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Abstract: An analysis is carried out to study the MHD steady two-dimensional stagnation-point flow and heat transfer from 

a warm, laminar liquid flow to a melting stretching sheet. The governing partial differential equations are transformed into 

ordinary differential equations by similarity transformation, before being solved numerically using Runge-Kutta-Fehlberg 

method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are 

presented for different values of the governing parameters. Effects of the Magnetic parameter, melting parameter, stretching 

parameter and prandtl number on the flow and heat transfer characteristics are thoroughly examined.  
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Nomenclature 

a      Parameter of the temperature distributed in stretching surface. 

0B
   

Externally imposed magnetic field in the y-direction. 

bC    Drag coefficient. 

fC
  

Local skin-friction coefficient. 

pc
  

Specific heat of the fluid at constant pressure. 

f       Dimensionless stream function. 

nM  Magnetic Parameter 

L      Characteristic length of the flow dynamics. 

xNu  Nusselt number. 

Pr    Prandtl number. 

T    Fluid temperature. 

T   
Ambient temperature. 

0T   Reference number. 

wT
  

Wall temperature. 

u     fluid axial velocity. 

wU
 
Velocity of horizontal stretching surface. 

eU
    Velocity of external flow. 

v        fluid transverse velocity.
 x, y    Coordinates along and normal to the vertical stretching surface plate. 

X       Dimensionless coordinate along the plate. 

Greek symbol 

    Kinematic viscosity. 

wx
  

Local shear stress. 

   Thermal diffusivity. 


  

Non-dimensional transformed variable. 


  

Viscosity of the fluid. 

   Fluid electrical conductivity. 


 
Stream function. 

 Fluid density. 

     Dimensionless temperature. 

Subscripts 

x        local. 
w       Conditions on the wall. 

o        Reference. 

        Ambient or free stream condition. 

Superscript‘ Differentiation with respect to  . 
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I. Introduction 

The study of laminar boundary layer flow and heat transfer over a stretching surface is important and has attracted 

considerable interest of many researchers because of its large number of applications in industry and technology. Few of 

these applications are materials manufactured by polymer extrusion, drawing of copper wires, continuous stretching of 

plastic films, artificial fibers, hot rolling, wire drawing, glass fiber, metal extrusion and metal spinning, cooling of metallic 

sheets or electronic chips, and many others. In these cases, the final product of desired characteristics depends on the rate of 

cooling in the process and the rate of stretching. After the pioneering work by Sakiadis [1], a large amount of literature is 

available on boundary layer flow of Newtonian and non-Newtonian fluids over linear and nonlinear stretching surfaces [2–

10]. 

Stagnation point flow, describing the fluid motion near the stagnation region of a circular body, exists for both the 

cases of a fixed or moving body in a fluid. The two dimensional stagnation flow towards a stationary semi-infinite wall was 

first studied by Hiemenz[11], using a similarity transformation, to reduce the Navier-stokes equations to a set of nonlinear 

ordinary differential equations. This problem was then extended by Homann [12] to the case of axisymmetric stagnation-

point flow. 

Melting heat transfer in steady laminar flow over a stationary flat plate has been considered by Epstein and Cho 

[13], and very recently this problem was extended by Ishak et al. [14] to a melting surface moving parallel to constant 

stream. Chen et al. [15] studied free convection melting of a solid immersed in a hot dissimilar fluid, while Kazmierczak et 

al. [16,17], Bakier[18], Gorla et al. [19] and Cheng and Lin[20, 21] studied the effects of mixed convection boundary layer 

flow about a vertical surface on the phenomenon of melting process in a fluid-saturated porous medium. Recently melting 

heat transfer in boundary layer stagnation-point flow towards a stretching sheet has investigated by Bachok et al.[27]. The 

numerical results obtained are then compared with those reported by Wang [20] for M = 0 (melting is absent). More recently 

a paper by Bachok et al[28]. Investigated the Boundary layer stagnation-point flow and heat transfer over an exponentially 

stretching sheet in a nano fluid. 

The aim of the present paper is to study the similarity solutions of stagnation –point flow and the heat transfer 

from a warm, laminar liquid flow to a melting stretching sheet with magnetic parameter. The governing partial differential 

equations are first transformed into a system of ordinary differential equations before being solved numerically. A through 

literature show that there is not any published paper on melting heat transfer in boundary layer stagnation point flow towards 

a stretching sheet with magnetic field effect. We believe that the obtained results are new and original. It should be 

mentioned that in addition to its importance from a fundamental standpoint, the present study finds important application in 

magma solidification, the melting of permafrost, the thawing of frozen grounds, and the preparation of semi-conductor 

materials. In addition, in solidifying, casting the existence of a mushy zone separating the liquid phase from the solid phase 

has been observed. This zone consists of a fine mesh of dendrites growing into the melt region. The heat and fluid flow 

processes inside the mushy zone play an important role in the solidification phenomenon (Bakier [18]). 

 

II. Problem formulation 

Fig.1. Schematic diagram of stretching sheet 

 
Consider a steady stagnation-point flow towards a horizontal linearly stretching sheet with porous parameter melting at a steady 

rate into a constant property, warm liquid of the same material, as shown in the Fig.1. It is assumed that the velocity of the external flow is

 eu x ax  and the velocity of the stretching sheet is  wu x cx , where a
 
is a positive constant, while c is a positive (stretching 

rate) constant and x is the coordinate measure along the stretching sheet. It is also assumed that the temperature of melting surface is Tm, 

while the temperature in the free-stream condition isT , where mT T  . It is also assumed that the viscous dissipation and the heat 

generation or absorption is neglected. Under the usual boundary layer approximations, the equations of motion with magnetic parameter and 
the equation representing temperature distribution in the liquid flow must obey the following equations, 
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 Where y is the Cartesian coordinates measured normal to the stretching surface, u and v are the velocity components along the x- 

and y-axis,  and  are the kinematic viscosity and thermal diffusivity of the fluid, respectively. Following Hiemenz[11]and Epstein and 

Cho[14], we assume that the boundary conditions of Eqs.(1)-(3) are the following  
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 Where    is the fluid density k is the thermal conductivity, is the latent heat of the fluid sc is the heat capacity of the 

solid surface. Eq. (4b) states that the heat conducted to the melting surface is equal to the heat of melting plus the sensible heat required to 

raise the solid temperature T0 to its melting temperature Tm (Epstein and Cho[14] or Cheng and Lin [22]).  
 Following the classical work of Hiemenz [11], we introduce now a similarity transformation to recast the governing partial 

differential equations into a set of ordinary differential equations: 
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Where ,
 
the stream function, which is defined in the usual form as ,u and v

y x

  
  
 

which automatically satisfies 

the continuity equation (1).  
By using this definition, we obtain 

1
2( ), ( ) ( ),u axf v a f       (6) 

 Substituting Eqs.(5) and (6) into Eqs. (2)And (3) produces, the following nonlinear ordinary differential equations: 

 2 21 0,nf ff f M f            (7) 

Prf =0,     (8) 

 Where primes denote differentiation with respect to   and Pr is the Prandtl number and

2

0
n

B
M

a




 is the Magnetic 

parameter. 

The boundary conditions (4) become  
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 Where c a  is the velocity ratio ( 0  ) parameter and M is the dimensionless melting parameter which is defined as 
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 Where pc is the heat capacity of the fluid at constant pressure, and λ is the latent heat of the fluid and the melting parameter M is 

a combination of the Stefan number    0/ /f m s mc T T and c T T    for the liquid and solid phases, respectively. It is 

worth mentioning that for M=0 (melting is absent), Eq. (7) reduces to the classical equation first derived by Hiemenz [11]. 

 The physical quantities of interest are the skin friction coefficient fc and the local Nusselt number xNu or melting rate (local 

heat flux) at the stretching surface defined as  

 2
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
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 Where  w wand q are the surface shear stress and the surface heat flux which are given by
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Where   being the dynamic viscosity of the fluid. Using variables (5), we get  
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Where Re ( ) /x eu x x y is the local Reynolds number. 

Combining Eqs. (4b) and (13), we can obtain the melting velocity at the stretching surface v(x, 0),which is given by following 

equation: 

( ,0) xv x MNu
x


  .                                                 (14)                                                                               

 This velocity is proportional to x-1and it shows that the melting process is faster near the stagnation-point of the stretching sheet. 

 

Numerical method 

 

Numerical solutions to the ordinary differential equation (7) and (8) with the boundary equation (9) are obtained using the 

Runge-Kutta-Fehlberg method with shooting technique. The dual solutions are obtained by setting different initial guesses for the values of 

skin friction coefficient (0)f  and the local Nusselt number (0) ,where all the profiles satisfies the far field boundary conditions 

(9) asymptotically but with the different shapes. These methods have been successfully used by the present authors to solve various 

problems related to boundary layer flow and heat transfer (see Bachok et al. [23, 24] and Ishak et al. [25, 26]). 

 

III. Results and Discussion 

 For the stretching sheet,  is positive. Table (1) shows the comparison of (0)f  with those of the previous studies, i.e mainly 

Bachok et al. [27], which shows a favourable agreement and thus gives us a confidence that the numerical results obtained by us are 

accurate. Moreover, the values of (0)f  for 0M  with magnetic parameter 0nM  are also included in table 1. 

 Variations of the skin friction coefficient (0)f  with  and M when Pr=1 nM  = 0.5 are shown in fig. (2). The result 

presented in fig (2), indicates that as melting parameter M  increases, the skin friction coefficient (0)f  decreases. The value of 

 0f  when 0.5 1to   for all values of M  are considered. 

Fig (3) - (8) display the variation of velocity and temperature profiles within the boundary layer for the different values of , M, nM  Pr and

 . 

 Fig (3) and (4) depicts the effect of Magnetic parameter nM over velocity profile and temperature profile, it is noticed from fig 

(3) that velocity decreases with the increase of magnetic parameter nM , and from Fig (4) it is noticed that temperature profile increases 

with increase of Magnetic parameter nM  which offers resistance to the flow resulting in decrease of velocity in the boundary layer, which 

agrees, with results of various author’s for instance the results of Dulal Pal [29]. 
 Fig (5) and (6) shows that the boundary layer thickness for these solutions. This result is realised physically that the melting 

phenomenon acts as a blowing boundary condition at the stretching surface. Consequently, more intense melting parameter (M) tends to 

thicken the boundary layer. The dimensionless temperature profiles    increases monotonically at the stretching surface.  

 Fig (7) and (8) represents the effect of Pr on the velocity and temperature profiles. It is observed that the magnitude of the 

velocity gradient at the surface is higher for higher values of Pr . Thus the skin friction increases with Pr and, consequently increases the 

heat transfer rate at the surface.      

 

IV. Conclusions 

 We have numerically studied the similarity solution for the MHD steady stagnation-point flow towards a 

horizontal stretching sheet with melting phenomena at a steady rate into a constant property, warm liquid of the same 

material. The governing partial differential equations are converted into ordinary differential equations by similarity 

transformation, before being solved numerically using Runge-Kutta-Fehlberg method. Results for the skin friction 

coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the 

governing parameters. Effects of the Magnetic parameter, melting parameter, velocity ratio parameter and prandtl number on 

the flow and heat transfer characteristics are thoroughly examined.  

 

                                                                 Table.1 
         N. Bachok et al.                            Present Work 

                 M=0                                   M=0                       M=1                 M=2              M=3 

0                 1.2325877                          1.013007                0.877660           0.814243         0.774780 

0.1              1.1465610                           0.909889               0.786875           0.729473         0.693834 

0.2              1.0511300                          0.798269                0.689189           0.638476         0.607054 

0.5              0.7132949                          0.416234                0.357798           0.330882         0.314290 

1                        0                                 -0.360226               -0.308268          -0.284526       -0.269963 

2                -1.8873066                         -2.350145              -1.997338           -1.838173       -1.741245 
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Fig(2) Variation of skin friction coefficient f ''(0) with  for various values of M
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Fig(3).velocity profile f (  ) versus    for different values of magnetic parameter nM  
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fig(6).Temperature profile  versus for different values of Melting parameter M.

M
n
=0.5, Pr=1.0, =-1.2  

  M = 0, 1, 2, 3

 



 
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Fig(7). Velocity profiles f ' versus  for different values of Prandtl number Pr
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