Decomposition of Line Graph into Paths and Cycles

S.Lakshmi ${ }^{1}$, K.Kanchana ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of mathematics, PSGR Krishnammal college for women, Coimbatore, Tamil nadu, India
${ }^{2}$ Research Scholar, Department of mathematics, PSGR Krishnammal college for women, Coimbatore, Tamil nadu, India

Abstract

Let P_{k+1} denote a path of length k and let C_{k} denote a cycle of length k. As usual K_{n} denotes the complete graph on n vertices. In this paper we investigate decompositions of line graph of K_{n} into p copies of P_{5} and q copies of C_{4} for all possible values of $p \geq 0$ and $q \geq 0$. Keywords: Path, Cycle, Graph Decomposition, Complete graph, Line graph.

I. Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology the readers are referred to [7]. Let P_{k+1} denote a path of length k and let C_{k} denote a cycle of length k. Let S_{k} denotes a star on k vertices, i.e. $S_{k}=K_{1, k-1}$. As usual K_{n} denotes the complete graph on n vertices. Let $K_{m, n}$ denote the complete bipartite graph with m and n vertices in the parts. If $\mathrm{G}=$ (V, E) is a simple graph then the line graph of G is the graph $\mathrm{L}(\mathrm{G})=(\mathrm{E}, \mathrm{L})$, where $\mathrm{L}=\{\{e, f\}|\{e, f\} \subseteq \mathrm{E},|e \cap f|$ $=1\}$. For the sake of convenience, we use $u v$ to denote an edge $\{u, v\}$ and u, v are called the ends of the edge $\{u, v\}$. In general, if one allows more than one edge (but a finite number) between same pair of vertices, the resulting graph is called a multigraph. In particular, if G is a simple graph then for any $\lambda \geq 1, G(\lambda)$ and λG respectively denote the multigraph with edge-multiplicity λ and the disjoint union of λ copies of G.

By a decomposition of a graph G, we mean a list of edge-disjoint subgraphs $\mathrm{H}_{1}, \ldots, \mathrm{H}_{k}$, of G whose union is G (ignoring isolated vertices). When each subgraph in a decomposition is isomorphic to H , we say that G has an H -decomposition. It is easily seen that $\sum \mathrm{e}\left(\mathrm{H}_{\mathrm{i}}\right)=\mathrm{e}(\mathrm{G})$ is one of the obvious necessary condition for the existence of a $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{k}\right\}$ - decomposition of G . A $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$ - decomposition of G is a decomposition of G into copies of H_{1} and H_{2} using at least one of each. If G has a $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$-decomposition, we say that G is $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$-decomposable.

The problem of H-decomposition of $\mathrm{K}_{n}(\lambda)$ is the well-known Alspach's conjecture [6] when H is any set of cycles of length at most n satisfying the necessary sum conditions and $2 \mid \lambda(n-1)$. For the case $\lambda=1$, Alspach conjecture is also stated for even values of n, where in this case the cycles should decompose K_{n} minus a one-factor. There are many related results, but only special cases of this conjecture are solved completely. When H is a set of paths, in this case the problem of H - decomposition has been investigated by Tarsi [19] who showed that if $(n-1) \lambda$ is even and H is any set of paths of length at most $n-3$ satisfying the necessary sum condition, then $\quad \mathrm{K}_{n}(\lambda)$ has an H-decomposition. The problem of H-decomposition of $\mathrm{K}_{m, n}(\lambda)$ has been investigated by Truszczynski [20] when m and n are even and H is any set of the paths with some constraints on length satisfying the necessary sum condition. It is natural to consider the problem of H decomposition of K_{n}, where H is a combination of paths, cycles, and some other subgraphs. We will restrict our attention to H which is any set of paths and cycles satisfying the necessary sum condition. There are several similarly known results as follows. A graph-pair of order t consists of two non-isomorphic graphs G and H on t non-isolated vertices for which $\mathrm{G} \cup \mathrm{H}$ is isomorphic to K_{t}.

Study on $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$-decomposition of graphs is not new. Abueida, Daven, and Rob- lee [1,3] completely determined the values of n for which $\mathrm{K}_{n}(\lambda)$ admits the $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$-decomposition such that $\mathrm{H}_{1} \cup \mathrm{H}_{2} \cong \mathrm{~K}_{t}$, when λ ≥ 1 and $\left|\mathrm{V}\left(\mathrm{H}_{1}\right)\right|=\left|\mathrm{V}\left(\mathrm{H}_{2}\right)\right|=t$, where $t \in\{4,5\}$. Abueida and Daven [2] proved that there exists a $\left\{\mathrm{K}_{k}, \mathrm{~S}_{k+1}\right\}$ decomposition of K_{n} for $k \geq 3$ and $n \equiv 0,1(\bmod k)$. Abueida and O'Neil [4] proved that for $k \in\{3,4,5\}$, the $\left\{\mathrm{C}_{k}, \mathrm{~S}_{k}\right\}$-decomposition of $\mathrm{K}_{n}(\lambda)$ exists, whenever $n \geq k+1$ except for the ordered triples $(k, n, \lambda) \in\{(3,4,1)$, $(4,5,1),(5,6,1),(5,6,2),(5,6,4),(5,7,1),(5,8,1)\}$. Abueida and Daven [2] obtained necessary and sufficient conditions for the $\left\{\mathrm{C}_{4},\left(2 \mathrm{~K}_{2}\right)\right\}$ - decomposition of the Cartesian product and tensor product of paths, cycles, and complete graphs. Shyu [14] obtained a necessary and sufficient condition for the existence of a $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition of K_{n}. Shyu [15] proved that K_{n} has a $\left\{\mathrm{P}_{4}, \mathrm{~S}_{4}\right\}$-decomposition if and only if $n \geq 6$ and $3(p+q)=\binom{n}{2}$. Also he proved that K_{n} has a $\left\{\mathrm{P}_{k}, \mathrm{~S}_{k}\right\}$-decomposition with a restriction $p \geq k / 2$, when k even (resp., $p \geq k$, when k odd). Shyu [16] obtained a necessary and sufficient condition for the existence of a $\left\{\mathrm{P}_{4}, \mathrm{~K}_{3}\right\}$ decomposition of K_{n}. Shyu [17] proved that K_{n} has a $\left\{\mathrm{C}_{4}, \mathrm{~S}_{5}\right\}$ - decomposition if and only if $4(p+q)=\binom{n}{2}$,
$q \neq 1$, when n is odd and $q \geq \max \left\{3, \frac{n}{4}\right\}$, when n is even. Shyu [18] proved that $K_{m, n}$ has a $\left\{\mathrm{P}_{k}, \mathrm{~S}_{k}\right\}$ decomposition for some m and n and also obtained some necessary and sufficient condition for the existence of a $\left\{\mathrm{P}_{4}, \mathrm{~S}_{4}\right\}$-decomposition of $\mathrm{K}_{m, n}$. Sarvate and Zhang [13] obtained necessary and sufficient conditions for the existence of a $\left\{p \mathrm{P}_{3}, q \mathrm{~K}_{3}\right\}$-decomposition of $\mathrm{K}_{n}(\lambda)$, when $p=q$.

Chou et al. [8] proved that for a given triple (p, q, r) of nonnegative integers, G decompose into p copies of C_{4}, q copies of C_{6}, and r copies of C_{8} such that $4 p+6 q+8 r=|\mathrm{E}(\mathrm{G})|$ in the following two cases: (a) $\mathrm{G}=$ $\mathrm{K} m, n$ with m and n both even and greater than four (b) $\mathrm{G}=\mathrm{K}_{n, n}-\mathrm{I}$, where n is odd. Chou and Fu [9] proved that the existence of a $\left\{\mathrm{C}_{4}, \mathrm{C}_{2 t}\right\}$-decomposition of $\mathrm{K}_{2 u, 2 v}$, where $t / 2 \leq u, v<t$, when t even (resp., $(t+1) / 2 \leq$ $u, v \leq(3 t-1) / 2$, when t odd) implies such decomposition in $\mathrm{K}_{2 \mathrm{~m}, 2 \mathrm{n}}$, where $m, n \geq t$ (resp., $m, n \geq(3 t+1) / 2$). Lee and Chu $[10,11]$ obtained a necessary and sufficient condition for the existence of a $\left\{\mathrm{P}_{k}, \mathrm{~S}_{k}\right\}$-decomposition of $\mathrm{K}_{n, n}$ and $\mathrm{K}_{m, n}$. Lee and Lin [12] obtained a necessary and sufficient condition for the existence of a $\left\{\mathrm{C}_{k}, \mathrm{~S}_{k+1}\right\}$ decomposition of $\mathrm{K}_{n, n}$ - I. Abueida and Lian [5] obtained necessary and sufficient conditions for the existence of a $\left\{\mathrm{C}_{k}, \mathrm{~S}_{k+1}\right\}$-decomposition of K_{n} for some n.

In this paper we investigate decompositions of line graph of K_{n} into p copies of P_{5} and q copies of C_{4} for all possible values of $p \geq 0$ and $q \geq 0$.

II. $\{\mathrm{P} 5, \mathrm{C} 4\}$-decomposition of $\mathrm{L}(\mathrm{K} n)$

In this section, we investigate the existence of $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition of $\mathrm{L}\left(\mathrm{K}_{\mathrm{n}}\right)$. Note that, the line graph of C_{4} is C_{4}.

III. Construction:

Let \mathbb{C}_{4}^{a} and \mathbb{C}_{4}^{b} be two cycles of length 4 , where $\mathbb{C}_{4}^{a}=(a b c d a)$ and $\mathbb{C}_{4}^{b}=(w x y z w)$. If v is a only common vertex of \mathbb{C}_{4}^{a} and \mathbb{C}_{4}^{b}, say $c=y=v$, then we have two paths of length 4 as follows: $a b v z w, w x v d a$.
Lemma 2.1. There exists a $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition of $\mathrm{K}_{4,4}$.
Proof . Let $\mathrm{V}\left(\mathrm{K}_{4,4}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. We exhibit the $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition of $\mathrm{K}_{4,4}$ as follows:
(1) $p=0$ and $q=4$. The required cycles are
$\left(x_{1} y_{1} x_{2} y_{2} x_{1}\right),\left(x_{1} y_{3} x_{2} y_{4} x_{1}\right),\left(x_{3} y_{1} x_{4} y_{2} x_{3}\right),\left(x_{3} y_{3} x_{4} y_{4} x_{3}\right)$.
(2) $p=2$ and $q=2$. The required paths and cycles are
$y_{1} x_{1} y_{2} x_{2} y_{4}, y_{4} x_{1} y_{3} x_{2} y_{1}$ and $\left(x_{3} y_{1} x_{4} y_{2} x_{3}\right),\left(x_{3} y_{3} x_{4} y_{4} x_{3}\right)$.
(3) $p=3$ and $q=1$. The required paths and cycles are
$x_{2} y_{2} x_{3} y_{1} x_{1}, x_{1} y_{3} x_{2} y_{1} x_{4}, x_{4} y_{2} x_{1} y_{4} x_{2}$ and $\left(x_{3} y_{3} x_{4} y_{4} x_{3}\right)$.
(4) $\mathrm{p}=4$ and $\mathrm{q}=0$. The required paths are
$y_{1} x_{1} y_{2} x_{2} y_{4}, y_{4} x_{1} y_{3} x_{2} y_{1}, y_{3} x_{3} y_{4} x_{4} y_{2}, y_{2} x_{3} y_{1} x_{4} y_{3}$.

Lemma 2.2. There exists a $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition of the complete bipartite graph $\mathrm{K}_{8,8 m}$ for all $m \geq 1$.
Proof. Let $\mathrm{V}\left(\mathrm{K}_{8,8 m}\right)=(\mathrm{X}, \mathrm{Y})$ with $\mathrm{X}=\left\{x_{1}, \ldots, x_{8}\right\} \quad \mathrm{Y}=\left\{y_{1}, \ldots, y_{8 m}\right\}$. Partition (X, Y) into 4-subsets $\left(A_{i}^{x}, A_{j}^{y}\right)$ such that $\bigcup_{i=1}^{2} A_{i}^{x}=\mathrm{X}, \bigcup_{j=1}^{2 m} A_{j}^{y}=\mathrm{Y}$. Then $\mathrm{G}\left[A_{i}^{x}, A_{j}^{y}\right] \cong \mathrm{K}_{4,4}$. Thus $\mathrm{K}_{8,8 m}=4 m\left(\mathrm{~K}_{4,4}\right)$. By Lemma 2.1, the graph $\mathrm{K}_{4,4}$ has a $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition. Hence the graph $\mathrm{K}_{8,8 m}$ has the desired decomposition.

Lemma 2.3. There exists a $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition of the graph $\mathrm{K}_{8 m}-\mathrm{F}$ for all $m \geq 1$, where F is a 1-factor of $\mathrm{K}_{8 m}$.

Proof. Let $8 m=4 k$, where k is a positive integer and $V\left(\mathrm{~K}_{4 k}-\mathrm{I}\right)=\left\{x_{0}, \ldots, x_{4 \mathrm{k}-1}\right\}=\left\{\mathrm{U}_{i=0}^{2 k-1}\left(A_{i}\right)\right\}$, where $\mathrm{I}=\left\{x_{2 i} x_{2 i+1}: 0 \leq i \leq 2 k-1\right\}$ and $\mathrm{A} i=\left\{x_{2 i}, x_{2 i+1}\right\}, 0 \leq i \leq 2 k-1$. We obtain a new graph G from $\mathrm{K}_{4 k}-\mathrm{I}$, by identifying each set $A i$ with a single vertex $a i$, join two vertices a_{i} and a_{j} by an edge if the corresponding sets A_{i} and A_{j} form a $\mathrm{K}\left|\mathrm{A}_{i}\right|,\left|\mathrm{A}_{j}\right|$ in $\mathrm{K}_{4 k}$. Then the new graph $\mathrm{G}=\mathrm{K}_{2 k}$. The graph $\mathrm{K}_{2 k}$ has a hamilton path decomposition $\left\{\mathrm{G}_{0}, \ldots, \mathrm{G}_{k}\right\}$, where each $\mathrm{G}_{i}, 0 \leq i \leq k$ is a hamilton path. Each G_{i} decomposes some copies of P_{3} or P_{4}. When we go back to $\mathrm{K}_{4 k}-\mathrm{I}$, each P_{3} (resp., P_{4}) of $\mathrm{G}_{i}, 0 \leq i \leq k$ will gives rise to $2 \mathrm{C}_{4}$ or $2 \mathrm{P}_{5}$ (resp., $\left\{2 \mathrm{P}_{5}, 1 \mathrm{C}_{4}\right\}$ or $3 \mathrm{P}_{5}$) in $\mathrm{K}_{4 k}-\mathrm{I}$. Hence the graph $\mathrm{K}_{m}-\mathrm{I}$ has the desired decomposition.

Lemma 2.4. There exit a $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$ - decomposition of the graph $\mathrm{L}\left(\mathrm{K}_{9}\right)$.

Proof. For $0 \leq i \leq 8$, by Lemma 2.3 there exit a $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition $\mathrm{G} i \cong \mathrm{~K} 8-\mathrm{F} i$, where $\mathrm{G} i$ defined on the vertex set $\{\{i, j\} \mid 0 \leq j \leq 8, j \neq i\}$ and where $\mathrm{Fi}=\{\{\{i, 1+i\},\{i, 2+i\},\{i, 3+i\},\{i, 7+i\}\},,\{\{i, 4+i\},\{i, 8+i\},\{i$, $5+i\},\{i, 6+i\}\}\}$, reducing all sums modulo 9.Then a $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition of $\mathrm{L}\left(\mathrm{K}_{9}\right)$ on the vertex set $\{\{i, j\} \mid\{i, j\} \subseteq\{0,1, \ldots, 8\}\}$ follows from the partition of the edges of $\mathrm{U}_{i=0}^{8}$ into P_{5} or C_{4}, $\{(\{j, j+1\},\{1+j, 5+j\},\{5+j, 2+j\},\{2+j, j\}) \mid 0 \leq j \leq 8\}$, again reducing all sums modulo 9 .

Theorem 2.1. If $n \equiv 1(\bmod 8)$ then there exists a $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$ - decomposition of $\mathrm{L}\left(\mathrm{K}_{n}\right)$.
Proof. The result is true for $n=9$, so we proceed by induction on n. Let $n=8 m+1, m \geq 2$, and let the vertex set of k_{n} be $\{\infty\} \cup\{1, \ldots, 8 m\}$. $\mathrm{L}\left(\mathrm{K}_{n}\right)$ can be partitioned into the following edge-disjoint subgraphs:

1. $\mathrm{L}\left(\mathrm{K}_{9}\right), \mathrm{K}_{9}$ being defined on the vertex set $\{\infty\} \cup\{1, \ldots, 8\}$;
2. $\mathrm{L}\left(\mathrm{K}_{8 m-7}\right), \mathrm{K}_{8 m-7}$ being defined on the vertex set $\{\infty\} \cup\{9, \ldots, 8 m\}$;
3. For $1 \leq i \leq 8, \mathrm{G}_{i} \cong \mathrm{~K}_{8 m-8}-\mathrm{F}_{i}$ on the vertex set $\{\{i, j\} \mid 9 \leq j \leq 8 m\}$, where $\mathrm{F}_{i}=\{\{i, 2 k-1\},\{i, 2 k\} \mid 5 \leq k \leq 4 m$;
4. For $9 \leq j \leq 8 m, \mathrm{G}_{i} \cong \mathrm{~K}_{8}-\mathrm{F}_{j}$ on the vertex set $\{\{i, j\} \mid \leq i \leq 8\}$, where $\mathrm{F}_{j}=\{\{2 k-1, j\},\{2 k, j\} \mid 1 \leq k \leq 4$;
5. $\left(\bigcup_{i=1}^{8}\left(F_{i}\right)\right) \cup\left(\bigcup_{j=9}^{8 m}\left(F_{i}\right)\right)$;
6. $\mathrm{K}_{8,8 m-8}$ with b-partition $\{\{\infty, i\} \mid 1 \leq i \leq 8\}$ and $\{\{\infty, j\} \mid 9 \leq j \leq 8 m$;
7. For $1 \leq i \leq 8, \mathrm{H}_{i} \cong \mathrm{~K}_{8,8 m-8}$ with bipartition $\{\{i, k\} \mid k \in\{\infty, 1,2, \ldots, 8\} \backslash\{i\}\}$ and $\{\{i, j\} \mid 9 \leq j \leq 8 m\}$; and
8. For $9 \leq j \leq 8 m, \mathrm{H}_{j} \cong \mathrm{~K}_{8,8 m-8}$ with bi-partition $\{\{i, j\} \mid 1 \leq i \leq 8\}$ and $\{\{k, j\} \mid k \in\{\infty, 9,10, \ldots, 8 m\} \backslash$ \{j\}\}.
The result now follows, since there exist $\left\{\mathrm{P}_{5}, \mathrm{C}_{4}\right\}$-decomposition of graphs defined in (1) and (2) by induction and Lemma 2.4, (3) and (4) by Lemma 2.3, (5) since these edges form vertex-disjoint C_{4}, and (6),(7) and (8) by Lemma 2.2. Hence the graph $\mathrm{L}\left(\mathrm{K}_{n}\right)$ has the desired decomposition.

References

1] A.A. Abueida, M.Daven Multidesigns for graph-pairs of order 4 and 5 Graphs combin. 192003 433-447
[2] A.A. Abueida, M.Daven Multidecomposition of the complete graph Ars combin. 722004 17-22
[3] A.A. Abueida, M. Daven and K.J. Roblee Multidesigns of the λ-fold complete graph-pairs of orders 4 and 5 Australas.J. Combin. 322005 125-136
[4] A.A. Abueida, T. O’Neil Multidecomposition of $K_{m}(\lambda)$ into small cycles and claws Bull. Inst. Comb. Appl. 49 2007 32-40
[5] Discuss. Math. Graph Theory. 342014 113-125
[6] B. Alspach Research Problems, Problem 3 Discret Math 361981333.
[7] J.A. Bondy, U.R.S. Murty Graph Theory with Applications The Macmillan Press Ltd, New York 1976
[8] C.C.Chou, C.M. Fu and W.C. Huang Decomposition of $K_{m, n}$ into short cycles Discrete Math. 197/198 1999 195-203
[9] C.C. Chou, C.M. Fu Decomposition of $K_{m, n}$ into 4-cycles 2t-cycles J. Comb. Optim. 142007 205-218
[10] H.-C. Lee Multidecompositions of the balanced complete bipartite graphs into paths and stars ISRN combinatorics 2013 DOB: 10.1155/2013/398473
[11] H.-C. Lee Multidecomposition of complete bipartite graphs into cycles and stars Ars Combin. 108 2013 355-364
[12] H.-C. Lee Decomposition of complete bipartite graphs with a 1-factors removed into cycles and stars Discrete Math. 3132013 2354-2358
[13] D.G. Sarvate, L.Zhang Decomposition of a λK_{v} into equal number of $K_{3} s$ and $P_{3} s$, Bull. Inst. Comb.Appl. 67 2013 43-48
[14] T.-W. Shyu Decomposition of complete graphs into paths and cycles Ars Combin. 972010 257-270
[15] T.-W. Shyu Decompositions of complete graphs into paths and stars Discrete Math. 3302010 2164-2169
[16] T.-W. Shyu Decomposition of complete graphs into paths of length three and triangles Ars Combin. 107 2012 209-224
[17] T.-W. Shyu Decomposition of complete graphs into cycles and stars Graphs Combin. 292013 301-313
[18] T.-W. Shyu Decomposition of complete bipartite graphs into paths and stars with same number of edge Discrete Math. 3132013 865-871
[19] M.Tarsi Decomposition of complete multigraph onto sample paths: Nonbalanced Handcuffed designs J. Combin Theory. Ser A 34 1983 60-70
[20] M. Truszczynski Note on the decomposition of $\lambda \mathrm{K}_{m, n}\left(\lambda \mathrm{~K}^{*}{ }_{m, n}\right)$ into paths Discrete Math. 55 1985 89-96.

