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Abstract: Mathematical models for the spread of HIV infection have made a considerable contribution on the 

understanding of HIV/AIDS dynamics. In this paper, an HIV/AIDS epidemic model in a heterosexual population 

is analyzed through modification of Susceptible-Infective-Removed (SIR) model by incorporating time lags 

(delay) for one to become infective and the other to become fully blown in a given population.By application of 

the next generation matrix, the reproduction number R
0
 is determined. By construction of Lyapunov function 

and using La Salleâ™s invariance principle, it is proven that if the reproduction number is less than or equal to 

unity, the HIV/AIDS free equilibrium is globally asymptotically stable and the disease dies out; and if the 

reproduction number is greater than unity, the endemic equilibrium is globally asymptotically stable, and hence 

the disease becomes endemic. 
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I. Introduction 

Human Immuno deficiency Virus(HIV) is the virus which causes Acquired Immune Deficiency 

Syndrome (AIDS). Epidemiological research on HIV/AIDS has been marked with much activity for the last 
decade. It is considered as the worldâ™s serious epidemic of this century. Although much is un-known about 

HIV, much about its transmission dynamics in populations have been discovered by researchers ([], [] )). 

Kenya is considered one of the countries in Africa which has the worldâ™s worst HIV and AIDS 

epidemics (as observed in []). From [], approximately 1.5 million people in Kenya are considered to b e living 

with HIV. This ever increasing numbers of HIV/AIDS related cases has led to the development of mathematical 

models to explain its spread and transmission dynamics. Over the years, mathematical modeling has been of 

great concern to many researchers (like for example in [] and []). It has been useful in the analysis of various 

disease dynamics such as malaria, tuberculosis, and HIV/AIDS. It plays a bigger role in the understanding of 

epidemiological patterns for disease control. From epidemiology, HIV is primarily transmitted through the 

intimate ex-change of body fluids, such as semen, blood, vaginal secretion, and motherâ™s milk. HIV can also 

b e passed to a child from infected mother during birth (vertical transmission). Its long infection time (delay) 
which ranges from a few months to years is the main characteristic of HIV before the onset of AIDS. 

Hence, the formulation of the model in this research is similar to that proposed by Luboobi et al. [], but 

with the inclusion of a second time delay. That is, when a susceptible individual draws a uniformly random 

person from the population and the individual chosen is infectious, the susceptible individual is assumed to get 

the virus. After a time lag, 
1
>0 , the individual when tested will become infectious. Without drug intervention, 

an infected individual will then progress to fully blown after time 
2

>0. Each full blown individual remains full 

blown till death. 

II. The Model 
We sub-divide a population in a clinical set up into; Susceptible (S(t)) individuals, Infective (I(t)) 

individuals, and Fully Blown (A(t)) (AIDS) individuals. The susceptible population is assumed to be recruited 

into the compartment of Susceptibles by birth at the rate denoted by B, while the population can decrease due to 

natural deaths at a rate  or due to infection as a result of interaction with infected individuals I(t). Infected 

individuals may die due to natural death at a rate  or progress to become fully blown individuals at a rate . 
After progression to the compartment of fully blown, individuals are removed from this compartment due to 

natural death at a rate  or die due disease induced death at a rate d. Each individual that is susceptible draws a 
uniformly random person from the population. If the individual chosen is infectious, the susceptible individual is 

assumed to get the virus with a probability . In a clinical set up, an individual after being in contact with an 

infective, takes some time lag, say 
1

>0, to be clinically infected. Without drug intervention, an infected 

individual will then progress to fully blown after some time 
2
>0. Each full blown individual remains full blown 

till death. These dynamics of the disease leads to the modification of Equation (Error! Reference source not 

found.) as follows;  
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 S (t) = BS(t) 
CI(t)S(t)

N(t)
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 I (t) = 

CI(t
1

)S(t
1
)

N(t
1

)
(+)I(t),  

 A (t) = I(t
2

)(d+)A(t). (1) 

Let =max{
1
,

2
},and C:=C([,0],R

3

+
),  ():=(S(),I(),A()) [,0]; 

C, with the norm of  defined as ||||=sup
0

|()| where || is a norm in R
3
. 

The initial condition for Equation (1) is; 

 

 ()=(S
0

(),I
0
(),A

0
()).    (2) 

where all elements are nonnegative for all [,0] with S()0, I()0, and A()0. Equation (1) subject to 
(2), has a unique solution, see for instance []. 

 

III. Local stability 
The stable steady states are the non infected steady state E

0
=(S

0
,0,0)  and the infected steady state 

E
1

=(S
*

,I
*

,A
*

). To study the stable steady state,we linearize the system about the equilibrium point E
1
. Let’s 

define  

 x(t) = S(t)S
*
, 

 y(t) = I(t)I
*

, 

 z(t) = A(t)A
*

. (3) 

and by Taylor series expansion of Equation (1) about (S
*

,I
*

,A
*
) and ignoring higher order terms, we obtain  

 

 x (t) = (+ 
CI

*

N
*

)x(t) 
CS

*

N
*

y(t),  

 y (t) = 
CI

*

N
*

(t
1
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1
)(+)y(t)+ 

CS
*

N
*

(t
1
)
y(t

1
),  

 z (t) = y(t
2

)(d+)z(t). (4) 

For simplification we let =max{
1

,
2
} and thus Equation (4) can be expressed in a matrix form as;  

 

 Y (t)=AY(t)+BY(t)   (5) 
where  

 A:=(+ 
CI

*

N
)  EQ  \F(CS\s\up5(*),N)  EQ 00  EQ (+)

  EQ 00  EQ 0  EQ (d+)\, B:=0  EQ 0  EQ 0 

\F(CI\s\up5(*),N)  EQ  \F(CS\s\up5(*),N)  EQ 00  EQ   EQ 0\, 

 Y(t):=x(t)y(t)z(t),and Y(t):=x(t)y(t)z(t). 
Equation (5) is a linear system and to solve it, we assume a solution of the form  

Y(t)=Y
0

e
t

,  Y
0
 is a constant 31 vector  

which upon substitution in Equation (5) yields;  

 

 Y
0
e
t

=AY
0
e
t

+BY
0
e
t

   (6) 

For a nontrivial solution and Y
0
0, we need to have;  

 ():= | | matrix not implemented =0   (7) 

At E
0

, with I
*

,A
*
=0 and S

*
=S

0
= 

B


, E

0
=(S

0
,0,0)  and Equation (7) becomes;  
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 H():= | | matrix not implemented =0   (8) 

On computing, it yields  

=, (d+)  and ( 
CS

*

N
)e


(+). 

The first two eigenvalues are negative and for asymptotic stability of the disease free equilibrium, the Equation  

 

 ( 
CS

*

N
)e


(+)=0,    (9) 

should satisfy;  

 

 Re <0   (10) 
To have Equation (10) hold, we state the following theorem;  

 

Theorem 1  The disease free equilibrium exists if the reproduction rate R
0

<1 and (+)>1. 

To prove Theorem  

, we use the following Lemma by Bellman and Cooke []  

 

Lemma 1  All roots of the equation (z+a)e
z
+b=0, where a and b are real, have negative real parts if and only if;  

(i) a>1,  

(ii) a+b>0,  

(iii) b<sinacos  

where  is the root of =atan, 0<<, if a0 and = 


2
 if a=0.  

[Sorry. Ignored \begin{proof} ... \end{proof}] 

This shows that for asymptotic stability at disease free equilibrium, we have that; > 
1

+
, R

0
<1, and 



2
<<. 

At endemic equilibrium, E
1
=(S

*
,I

*
,A

*
), Equation (7) becomes; 

 

 ():= | | matrix not implemented =0   (11) 

Clearly, one of the eigenvalues is (d+). For the other eigenvalues, , we have;  
 

 | | matrix not implemented =0   (12) 

On evaluating the eigenvalue problem of (12), we obtain the following characteristic equation  

 


2
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2
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Let H():=
2
+(2++ 

CI
*

N
*

)+
2

++(+) 
CI

*

N
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and D():= 
CS

*

N
*
 

CS
*


N
*

. 

Hence, Equation (13) can be rewritten thus;  
 

 H()+D()e


=0.   (14) 

If the roots of Equation (14) are negative, then the endemic equilibrium is asymptotically stable. This leads as to 

the following Theorem;  

 

 

Theorem 2 For all values of >0 and R
0
>1, the disease equilibrium E

1
,is positively bounded and asymptotically 

stable. 

To check whether the roots of Equation(14) are negative, we use the following Lemma by Boese [].  
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Lemma 2 For the roots of (14) to lie to the left of the complex plane, it is necessary that; 

(i) All zeros of H() satisfy Re0, 

(ii) |H
0

||D
0

|, where H
0
:=H(0), and D

0
:=D(0).  

[Sorry. Ignored \begin{proof} ... \end{proof}] 

 

IV. Global stability 
We shall use Lyapunov function for global stability of the disease-free equilibrium. 

Theorem 3 The disease free equilibrium is globally stable if R
0
1. 

[Sorry. Ignored \begin{proof} ... \end{proof}] 

 

Theorem 4 The endemic equilibrium E
1
, is globally stable if R

0
>1.  

[Sorry. Ignored \begin{proof} ... \end{proof}] 

 

V. Numerical simulations 
We use Matlab software to illustrate the numerical simulations describing the theoretical results for 

model (1). We describe the variables and parameters values to enable us make numerical simulations. Parameter 

values are hypothetical. 

  

Table: Data for the HIV/AIDS model 

 Initial or default 

values 

 Source  

4000 Estimate  
800 Estimate  

97 Estimate  

29 per year Estimate  

0.011-0.95 [],[]  

3 per year []  

0.01562 []  

0.333 per year []  

0.125 per year []  

   

VI. Simulation for the HIV/AIDS free equilibrium 
For numerical simulation of the stable steady state, E

0
, of (1), we use the following initial conditions 

S
0

=4000,I
0
=800,A

0
=97  

Figure 1 shows the solution dynamics of model (1) when reproduction number R
0

, is less than one. In this case, 

the only stable steady state is the HIV/AIDS free equilibrium E
0

.  

 

 Figure 1: Numerical solution of model (1) when R
0

<1. 

From figure 1, we observe that the population of infectives and fully blown individuals will eventually decrease 

to 0, but the susceptible population converges to S
*
 

B


. In other words, the solutions converge to HIV/AIDS 

free steady state E
0

, where the disease is wiped out.  

 

VII. Simulation for the disease equilibrium 
If R

0
>1, the HIV/AIDS free equilibrium becomes unstable while the endemic equilibrium E

1
 becomes 

stable. Additionally, if R
0
>1 by proposition 2, the endemic equilibrium is asymptotically stable. In figure 2, 

solutions converge to E
1

.  

 

Figure 2: Numerical solution of model (1) when R
0

>1. 

From figure 2, the infection persists in the population, that is, the number of infectives in the population will 

increase until it attains an equilibrium E
1
. Figure 2 shows the convergence of the endemic equilibrium which is 

in line with preposition 3 for R
0
>1.  
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When the delay parameter >0 is large, the infectious individuals in the population will take a longer 
time to be eliminated (removed) in the population, hence increasing the force of infection leading to more 

infectives in the population. This leads to an increase of infective population as numerically shown in figure 3 

below.  
 

 Figure 3: Numerical solution of model (1) when >0 is large. 

If the delay parameter  is not large, the infected individuals will die out faster i.e, infected individuals are 
eliminated from the population faster as the rate at which they progress to fully blown is small. The computer 

simulation for this case is as shown in figure 4. 

 

 Figure 4: Numerical solution of model (1) when >0 is small. 
Globally, if the spread of the infection is not addressed, the susceptibles population will decrease in comparison 

to the infected population. This can be illustrated by the following numerical simulation 

 

 Figure 5: Numerical solution of model (1) if the force of infection is not reduced. 

 

Conclusion 
We have formulated a HIV/AIDS delay model and investigate its dynamical behaviors. By means of 

next generation matrix, we obtained a basic reproduction number, R
0

, which plays an important role in 

controlling the spread of AIDS. From the stability analysis, decreasing R
0
 below unity reduces the spread of the 

disease. The numerical simulations show that the disease dies out (or is controlled) when R
0

>1 or persists in the 

population (endemically) when R
0

>1 . The use of intervention programs such as social and medical intervention 

encourages the reduction of R
0
. For example, the use of educational programs encourages the reduction of the 

parameter C (the average number of sexual partners)and the parameter through abstinence, faithfulness, and use 

of condoms. On the hand, medical intervention (which involves the use of Anti-Retro viral drugs), suppresses 

the intensity of HIV progression by prolonging the delay. This in turn results in the prolonging the rate of 

conversion,, of infected individuals to fully blown.  
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