On Generalized (σ, σ)- n-Derivations in Prime Near-Rings

Enaam F. Adhab
Department of Mathematics, the Open Educational College -OEC-, Iraq. enaam1972mayahi@gmail.com

Abstract

In this paper, we investigate prime near - rings with generalized (σ, σ)- n-derivations satisfying certain differential identities . Consequently, some well known results have been generalized.

Keywords: prime near-ring, (σ, τ)- n-derivations, generalized (σ, τ)- n-derivations, generalized (σ, σ)-nderivations

I. Introduction

A right near - ring (resp. left near ring) is a set N together with two binary operations (+) and (.) such that (i) $(\mathrm{N},+$) is a group (not necessarily abelian). (ii) $(\mathrm{N},$.) is a semi group. (iii) For all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$; we have $(\mathrm{a}+\mathrm{b}) . \mathrm{c}=$ $\mathrm{a} . \mathrm{c}+\mathrm{b} . \mathrm{c}($ resp. $\mathrm{a} .(\mathrm{b}+\mathrm{c})=\mathrm{a} . \mathrm{b}+\mathrm{b} . \mathrm{c})$. Trough this paper, N will be a zero symmetric left near - ring (i.e., a left near-ring N satisfying the property $0 . \mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{N}$). we will denote the product of any two elements x and y in N, i.e.; $x . y$ by $x y$. The symbol Z will denote the multiplicative centre of N, that is $Z=\{x \in N \backslash x y=y x$ for all $y \in N\}$. For any $x, y \in N$ the symbol $[x, y]=x y-y x$ and $(x, y)=x+y-x-y$ stand for multiplicative commutator and additive commutator of x and y respectively. Let σ and τ be two endomorphisms of N . For any $x, y \in N$, set the symbol $[x, y]_{\sigma, \tau}$ will denote $x \sigma(y)-\tau(y) x$, while the symbol (x o y) ${ }_{\sigma, \tau}$ will denote $x \sigma(y)+$ $\tau(y) x . N$ is called a prime near-ring if $x N y=\{0\}$ implies that either $x=0$ or $y=0$. For terminologies concerning near-rings, we refer to Pilz [1].
An additive mapping $d: N \rightarrow N$ is called a derivation if $d(x y)=d(x) y+x d(y)$, (or equivalently $d(x y)=x d(y)$ $+\mathrm{d}(\mathrm{x}) \mathrm{y}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{N}$, as noted in [2, Proposition 1]. The concept of derivation has been generalized in several ways by various authors. The notion of (σ, τ) derivation has been already introduced and studied by Ashraf [3]. An additive mapping $\mathrm{d}: \mathrm{N} \rightarrow \mathrm{N}$ is said to be a (σ, τ) derivation if $\mathrm{d}(\mathrm{xy})=\sigma(\mathrm{x}) \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \tau(\mathrm{y})$, (or equivalently $\mathrm{d}(\mathrm{xy})=\mathrm{d}(\mathrm{x}) \tau(\mathrm{y})+\sigma(\mathrm{x}) \mathrm{d}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{N}$, as noted in [3, Lemma 2.1].
The notions of symmetric bi- (σ, τ) derivation and permuting tri- (σ, τ) derivation have already been introduced and studied in near-rings by Ceven [4] and Öztürk [5], respectively. Motivated by the concept of tri-derivation in rings, Park [6] introduced the notion of permuting n-derivation in rings. Further, the authors introduced and studied the notion of permuting n-derivation in near-rings (for reference see [7]). Inspired by these concepts, Ashraf [8] introduced (σ, τ)-n-derivation in near-rings and studied its various properties. In [9] Ashraf introduced the notion of generalized n -derivation in near-ring N and investigate several identities involving generalized n derivations of a prime near-ring N which force N to be a commutative ring. In the present paper, motivated by these concepts, we define generalized (σ, τ)-n-derivation in near-rings and study commutativity of prime nearrings admitting suitably constrained additive mappings, as generalized n-derivation, generalized (σ, σ)-nderivations.
Let n be a fixed positive integer. An n -additive (i.e.; additive in each argument) mapping $\mathrm{d}: \underbrace{\mathrm{N} \times \mathrm{N} \times \ldots \times \mathrm{N}}_{\mathrm{n} \text {-times }} \rightarrow \mathrm{N}$ is called (σ, τ)-n-derivation of N if there exist functions σ, τ : $\mathrm{N} \rightarrow \mathrm{N}$ such that the equations
$\mathrm{d}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)$
hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime} \in \mathrm{N}$
An n-additive mapping f: $\underbrace{\mathrm{N} \times \mathrm{N} \times \ldots \times \mathrm{N}}_{\mathrm{n} \text {-times }} \rightarrow \mathrm{N}$ is called a generalized (σ, τ)-n-derivation associated with (σ, τ)-nderivation d if there exist functions $\sigma, \tau: \mathrm{N} \rightarrow \mathrm{N}$ such that the equations
$\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{2}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)$
hold for all $x_{1}, x_{1}{ }^{\prime}, x_{2}, x_{2}{ }^{\prime}, \ldots, x_{n}, x_{n}{ }^{\prime} \in N$.
For an example of a generalized (σ, τ)-n-derivation, Let S be a 2-torsion free zero-symmetric left near-ring. Let us define :
$N=\left\{\left.\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right) \right\rvert\, x, y, 0 \in S\right\}$. It can easily shown that N is a non commutative zero symmetric left near-ring with regard to matrix addition and matrix multiplication. Define $d, f: \underbrace{N \times N \times \ldots N} \rightarrow N$ such that
$\mathrm{d}\left(\left(\begin{array}{cc}\mathrm{x}_{1} & \mathrm{y}_{1} \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}\mathrm{x}_{2} & \mathrm{y}_{2} \\ 0 & 0\end{array}\right), \ldots,\left(\begin{array}{cc}\mathrm{x}_{\mathrm{n}} & \mathrm{y}_{\mathrm{n}} \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & \mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}} \\ 0 & 0\end{array}\right)$
$\mathrm{f}\left(\left(\begin{array}{cc}\mathrm{x}_{1} & \mathrm{y}_{1} \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}\mathrm{x}_{2} & \mathrm{y}_{2} \\ 0 & 0\end{array}\right), \ldots,\left(\begin{array}{cc}\mathrm{x}_{\mathrm{n}} & \mathrm{y}_{\mathrm{n}} \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & \mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{n}} \\ 0 & 0\end{array}\right)$
Now we define $\sigma, \tau: \mathrm{N} \rightarrow \mathrm{N}$ by
$\sigma\left(\begin{array}{ll}x & \mathrm{y} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}-x & -\mathrm{y} \\ 0 & \mathrm{y}\end{array}\right), \tau\left(\begin{array}{ll}x & \mathrm{y} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}x & -y \\ 0 & 0\end{array}\right)$
It can be easily verified that f is a generalized (σ, τ)-n-derivation associated with (σ, τ)-n-derivation d .
If $\mathrm{f}=\mathrm{d}$ then generalized (σ, τ)-n-derivation f is just (σ, τ)-n-derivation. If $\sigma=\tau=1$, the identity map on N , then generalized (σ, τ)-n-derivation f is simply a generalized n -derivation. If $\sigma=\tau=1$ and $\mathrm{d}=\mathrm{f}$, then generalized (σ, τ)-n-derivation f is an n -derivation. Hence the class of generalized (σ, τ)-n-derivations includes those of n derivations, generalized n-derivations and (σ, τ)-n-derivation. In this paper σ and τ will represent automorphisms of N .

II. Preliminary results.

We begin with the following lemmas which are essential for developing the proofs of our main results.
Lemma 2.1[8] Let N be a near-ring. Then d is a (σ, τ)-n-derivation of N if and only if
$\mathrm{d}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)$

$$
\begin{gathered}
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right) \\
\vdots \\
\left.\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}^{\prime}{ }^{\prime}\right)=\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}^{\prime}\right)^{\prime}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)
\end{gathered}
$$

hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime} \in \mathrm{N}$.
Lemma 2.2 [8] Let N be a near-ring and d be a (σ, τ)-n-derivation of N . Then

$$
\begin{gathered}
\left(\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}= \\
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y} \\
\left(\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}=\right. \\
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y} \\
\vdots \\
\left(\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}=\right. \\
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}
\end{gathered}
$$

hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime}, \mathrm{y} \in \mathrm{N}$.
Lemma 2.3[8] Let N be a near-ring and d be a (σ, τ)-n-derivation of N . Then
$\left(\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)\right) \mathrm{y}=$

$$
\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right) \mathrm{y}
$$

$\left(\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}^{\prime}\right)\right) \mathrm{y}=$ $\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right) \mathrm{y}$
$\left(\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)\right) \mathrm{y}=$

$$
\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}
$$

hold for all $x_{1}, x_{1}{ }^{\prime}, x_{2}, x_{2}{ }^{\prime}, \ldots, x_{n}, x_{n}{ }^{\prime}, y \in N$.
Lemma 2.4 [8] Let N be a prime near-ring and d a nonzero (σ, τ)-n-derivation d of N . If $\mathrm{d}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N}) \subseteq \mathrm{Z}$, then N is a commutative ring.
Lemma 2.5 Let d be a (σ, σ)-n-derivation of a near-ring N . Then $\mathrm{d}(\mathrm{Z}, \mathrm{N}, \ldots, \mathrm{N}) \subseteq \mathrm{Z}$.
Proof. If $z \in Z$ then
$\mathrm{d}\left(\mathrm{zx}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1} \mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Therefore, using defining property of d and Lemma 2.1 in previous equation, we get
$d\left(z, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}\right)+\sigma(z) d\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sigma\left(x_{1}\right) d\left(z, x_{2}, \ldots, x_{n}\right)+d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma(z)$
for all $x_{1}, x_{2}, \ldots, x_{n} \in N$. Since $z \in Z$ and σ is an automorphism, we get
$\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right)=\sigma\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Thus we conclude that $\mathrm{d}(\mathrm{Z}, \mathrm{N}, \ldots, \mathrm{N}) \subseteq$ Z.

Let N be a prime near-ring and d a nonzero (σ, τ)-n-derivation d of N . If $\mathrm{d}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N}) \subseteq \mathrm{Z}$, then N is a commutative ring.
Lemma 2.6 Let N be a near-ring. Then f is a generalized (σ, τ) - n -derivation of N if and only if
$\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)$

```
\(\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{2}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)\)
\(\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)\)
for all \(x_{1}, x_{1}{ }^{\prime}, x_{2}, x_{2}{ }^{\prime}, \ldots, x_{n}, x_{n}{ }^{\prime} \in N\).
```

Proof. By hypothesis, we get for all $x_{1}, x_{1}{ }^{\prime}, x_{2}, \ldots, x_{n} \in N$.
$\mathrm{f}\left(\mathrm{x}_{1}\left(\mathrm{x}_{1}{ }^{\prime}+\mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}+\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}+\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
and
$\mathrm{f}\left(\mathrm{x}_{1}\left(\mathrm{x}_{1}{ }^{\prime}+\mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$=\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}+\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$=f\left(x_{1} x_{1}{ }^{\prime}, x_{2}, \ldots, x_{n}\right)+f\left(x_{1} x_{1}{ }^{\prime}, x_{2}, \ldots, x_{n}\right)$
$=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$

$$
\begin{equation*}
+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \tag{2}
\end{equation*}
$$

Comparing the two equations (1) and (2), we conclude that
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$

$$
\tau\left(x_{1}\right) f\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)+d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right) \text { for all } x_{1}, x_{1}^{\prime}, x_{2}, \ldots, x_{n} \in N .
$$

Similarly we can prove the remaining ($n-1$) relations. Converse can be proved in a similar manner.

III. Main results

Theorem 3.1 Let N be a prime near-ring, let f be a generalized (σ, σ) - n -derivation associated with a nonzero (σ, σ)-n-derivation d. If $f\left([x, y], x_{2}, \ldots, x_{n}\right)=\sigma([x, y])$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
Proof. By our hypothesis, we have
$f\left([x, y], x_{2}, \ldots, x_{n}\right)=\sigma([x, y])$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Replace y by $x y$ in (3) to get
$f\left([x, x y], x_{2}, \ldots, x_{n}\right)=\sigma([x, x y])$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Which implies that
$f\left(x[x, y], x_{2}, \ldots, x_{n}\right)=\sigma(x[x, y])$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Therefore
$d\left(x, x_{2}, \ldots, x_{n}\right) \sigma([\mathrm{x}, \mathrm{y}])+\sigma(\mathrm{x}) \mathrm{f}\left([\mathrm{x}, \mathrm{y}], \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\sigma(\mathrm{x}) \sigma([\mathrm{x}, \mathrm{y}])$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Using (3) in previous equation we get
$d\left(x, x_{2}, \ldots, x_{n}\right) \sigma([x, y])=0$ for all $x, y, x_{2}, \ldots, x_{n} \in N$, or equivalently,
$d\left(x, x_{2}, \ldots, x_{n}\right) \sigma(x) \sigma(y)=d\left(x, x_{2}, \ldots, x_{n}\right) \sigma(y) \sigma(x)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Replacing y by $y z$ in (4) and using it again, we get
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y})[\sigma(\mathrm{x}), \sigma(\mathrm{z})]=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Since σ is an automorphism of N, we get
$d\left(x, x_{2}, \ldots, x_{n}\right) N[\sigma(x), \sigma(z)]=\{0\}$ for all $x, z_{,} x_{2}, \ldots, x_{n} \in N$.
Primeness of N yields that for each fixed $x \in N$ either $d\left(x, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in N$ or $x \in Z$. If $x \in Z$, by Lemma 2.5 we conclude that $d\left(x, x_{2}, \ldots, x_{n}\right) \in Z$ for all $x_{2}, \ldots, x_{n} \in N$. Therefore, in both cases we have $d\left(x, x_{2}\right.$, . .., $\left.x_{n}\right) \in Z$ for all $x_{2}, \ldots, x_{n} \in N$ and hence $d(N, N, \ldots, N) \subseteq Z$. Thus by Lemma 2.4, we find that N is commutative ring.
Similar results hold in case $f\left([x, y], x_{2}, \ldots, x_{n}\right)=-\sigma([x, y])$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Corollary 3.2 [14, Theorem 3.3] Let N be a prime near-ring, let f be a left generalized n-derivations with associated nonzero n-derivations d, If $f\left([x, y], x_{2}, \ldots, x_{n}\right)= \pm[x, y]$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
Corollary 3.3 Let N be a prime near-ring, let d be a nonzero (σ, σ)-n-derivation d, If $d\left([x, y], x_{2}, \ldots, x_{n}\right)= \pm$ $\sigma([\mathrm{x}, \mathrm{y}])$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Then N is a commutative ring.
Theorem 3.4 Let N be a prime near-ring, let f be a generalized (σ, σ)-n-derivation associated with a nonzero (σ, $\sigma)$-n-derivation d. If $f\left([x, y], x_{2}, \ldots, x_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
Proof. By hypothesis, we have
$f\left([x, y], x_{2}, \ldots, x_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Replace y by $x y$ in (6) to get
$f\left([x, x y], x_{2}, \ldots, x_{n}\right)=[\sigma(x), x y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
which implies that
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma([\mathrm{x}, \mathrm{y}])+\sigma(\mathrm{x}) \mathrm{f}\left([\mathrm{x}, \mathrm{y}], \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\sigma(\mathrm{x})[\sigma(\mathrm{x}), \mathrm{y}]_{\sigma, \sigma}$

```
for all x, y, x},\ldots,\mp@subsup{x}{n}{}\inN
```

Using hypothesis in previous equation we get
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma([\mathrm{x}, \mathrm{y}])=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$, or equivalently
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{x}) \sigma(\mathrm{y})=\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. which is identical with the equation
(4) in Theorem 3.1. Now arguing in the same way in the Theorem 3.1 we conclude that N is a commutative ring.

Similar results hold in case $f\left([x, y], x_{2}, \ldots, x_{n}\right)=-[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Corollary 3.5 Let N be a prime near-ring, let d be a nonzero (σ, σ)-n-derivation. If $\mathrm{d}\left([\mathrm{x}, \mathrm{y}], \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)= \pm$ $[\sigma(\mathrm{x}), \mathrm{y}]_{\sigma, \sigma}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Then N is a commutative ring.
Theorem 3.6 Let N be a prime near-ring, let f be a generalized (σ, σ)-n-derivation associated with a nonzero (σ, σ)-n-derivation d, If $f\left([x, y], x_{2}, \ldots, x_{n}\right)=(\sigma(x) \circ y)_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring. Proof. By hypothesis, we have
$\mathrm{f}\left([\mathrm{x}, \mathrm{y}], \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=(\sigma(\mathrm{x}) \circ \mathrm{y})_{\sigma, \sigma}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Replace y by $x y$ in (7) to get
$f\left([x, x y], x_{2}, \ldots, x_{n}\right)=(\sigma(x) \circ x y)_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
which implies that
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma([\mathrm{x}, \mathrm{y}])+\sigma(\mathrm{x}) \mathrm{f}\left([\mathrm{x}, \mathrm{y}], \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\sigma(\mathrm{x})(\sigma(\mathrm{x}) \circ \mathrm{y})_{\sigma, \sigma}$
for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Using hypothesis in previous equation we get
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma([\mathrm{x}, \mathrm{y}])=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$, or equivalently,
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{x}) \sigma(\mathrm{y})=\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. which is identical with the equation (4) in Theorem 3.1 Now arguing in the same way in the Theorem 3.1 we conclude that N is a commutative ring.

Similar results hold in case $f\left([x, y], x_{2}, \ldots, x_{n}\right)=-(\sigma(x) \circ y)_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Corollary 3.7 Let N be a prime near-ring, let f be a left generalized n -derivation associated with a nonzero n derivation d. If $f\left([x, y], x_{2}, \ldots, x_{n}\right)= \pm(x \circ y)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is commutative ring.
Corollary 3.8 Let N be a prime near-ring, let d be a nonzero (σ, σ)-n-derivation. If $\mathrm{d}\left([\mathrm{x}, \mathrm{y}], \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)= \pm$ $(\sigma(\mathrm{x}) \circ \mathrm{y})_{\sigma, \sigma}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Then N is commutative ring.
Theorem 3.9 Let N be a prime near-ring, let f be a generalized (σ, σ)-n-derivation associated with a nonzero (σ, σ)-n-derivation d. If $f\left(x \circ y, x_{2}, \ldots, x_{n}\right)=(\sigma(x) \circ y)_{\sigma, \sigma}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Then N is a commutative ring.
Proof. By hypothesis, we have
$f\left(x \circ y, x_{2}, \ldots, x_{n}\right)=(\sigma(x) \circ y)_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Replace y by $x y$ in (8) to get
$f\left(x(x \circ y), x_{2}, \ldots, x_{n}\right)=(\sigma(x) \circ x y)_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Which implies that
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{x} \circ \mathrm{y})+\sigma(\mathrm{x}) \mathrm{f}\left(\mathrm{x} \circ \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\sigma(\mathrm{x})(\sigma(\mathrm{x}) \circ \mathrm{y})_{\sigma, \sigma}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Using hypothesis in previous equation we get
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{x} \circ \mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$, or equivalently,
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{x}) \sigma(\mathrm{y})+\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Replacing y by yz in (9) and using it again, we get
$d\left(x, x_{2}, \ldots, x_{n}\right) \sigma(x) \sigma(y) \sigma(z)+d\left(x, x_{2}, \ldots, x_{n}\right) \sigma(y) \sigma(\mathrm{z}) \sigma(\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Now substituting the values from (9) in the preceding equation we get
$\left\{-\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{x})\right\} \sigma(\mathrm{z})+\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{z}) \sigma(\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
So we get
$d\left(x, x_{2}, \ldots, x_{n}\right) \sigma(y) \sigma(-\mathrm{x}) \sigma(\mathrm{z})+\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{z}) \sigma(\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Replacing x by $-x$ in the preceding equation we get
$\mathrm{d}\left(-\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{x}) \sigma(\mathrm{z})+\mathrm{d}\left(-\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{z}) \sigma(-\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Thus we get
$d\left(-x, x_{2}, \ldots, x_{n}\right) \sigma(y)(\sigma(x) \sigma(z)-\sigma(z) \sigma(x))=0$ for all $x, y, z, x_{2}, \ldots, x_{n} \in N$. Since σ is an automorphism we conclude that
$\mathrm{d}\left(-\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{N}(\sigma(\mathrm{x}) \sigma(\mathrm{z})-\sigma(\mathrm{z}) \sigma(\mathrm{x}))=\{0\}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. For each fixed $\mathrm{x} \in \mathrm{N}$ primeness of N yields either $d\left(-x, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in N$ or $x \in Z$. If $d\left(-x, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in N$ then $d\left(x, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in N$. Thus we conclude that for each fixed $x \in N$ either $d\left(x, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in N$ or $x \in Z$. If $x \in Z$, by Lemma 2.5 we conclude that $d\left(x, x_{2}, \ldots, x_{n}\right) \in Z$ for all $x_{2}, \ldots, x_{n} \in N$. Therefore, in both cases we have $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{Z}$ for all $\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$ and hence $\mathrm{d}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N}) \subseteq \mathrm{Z}$. Thus by Lemma 2.4, we find that N is a commutative ring.
Similar results hold in case $f\left(x \circ y, x_{2}, \ldots, x_{n}\right)=-(\sigma(x) \circ y)_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Corollary 3.10 [14, Theorem 3.5] Let N be a prime near-ring, let f be a left generalized n-derivation associated with a nonzero n-derivation d, If $f\left(x \circ y, x_{2}, \ldots, x_{n}\right)= \pm(x \circ y)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
Corollary 3.11 Let N be a prime near-ring, let d be a nonzero (σ, σ)-n-derivation. If $\mathrm{d}\left(\mathrm{x} \circ \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)= \pm$ $(\sigma(\mathrm{x}) \circ \mathrm{y})_{\sigma, \sigma}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Then N is a commutative ring.

Theorem 3.12 Let N be a prime near-ring, let f be a generalized (σ, σ)-n-derivation associated with a nonzero (σ, σ)-n-derivation d. If $f\left(x \circ y, x_{2}, \ldots, x_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
Proof. By hypothesis, we have
$f\left(x \circ y, x_{2}, \ldots, x_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Replace y by $x y$ in (10) to get
$f\left(x(x \circ y), x_{2}, \ldots, x_{n}\right)=[\sigma(x), x y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Which implies that
$d\left(x, x_{2}, \ldots, x_{n}\right) \sigma(x \circ y)+\sigma(x) f\left(x \circ y, x_{2}, \ldots, x_{n}\right)=\sigma(x)[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Using (10) in previous equation we get
$d\left(x, x_{2}, \ldots, x_{n}\right) \sigma(x \circ y)=0$ for all $x, y, x_{2}, \ldots, x_{n} \in N$, or equivalently,
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{x}) \sigma(\mathrm{y})+\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. which is identical with the relation (9) in Theorem 3.9. Now arguing in the same way in the Theorem 3.9, we conclude that N is a commutative ring.

Similar results hold in case $f\left(x \circ y, x_{2}, \ldots, x_{n}\right)=-[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Corollary 3.13 [14, Theorem 3.7] Let N be a prime near-ring, let f be a left generalized n-derivation associated with a nonzero n-derivation d. If $f\left(x \circ y, x_{2}, \ldots, x_{n}\right)= \pm[x, y]$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
Corollary 3.14 Let N be a prime near-ring, let d be a nonzero (σ, σ)-n-derivation. If $\mathrm{d}\left(\mathrm{x} \circ \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=[\sigma(\mathrm{x})$, $y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
Theorem 3.15 Let N be a prime near-ring, let f be a generalized (σ, σ)-n-derivation associated with a nonzero (σ, σ)-n-derivation d, If $f\left([x, y], x_{2}, \ldots, x_{n}\right)=\sigma(-x y+y x)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
Proof. By hypothesis, we have
$f\left([x, y], x_{2}, \ldots, x_{n}\right)=\sigma(-x y+y x)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Replace y by $x y$ in (11) to get
$f\left([x, x y], x_{2}, \ldots, x_{n}\right)=\sigma(-x x y+x y x)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$, which implies that
$f\left(x[x, y], x_{2}, \ldots, x_{n}\right)=\sigma(x) \sigma(-x y+y x) \quad$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
$d\left(x, x_{2}, \ldots, x_{n}\right) \sigma([x, y])+\sigma(x) f\left([x, y], x_{2}, \ldots, x_{n}\right)=\sigma(x) \sigma(-x y+y x)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
Using (11) in previous equation we get
$d\left(x, x_{2}, \ldots, x_{n}\right) \sigma([\mathrm{x}, \mathrm{y}])=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$, or equivalently,
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{x}) \sigma(\mathrm{y})=\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{y}) \sigma(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Now using again the same arguments as used after equation (4) in the last paragraph of the proof of Theorem 3.1, We conclude that N is a commutative ring.
Corollary 3.16 Let N be a prime near-ring, let f be a left generalized n -derivation associated with a nonzero n derivation d, If $f\left([x, y], x_{2}, \ldots, x_{n}\right)=-x y+y x$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
Corollary 3.17 Let N be a prime near-ring, let d be a nonzero (σ, σ)-n-derivation. If $d\left([x, y], x_{2}, \ldots, x_{n}\right)=\sigma(-$ $x y+y x)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$. Then N is a commutative ring.
The following example demonstrates that N to be prime is essential in the hypothesis of the previous theorems
Example 3.18 Let S be a 2-torsion free zero-symmetric left near-ring. Let us define : $\mathrm{N}=\left\{\left(\begin{array}{lll}0 & \mathrm{x} & \mathrm{y} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \mathrm{x}, \mathrm{y}, 0 \in \mathrm{~S}\right\}$ is zero symmetric near-ring with regard to matrix addition and matrix multiplication .

Define $\quad f, d: \underbrace{N \times N}_{n-t i m e s} \times N$ such that
$\mathrm{f}\left(\left(\begin{array}{ccc}0 & \mathrm{x}_{1} & \mathrm{y}_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & \mathrm{x}_{2} & \mathrm{y}_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \ldots,\left(\begin{array}{ccc}0 & \mathrm{x}_{\mathrm{n}} & \mathrm{y}_{\mathrm{n}} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)=\left(\begin{array}{ccc}0 & 0 & \mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\mathrm{d}\left(\left(\begin{array}{ccc}0 & \mathrm{x}_{1} & \mathrm{y}_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & \mathrm{x}_{2} & \mathrm{y}_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \ldots,\left(\begin{array}{ccc}0 & \mathrm{x}_{\mathrm{n}} & \mathrm{y}_{\mathrm{n}} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)=\left(\begin{array}{ccc}0 & 0 & \mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{n}} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
Now we define $\sigma: N \rightarrow N$ by $\sigma\left(\begin{array}{lll}0 & \mathrm{x} & \mathrm{y} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}0 & \mathrm{y} & \mathrm{x} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
It can be easily seen that σ is an automorphisms of near-rings N which is not prime, having f is a nonzero generalized (σ, σ)-n-derivation associated with the (σ, σ)-n-derivation d. Further it can be easily also shown that
(i) $f\left([x, y], x_{2}, \ldots, x_{n}\right)=\sigma([x, y])$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
(ii) $f\left([x, y], x_{2}, \ldots, x_{n}\right)=\sigma(-x y+y x)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
(iii) $f\left([x, y], x_{2}, \ldots, x_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
(iv) $f\left([x, y], x_{2}, \ldots, x_{n}\right)=(\sigma(x) \circ y)_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
(v) If $f\left(x \circ y, x_{2}, \ldots, x_{n}\right)=(\sigma(x) \circ y)_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
(vi) $f\left(x \circ y, x_{2}, \ldots, x_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.
(vii) $f\left([x, y], x_{2}, \ldots, x_{n}\right)=\sigma(-x y+y x)$ for all $x, y, x_{2}, \ldots, x_{n} \in N$.

However N is not a ring.

References

[1]. G. Pilz.1983. Near-Rings. Second Edition. North Holland/American Elsevier. Amsterdam
[2]. X.K. Wang. 1994. Derivations in prime near-rings. Proc. Amer. Math.Soc. 121 (2). 361-366.
[3]. M. Ashraf, A. Ali and S. Ali. 2004. (σ, τ)-Derivations of prime near-rings. Arch. Math. (BRNO) 40. $281-286$.
[4]. Y. Ceven and M. A. "Ozt"urk. 2007. Some properties of symmetric bi-($\sigma, \tau)$-derivations in near-rings, Commun.Korean Math.Soc.22(4). 487-491.
[5]. M. A. Öztürk and H. Yazarli.2011. Anote on permuting tri-derivation in near-ring, Gazi Uni. J. Science 24(4). 723-729.
[6]. K. H. Park. 2009. On prime and semiprime rings with symmetric n-derivations. J. Chungcheong Math.Soc.22(3). 451-458.
[7]. M. Ashraf and M. A. Siddeeque. 2013. On permuting n-derivations in near-rings. Commun. Korean Math.Soc.28(4). 697-707.
[8]. M. Ashraf and M. A. Siddeeque. 2013. On $(\sigma, \tau)-$ n-derivations in near-rings. Asian-European Journal of Mathematics .Vol. 6. No. 4. 1350051 (14pages).
[9]. M. Ashraf and M. A. Siddeeque. 2014. On generalized n-derivations in near-rings. Palestine Journal of Mathematics . Vol.3. Spec 1. 468-480
[10]. H. E. Bell and G. Mason.1987. On derivations in near-rings, in Near-rings and Near-fields, ed.G. Betsch, Vol.137(NorthHolland/American Elsevier, Amsterdam .pp.31-35.

