). 

ProofLet (Fα ∩ Fβ) (Fα ∩ Fδ)⇒ (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) (Fα ∩ Fδ) ∪ (Fδ∩ Fβ)gives(Fα∪Fδ) ∩ FβFδ ∩ (Fα∪ 

Fβ).Since by Theorem12(ii), Fα∪Fδ = X and Fα∪ Fβ = X givesX ∩ Fβ Fδ ∩ X.That is Fβ Fδ. From the 

definition of Maximal M-g**closed set, we get Fβ = Fδ which gives a contradiction to the fact that Fα, Fβ and Fδ 

are different to each other. Thus(Fα ∩ Fβ) ⊄ (Fα ∩ Fδ). 

Theorem15Let F be a Maximal M-g**closed set and x be an element of F. Then F = { SS is a M-g**closed 

set containing x such that F ∪ S ≠ X}.  

ProofBy Theorem13, and fact that F is a M-g**closed set containing x, we have F ∪ {SS is a M-g**closed set 

containing x such that F ∪ S ≠ X}  F.So we have F =  {SS is a M-g**closed set containing x such that F ∪ S 

≠ X}.  

Theorem16Let F be a Maximal M-g**closed set.  If x is an element of X\F.  Then X\F  E for any M-
g**closed set E containing x. 

ProofLet F be a Maximal M-g**closed set and x is in X\F. E ⊄F for any M-g**closed set E containing x.Then E 

∪ F = X (by Theorem12 (ii)). Thus X\F E. 

Minimal M-g**closed set and Maximal M-g**open set 

We now introduce Minimal M-g**closed sets and Maximal M-g**open sets in Interior Minimal spaces as 

follows.  

Definition17A proper nonempty M-g**closed subset F of X is said to be a Minimal M-g**closed set if any M-

g**closed set contained in F is  or F. 

RemarkMinimalM-closed and Minimal M-g**closed set are independent to each other. 
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Definition18A proper nonempty M-g**open UX is said to be a Maximal M-g**open setif any M-g**open set 

containing U is either X or U.  

RemarkMaximalM-open set and Maximal M-g**open set are independent to each other.  

Theorem19A proper nonempty subset U of X is Maximal M-g**open set if and only ifX\U is a Minimal M-
g**closed set.  

ProofLet U be a Maximal M-g**open set. Suppose X\U is not a Minimal M-g**closed set. Then there exists M-

g**closed set V ≠ X\U such that  ≠ V  X\U. That is U X\V and X\V is aM-g**open set gives a 

contradiction to U is a Minimal M-g**closed set. 

Conversely, Let X\U be a Minimal M-g**closed set.Suppose U is not a Maximal M-g**open set. Then there 

exists M-g**open set E ≠ U such that U E ≠ X. That is  ≠ X\E  X\U and X\E is aM-g**closed set which is a 

contradiction for X\U is a Minimal M-g**closed set.Therefore U is a Maximal M-g**closed set. 

Theorem20 

(i) Let U be a Minimal M-g**closed set and W be aM-g**closed set. Then U ∩ W =  or U  W.  

(ii) Let U and V be Minimal M-g**closed sets. 

 Then U ∩ V =  or U = V.  

Proof 

(i) Let U be a Minimal M-g**closed set and W be aM-g**closed set. If U ∩ W =, then there is nothing to 

prove.If U ∩ W ≠. Then U ∩ W  U. Since U is a Minimal M-g**closed set, we have U ∩ W = 

U.Therefore U  W. 

(ii) Let U and V be Minimal M-g**closed sets. If U∩V ≠ , then UV and VU by (i). Therefore U = V.  

Theorem21Let V be a nonempty finite M-g**closed set. Then there exists at least one (finite) Minimal M-

g**closed set U such that UV.  

ProofLet V be a nonempty finite M-g**closed set. If V is a minimal M-g**closed set, we may set U = V.If V is 

not a Minimal M-g**closed set, then there exists (finite) M-g**closed set V1 such that  ≠ V1V. If V1 is a 

Minimal M-g**closed set, we may set U = V1.If V1 is not a minimal M-g**closed set, then there exists 

(finite)M-g**closed set V2 such that  ≠ V2 V1. 

Continuing this process, we have a sequence of M-g**closed sets V ⊃ V1⊃ V2⊃ V3⊃ .....⊃Vk⊃Since V is a 

finite set, this process repeats only finitely. Then finally we get a Minimal M-g**closed set U = Vn for some 

positive integer n.  

Corollary22Let X be a M-locally finite space and V be a nonempty M-g**closed set. Then there exists at least 

one (finite) Minimal M-g**closed set U such that U V.  

ProofLet X be a M-locally finite space and V be a nonempty M-g**closed set. Let x  V.Since X is M-locally 

finite space, we have a finite M-open set Vx such that x Vx. Then VVx is a finite M-g**closed set. By 

Theorem21, there exists at least one (finite) Minimal M-g**closed set U such that U VVx. That is U 

VVxV. Hence there exists at least one (finite) Minimal M-g**closed set U such that UV.  

Corollary23Let V be a finite Minimal M-open set. Then there exists at least one (finite) Minimal M-g**closed 

set U such that UV.  

ProofLet V be a finite Minimal M-open set. Then V is a nonempty finite M-g**closed set. By Theorem21,there 

exists at least one (finite) Minimal M-g**closed set U such that UV.  

Theorem24Let U; Uλ be Minimal M-g**closed sets for any element λ∈Γ. If Uλ∈ΓUλ, then there exists an 

element λ ∈Γ such that U = Uλ. 

ProofLet U λ∈ΓUλ. Then U (λ∈ΓUλ) = U. That is ∪λ∈Γ(U ∩ Uλ) = U. Also by Theorem20(ii), U Uλ =  or 

U = Uλ for any λ∈Γ. This implies that there exists an element λ∈Γ such that U = Uλ.  

Theorem25Let U; Uλ be Minimal M-g**closed sets for any λ∈Γ. If U = Uλ for any λ∈Γ, then (λ∈ΓUλ) ∩ U = .  

ProofSuppose that (∪λ∈ΓUλ) ∩ U≠ . That is λ∈Γ(Uλ ∩ U) ≠ . Then there exists an element λ∈Γ such that U ∩ 

Uλ≠ . By Theorem20(ii), we have U = Uλ, which contradicts the fact that U ≠ Uλ for any λ∈Γ. Hence 

(λ∈ΓUλ)∩U = .  
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Theorem26A proper nonempty subset F of X is Maximal M-g**open set if and only ifX\F is a Minimal M-
g**closed set.  

ProofLet F be a Maximal M-g**open set. Suppose X\F is not a Minimal M-g**open set. Then there exists M-

g**open set U ≠ X\F such that  ≠ U  X\F. That is F X\U and X\U is aM-g**open set which is a 

contradiction for F is a Minimal M-g**closed set.  

Conversely, Let X\F be a Minimal M-g**closed set. Suppose F is not a Maximal M-g**open set. Then there 

exists M-g**open set E ≠ F such that F E ≠ X. That is  ≠ X\E  X\F and X\E is aM-g**open set which is a 

contradiction for X\F is a Minimal M-g**closed set.  

Thus F is a Maximal M-g**open set.  

Theorem27 

(i) Let F be a Maximal M-g**open set and W be aM-g**open set.  Then FW = X or WF.  

(ii) Let F and S be Maximal M-g**open sets.  

 Then FS=X or F = S.  

Proof 

(i) Let F be a Maximal M-g**open set and W be aM-g**open set.If F W = X, then there is nothing to prove. 

Suppose F W ≠ X. Then FF W.Therefore FW = F givesWF.  

(ii) Let F and S be Maximal M-g**open sets.If F∪S ≠ X, then we have FS and SF by (i). Therefore F = S.  

Theorem28Let Fα, Fβ, Fδ be Maximal M-g**open sets such that Fα ≠ Fβ. If Fα FβFδ, then either Fα = Fδ or Fβ 

= Fδ 

ProofGiven that Fα FβFδ. 
If Fα = Fδ then there is nothing to prove. If Fα ≠ Fδ then we have to prove Fβ = Fδ. 

Now FβFδ = Fβ (Fδ X) = Fβ (Fδ (Fα Fβ)(by Theorem27(ii))  

= Fβ ((Fδ Fα)  (Fδ Fβ)) = (FβFδ Fα)  (FβFδ Fβ) = (Fα Fβ)  (Fδ Fβ) (by Fα FβFδ) = (FαFδ)  

Fβ= X  Fβ. (Since Fα and Fδ are Maximal M-g**open sets by Theorem27 (ii), FαFδ = X)= Fβ.That is FβFδ= 

Fβ.Thus FβFδ.  Since Fβ and Fδ are Maximal M-g**open sets, we have Fβ = Fδ. Therefore Fβ = Fδ . 

Theorem29Let Fα, Fβ and Fδbe different Maximal M-g**open sets to each other. Then (Fα Fβ) ⊄ (Fα Fδ).  

ProofLet (Fα Fβ) (FαFδ) ⇒ (Fα Fβ)  (Fδ Fβ) (FαFδ)  (Fδ Fβ) ⇒ (FαFδ)  FβFδ (Fα 

Fβ).(Since by Theorem27(ii), FαFδ = X and Fα Fβ = X ⇒ X  Fβ Fδ X ⇒ Fβ Fδ . 

From the definition of Maximal M-g**open set it follows that Fβ = Fδ, which is a contradiction to the fact that 

Fα, Fβ and Fδ are different to each other. Therefore (Fα Fβ) ⊄ (FαFδ).  

Theorem30Let F be a Maximal M-g**open set. If x is an element of X \ F. Then X\F E for any M-g**open set 

E containing x. 

ProofLet F be a Maximal M-g**open set and x  X\F. E ⊄ F for any M-g**open set E containing x. Then E ∪ 

F = X by Theorem27(ii).Therefore X\F E. 
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