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Abstract: The linear and weakly non-linear stability analyses of double diffusive electro-convention in a micropolar fluid 

layer heated and saluted from below and cooled from above is studied. The linear and non-linear analyses are, respectively 

based on normal mode technique and truncated representation of Fourier series. The influence of various parameters on the 

onset of convection has been analyzed in the linear case. The resulting autonomous Lorenz model obtained in non-linear 

analysis is solved numerically to quantify the heat and mass transforms through Nusselt and Sherwood number. It is 

observed that the increase in concentration of suspended particles and electric field and electric Rayleigh number increases 

the heat and mass transfer. 
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I. Introduction 

The instability in a fluid due to two opposing density altering components with differing molecular diffusivity, like 

temperature and salt or any two solute concentrations is called double diffusive convection. The differences between single 

and double diffusive system is that in double diffusive system convection can occur even when the system is hydrostatically 

stable if the diffusivities of the two diffusing fields are different.  

The study of double diffusive convection gained a tremendous interest in the recent years due to its numerous 

fundamental and industrial applications. Oceanography is the root of double-diffusive convection in natural settings. The 

existence of heat and salt concentrations at different gradients and the fact that they diffuse at different rates lead to 

spectacular double-diffusive instabilities known as “salt-fingers” (Stern 1960). The formation of salt-fingers can also be 

observed in laboratory settings. Double-diffusive convection occurs in the sun where temperature and Helium diffusions take 

place at different rates.Convection in magma chambers and sea-wind formations are among other manifestations of double-

diffusive convection in nature. The theory of double diffusive convection both theoretically and experimentally was 

investigated by (Turner 1973;Jin and Chen et al. 1997; Malashetty et al. 2006; Pranesh and Arun 2012) and more recently by 

BhadauriaamdPalle 2014). 

Double diffusive convection encountered in many practical problems involves different types of dissolved 

substances of chemical that are freely suspended in the fluid and they will be executing microrotation forming micropolar 

fluid. The presence of these suspended particles plays a major role in mixing processes. Although double diffusive 

convection in Newtonian fluid has been studied extensively, the problem considering the above facts has not received due 

attention in the literature. When the particles are freely suspended there will be translational and rotational motion relative to 

fluid. One way of tackling this is to follow the elegant and rigorous model proposed by Eringen called “micropolar fluid 

model”. 

The model of micropolar fluids (Eringen 1964) deals with a class of fluids, which exhibits certain microscopic 

effects arising from the local structure and micro-motions of the fluid elements. These fluids can support stress moments and 

body moments and are influenced by the spin inertia. Consequently new principles must be added to the basic principle of 

continuous media which deals with conservation of micro inertia moments and balance of first stress moments. The theory of 

micro fluids naturally gives rise to the concepts of inertial spin, body moments, micro-stress averages and stress moments 

which have no counterpart in the classical fluid theories. A detailed survey of the theory of micropolar fluid and its 

applications are considered in the books of (Erigen 1966; Eringen 1972; Lukasazewicz 1999; Power 1995). The theory of 

thermomicropolar convection was studied by many authors (Datta and Sastry 1976; Ahmadi 1976; Rao 1980; Lebon and 

Gracia 1981; Bhattacharya and Jena 1983; Siddheshwar and Pranesh 1998; Pranesh and Riya 2012) and recently by (Joseph 

et al. 2013; Praneshet al. 2014). 

Thus the objective of this paper is to study the effect of suspended particles and electric field on the onset of 

double diffusive convection using linear theory and also its effects on heat and mass transfer using weakly non-linear 

analysis. With these objectives we now move on to the formulation of the problem. 

 

II. Mathematical Formulation Of The Problem 
Consider a horizontal layer of infinite extent occupied by a Boussinesquian, micropolar fluid of depth „d‟ as shown 

in figure (1).  Let T and C be the difference in temperature and species concentration of the fluid between lower and 

upper plates and uniform ac electric field is applied in the vertical direction. For Mathematical tractability we confine 

ourselves to two dimensional rolls so that all physical quantities are independent of y coordinate. Further, the boundaries are 

assumed to be free, perfect conductors of heat, permeable, spin vanishing boundary conditions and tangential component of 

electric field is continuous. Appropriate single-phase heat and solute transport equations are chosen with effective heat 

capacity ratio and effective thermal diffusivity.   
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Figure 1: Schematic diagram for the problem 

  

The governing equations for the double diffusive convection in a Boussinesquianmicropolar fluid are: 

 

Continuity equation: 
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Conservation of angular momentum: 
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Conservation of energy:     
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Conservation of solute concentration: 
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Equation of state: 
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where, q


is the velocity , 0  is density of the fluid at temperature T = T0, p is the pressure,  is the density, g


 is 

acceleration due to gravity,   is coupling viscosity coefficient or vortex viscosity, P


 is dielectric polarization, E


 is the 

electric field,  and   are the bulk and shear spin-viscosity coefficients,


 is the angular velocity, I is moment of inertia, 

' and  '  are bulk and shear spin-viscosity coefficients, T is the temperature, C is the concentration,  is micropolar heat 

conduction coefficient, t is coefficient of  thermal expansion, determining how fast the density decreases with 

temperature, s is coefficient of  concentration expansion, determining how fast the density decreases with concentration, 

  is the thermal diffusivity and s  is the solute diffusivity.  s implies that a particle in a configuration will 

dissipate heat quickly compared to concentration. 
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Since the fluid is assumed to be a poor conductor, the electric field may be considered as irrotational. Thus the 

electrodynamics equations are: 

 

Faraday’s law: 

 EE


,0 ,                                                                                                      (7) 

 

Equation of polarisation field: 
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)1(,0).( 00   ,                                                                              (8) 

 

where, r  is the dielectric constant, o  is the electric permittivity of free space and   is the electric scalar potential.  

 

The dielectric constant is assumed to be a linear function of temperature according to  

 

)( 0
0 TTerr   .                                                                                                       (9) 

where, 0e  is the dielectric permittivity and er  10
 is electric susceptibility. 

 

III. Basic State 
The basic state of the fluid is assumed to be being quiescent and is described by: 
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where, the subscript „b‟ denotes the basic state.  

 

The temperature bT , pressure bp , density b , polarization bP  and electric field bE  satisfy 
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where, 0E  is the root mean square value of the electric field at the lower surface.  

 

IV. Stability Analysis 
Let the basic state be disturbed by an infinitesimal thermal perturbation, we now have,  
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where, the primes indicate that the quantities are infinitesimal perturbations and subscript „b‟ indicates basic state value.  

 

The second equation of (10) gives, 
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Substituting equation (12) into equations (1) to (9) and using the basic state solution, we get:  
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Substituting equation (19) in equation (15), differentiating x-component of the equation with respect to z, differentiating z-

component of the equation with respect to x and subtracting one resulting equation from the other, we get,   
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Writing y-component of equation (16), we get,  
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We consider only two dimensional disturbances and thus restrict ourselves to the xz-plane; we now introduce the stream 

functions in the form:  
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which satisfies the continuity equation (14). 
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On using equations (22) in equations (17), (18), (20) and (21), we get, 
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where, J stands for Jacobian.  

 

The equations (23)-(26) are non dimensionalized using the following definition: 
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Using equation (27) into equations (23)-(26) we get the dimensionless equations in the form (after neglecting the asterisks): 
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The non-dimensional parameters LNNNNRR s ,,,,,,Pr, 5321 and  are as follows: 
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Equations (28)-(32) are solved for free-free, isothermal, permeable, zero electric potential and no-spin boundaries and hence 

we have, 
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V. Linear Stability Theory 
In this section, we discuss the linear stability analysis considering marginal state. The solution of this analysis is of 

great utility in the local non-linear stability analysis discussed in the next section. To make this study we neglect the 

Jacobians in equations (28)-(32). The linearized version of equations (28)-(32) are: 
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We assume the solution of equation (34) to (38) to be periodic waves (Chandrasekhar 1961) of the form: 
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Substituting equation (39) into equations (34)-(38), we get, 
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where  1222  k .  

 

For a non-trivial solution of the homogeneous system (40) for  0000 ,,, CT  and 0  the determinant of the 

coefficient matrix must vanish. This leads on simplification to 
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5.1 Marginal State 

For marginal stability convection in equation (41) must be real and the corresponding Rayleigh number Rfor 

marginal state is obtained by putting 0 in equation (41) in the form: 
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If Rs = 0, L = 0 and setting 
22 as 

2a , equation (42) reduces to, 
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which is the expression for the Rayleigh number discussed by (Datta and Sastry 1976; Bhattacharya and Jena 1983; 

Siddheshwar and Pranesh 1998) in the absence of magnetic field.  

 

Setting 01 N  and keeping 3N and 5N  arbitrary in equation (43), we get,       
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k
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the classical Rayleigh – Benard result.  

 

Repeating the same on equation (42), we get,  

 


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aRk
R s
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which is the expression for the Rayleigh number discussed by (Turner 1973). 

 

VI. Finite Amplitude Convection 
The finite amplitude analysis is carried out here via Fourier series representation of stream function ψ, the spin ωy, 

the temperature distribution T, the concentration distribution C and electric potential  . Although the linear stability 

analysis is sufficient for obtaining the stability condition of the motionless solution and the corresponding eigen functions 

describing qualitatively the convective flow, it cannot provide information about the values of the convection amplitudes, 

nor regarding the rate of heat and mass transfer. To obtain this additional information, we perform nonlinear analysis, which 

is useful to understand the physical mechanism with minimum amount of mathematical analysis and is a step forward 

towards understanding the complete nonlinear problem.    

 

The first effect of non-linearity is to distort the temperature and concentration fields through the interactions of ψ and T, ωy 

and C. The distortion of the temperature and concentration fields will correspond to a change in the horizontal mean, i.e., a 

component of the form  z2sin will be generated. Thus, truncated system which describes the finite-amplitude 

convection is given by (Veronis 1959): 

 

)sin()sin()(),,( zxtAtyx   ,        (46) 
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)2sin()()sin()cos()(),,( ztFzxtEtyxT   ,      (48) 

 

)2sin()()sin()cos()(),,( ztHzxtGtyxC   ,      (49) 
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)cos()cos()(
1

),,( zxtMtzx 


  ,       (50) 

 

where, the time dependent amplitudes A, B, E, F, G, H and M are to be determined from the dynamics of the system. The 

functions ψ and ωy do not contain an x- independent term because the spontaneous generation of large scale flow has been 

discounted.  

 

Substituting equations (46) - (50) in to equations (28) - (32) and equating the coefficient of like terms we obtain the 

following non-linear autonomous system (Sixth order Lorenz model) of differential equations: 
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where, over dot denotes time derivative.  

 

M in equation (50) is eliminated by substituting equations (48) and (50) in equation (32). 

 

The generalized Lorenz model (51)-(56) is uniformly bounded in time and possesses many properties of the full problem. 

This set of non-linear ordinary differential equations possesses an important symmetry for it is invariant under the 

transformation, 
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Also the phase-space volume contracts at a uniform rate given by: 
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which is always negative and therefore the system is bounded and dissipative. As a result, the trajectories are attracted to a 

set of measure zero in the phase space; in particular they may be attracted to a fixed point, a limit cycle or perhaps, a strange 

attractor.  

 

VII. Heat And Mass Transport At Lower Boundary 
Heat and mass transport in a double diffusive system depends on the imposed temperature and concentration 

differences on the diffusion coefficient. In this chapter we mainly focus on the influence of double diffusion on heat and 
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mass transport which are quantified in terms of Nusselt number (Nu) and Sherwood number (Sh). The heat transport can be 

quantified by aNusselt number Nu and is defined as,  
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where subscript in the integrand denotes the derivative with respect to z. 

 

Substituting equation (48) into equation (59) and completing the differentiation and integration, we get the following 

expression for Nusselt number:  
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The mass transport is quantified by Sherwood number Sh and is defined as  
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where subscript in the integrand denotes the derivative with respect to z.  

 

Substituting equation (49) into equation (61) and completing the differentiation and integration, we get the following 

expression for Sherwood number: 

 

)(21 tHSh  .          (62) 

 

The amplitudes  tF  and  tH  are determined from the dynamics of the Lorenz system (51)-(56) which can be obtained 

by solving the system numerically. 

 

VIII. Results And Discussions 
Before embarking on the discussion of the results, we make some comments on the parameters that arise in the 

problem, which are N1, N2, N3, N5, Pr, Rs,  , L and these influence the convective heat and mass transports. The 

first four refer the micropolar fluid parameters arise due to the micropolarfluid, next three arise due to the fluid and last one 

due to electric field. The range of values of micropolar fluid parameters are 0 ≤ N1≤ 1, 0 ≤ N2 ≤ r, 0 ≤ N3 ≤ m and  0 ≤ N5 ≤ 

n, where the quantities r, m and n are finite positive real numbers. The range of values of N1, N2, N3 and N5 specified above 

is guided by the Clausius-Duhem inequality. A discussion on these is presented in (Siddheshwar and Pranesh 1998). The 

values of Pr for fluid with suspended particles are considered to be greater than those for a liquid without suspended particles 
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because of presence of suspended particles increases the viscosity. Positive values of Rsare considered, and these signify the 

assumption of a situation in which we have cool fresh water overlying warm salty water. 
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Figure 2: Plot of critical Rayleigh number R versus coupling parameter N1 for different values of electric Rayleigh number 

L and ratio of diffusivity  . 
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Figure 3: Plot of critical Rayleigh number R versus couple stress parameter N3 for different values of electric Rayleigh 

number L and ratio of diffusivity  . 
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Figure 4: Plot of critical Rayleigh number R versus micropolar heat conduction parameter N5 for different values of electric 

Rayleigh number L and ratio of diffusivity  . 
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Figure 5: Plot of critical Rayleigh number R versus coupling parameter N1 for different values of solutal Rayleigh number 

Rs. 
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Figure 6: Plot of critical Rayleigh number R versus couple stress parameter N3 for different values of solutal Rayleigh 

number Rs. 
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Figure 7: Plot of critical Rayleigh number R versus micropolar heat conduction parameter N5 for different values of solutal 

Rayleigh number Rs. 
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Figure 8: Plot of Nusselt number Nu versus time t for different values of coupling parameter N1. 
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Figure 9: Plot of Nusselt number Nu versus time t for different values of inertia parameter N2. 
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Figure 10: Plot of Nusselt number Nu versus time t for different values of couple stress parameter N3. 

 
 

Figure 11: Plot of Nusselt number Nu versus time t for different values of micropolar heat conduction parameter N5. 
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Figure 12: Plot of Nusselt number Nu versus time t for different values of solutal Rayleigh number Rs. 
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Figure 13: Plot of Nusselt number Nu versus time t for different values of ratio of diffusivity  . 
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Figure 14: Plot of Nusselt number Nu versus time t for different values of electric Rayleigh number L. 
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Figure 15: Plot of Nusselt number Nu versus time t for different values of Prandtl number Pr. 
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Figure 16: Plot of Nusselt number Nu versus time t for different values of critical Rayleigh number R. 

 

 
 

Figure 17: Plot of Sherwood number Sh versus time t for different values of coupling parameter N1. 
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Figure 18: Plot of Sherwood number Sh versus time t for different values of inertia parameter N2. 

 

Figure 19: Plot of Sherwood number Sh versus time t for different values of couple stress parameter N3. 
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Figure 20: Plot of Sherwood number Sh versus time t for different values of micropolar heat conduction parameter N5. 

 

Figure 21: Plot of Sherwood number Sh versus time t for different values of solutal Rayleigh number Rs. 
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Figure 22: Plot of Sherwood number Sh versus time t for different values of ratio of diffusivity. 

 

Figure 23: Plot of Sherwood number Sh versus time t for different values of electric Rayleigh number L. 
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Figure 24: Plot of Sherwood number Sh versus time t for different values of Prandtl number Pr. 

 

Figure 25: Plot of Sherwood number Sh versus time t for different values of critical Rayleigh number R. 
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Figure (2) is the plot of critical Rayleigh number Rc versus coupling parameter N1 for different values of electric 

Rayleigh number L. It is observed that as N1 increases, Rc also increases. Thus, increase in the concentration of suspended 

particles stabilizes the system. Figure (3) is the plot of Rc versus couple stress parameter N3 for different values of L. We 

note that the role played by the shear stress in the conservation of linear momentum is played by the couple stress in angular 

momentum equations. It is observed that, increase in N3 decreases Rc. From the figure, we see that the effect of N3 on the 

system is very small compared to the effects of the other micropolar parameters characterising the suspended particles. 

Figure (4) is the plot of Rc versus micropolar heat conduction parameter N5 for different values of L. From the figure it is 

clear that when the coupling between temperature and spin increases the system is more stable compared to the case when 

there is no coupling. The reason for the observed effects of N1, N3 and N5 on convection is explained in table (1). From the 

above figures we also observe that, increase in L decreases Rc. The electric Rayleigh number L is the ratio of electric force to 

the dissipative force. For higher values of L the dissipative force becomes negligible and hence it destabilizes the system. 

Figure (5), (6) and (7) are the plots of Rc versus N1, N3 and N5for different values of solutal Rayleigh number Rs 

and ratio of diffusivity  .  It is observed that, increase in Rs increases Rc, indicating that the effect of Rs is to inhibit the 

onset of convection. Positive values of Rs are considered and in such a case, one gets positive values of R and these signify 

the assumption of a situation in which we have cool fresh water overlying warm salty water. In the absence of cross 

diffusion, this situation is conductive for the appearance of salt fingers which arises in a stationary regime of onset of 

convection. From the figure it is also observed that increasing the value of   decreases the Rc, indicating that 
destabilizes the system. This is because when  > 1 the diffusivity of heat is more than the diffusivity of solute and 

therefore, solute gradient augments the onset of convection. 

We now discuss the influence of micropolar parameters, solutal Rayleigh number, ratio of diffusivity, electric 

Rayleigh number, Prandtl number and critical Rayleigh number on the onset of double diffusive convection and also the role 

of heat and mass transfer in the non-linear system. 

In the study of convection, the determination of heat and mass transport across the layer plays a vital role which 

are quantified in terms of Nusselt number (Nu) and Sherwood number (Sh).  

From the figures of Nusselt number Nu, it is observed that the curve Nu versus time t starts with Nu = 1, signifying 

the initial conduction state. As time progresses, the value of Nu increases, thus showing that convective regime is in place 

and then finally the curve of Nu level off at long times. It is also observed that for shorter times the nature of Nu is 

oscillatory.  

Figures (8) – (11) are the plots of Nu versus t for different values of N1, N2, N3 and N5respectively. From the 

figures it is observed that increase in N1 and N5 reduces the heat transfer. This is because in the presence of suspended 

particles the critical Rayleigh number increases and hence the Nusselt number decreases. It is also found that increase in N2, 

N3 increases the heat transfer. This is because the inertia parameter and the couple stress parameter decrease the critical 

Rayleigh number and hence increase the Nusselt number.  

Figures (12) – (15) are the plots of Nu versus t for different values of  Rs,  , L and Pr respectively. It is observed 

from the figures that increase in these parameters decreases the heat transfer. Figure (16) is a plot of Nu vs t for different 

values of Rayleigh number. It is observed that when the Rayleigh number is increased ten times and fifteen times, the rate of 

heat transfer is not uniform in the beginning and as time increases the rate of heat transfer reaches a steady state and is 

uniform. Also it is observed that Nu is fluctuating throughout the system as a result the rate of heat transfer is less. For a 

slight change in the initial condition the same situation can be observed in figure (16) in which Nu is fluctuating more often 

throughout the system when Rayleigh number is increased to ten times as well fifteen times. This shows that chaos sets for 

higher value of Rayleigh number and chaos are very sensitive to the initial condition, hence difficult to measure the rate of 

heat transfer in the system. It is also clear from the figures (12) – (15) that the phase space of the system is not uniform.  

The figures (17) – (25) depicts the fact that Sherwood number variations with N1, N2, N3, N5, Rs,  , L, Pr and R are 

similar to what was seen with Nu in figures (8) – (16) but the effects are reversed. 

 

IX. Conclusions 

The effect of coupling parameter N1, micropolar heat conduction parameter N5, electric Rayleigh number L and 

solutal Rayleigh number Rs is to reduce the amount of heat transfer and increase the mass transfer, whereas the opposite 

effect is observed in the case of inertia parameter N2 and the couple stress parameter N3. Thus it is possible to control the 

onset of double diffusive convection and also regulate the heat and masss transfer with the help of micropolar fluid and 

electric field.  

 

 

 

Acknowledgement 
The authors would like to acknowledge management of Christ University for their support in completing the work. 

 

Bibliography 
[1]. Ahmadi G (1976). Stability of micropolar fluid layer heated from below. International Journal of Engineering Science14, pp. 81-85. 

[2]. Bhadauria BS and Palle Kiran (2014). Weak nonlinear double-diffusive magnetoconvection in a newtonian liquid under temperature modulation. 

International Journal of Engineering Mathematics, pp. 1-11. 

[3]. Bhattacharya SP and Jena SK (1983).On the stability of hot layer of micropolar fluid.International Journal of Engineering Science21(9), pp. 1019-

1024.  

[4]. Chandrasekhar S (1961). Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press. 

[5]. Datta AB and Sastry VUK (1976). Thermal instability of a horizontal layer of micropolar fluid heated from below. International Journal of 

Engineering Science14(7), pp. 631-637. 



Linear And Weakly Non-Linear Stability Analyses Of Double-Diffusive Electro-Convection… 

DOI: 10.9790/5728-11614470                                     www.iosrjournals.org                                             70 | Page 

[6]. Eringen AC (1964). Simple microfluids. International Journal of Engineering Science2(2), pp. 205-217. 

[7]. Eringen AC (1966). A unified theory of thermomechanical materials. International Journal of Engineering Science4(2), pp. 179-202. 

[8]. Eringen AC (1972). Theory of thermomicrofluids. Journal of Mathematical Analysis and Applications38(2), pp. 480-496. 

[9]. Jin YY and Chen CF (1997). Effect of gravity modulation on natural convection in a vertical slot. International Journal of Heat and Mass Transfer 

40(6), pp. 1411-1426.  

[10]. Joseph TV et al. (2013). Effect of non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni electro-convection in a 

micropolar fluid. Applied Mathematics 4(8), pp. 1180-1188. 

[11]. Lebon G and Perez-Garcia C (1981). Convective instability of a micropolar fluid layer by the method of energy. International Journal of Engineering 

Science19(10), pp. 1321-1329. 

[12]. Lukaszewicz G (1999). Micropolar fluid theory and applications. Boston: Birkhauser. 

[13]. Malashetty MS et al. (2006). An analytical study of linear and non-linear double diffusive convection with Soret effects in couple stress liquids. 

International Journal of Thermal Science 45, pp. 897-907. 

[14]. Melvin E Stern (1960). The “Salt-Fountain” and Thermohaline Convection. Tellus 12(2), pp. 172-175. 

[15]. Power H (1995). Bio-Fluid Mechanics: Advances in Fluid Mechanics, U.K.: W.I.T. Press. 

[16]. Pranesh S and Arun Kumar N (2012).Effect of non-uniform basic concentration gradient on the onset of double-diffusive convection in micropolar 

fluid.Applied Mathematics3, pp. 417-424. 

[17]. Pranesh S and Riya Baby (2012).Effect of non-uniform temperature gradient on the onset of Rayleigh-Bénardelectroconvection in a micropolar 

fluid.Applied Mathematics3, pp. 442-450. 

[18]. Pranesh S et al. (2014).Linear and Weakly Non-Linear Analyses of Gravity Modulation and Electric Field on the onset of Rayleigh-Bénard Convection 

in a Micropolar Fluid. Journal of Advances in Mathematics 9(3), pp. 2057-2082.  

[19]. Rama Rao KV (1980). Thermal instability in a micropolar fluid layer subject to a magnetic field. International Journal of Engineering Science18(5), 

pp. 741-750. 

[20]. Siddheshwar PG and Pranesh S (1998) Effect of a non-uniform basic temperature gradient on Rayleigh–Benard convection in a micropolar fluid. 

International Journal of Engineering Science36(11), pp. 1183-1196. 

[21]. Turner JS (1973).Buoyancy effects in fluids. Cambridge University Press. 

[22]. Veronis G (1959). Cellular convection with finite amplitude in a rotating fluid.Journal of fluid mechanics 5, pp. 401–435. 


