Pullbacks and Pushouts in the Category of Graphs

S. Buvaneswari ${ }^{1}$, Dr. P.Alphonse Rajendran ${ }^{2}$
${ }^{1,2}$ (Department of Mathematics, Periyar Maniammai University, Vallam, Thanjavur-613403, India)

Abstract

In category theory the notion of a Pullback like that of an Equalizer is one that comes up very often in Mathematics and Logic. It is a generalization of both intersection and inverse image. The dual notion of Pullback is that of a pushout of two homomorphisms with a common domain. In this paper we prove that the Category G of Graphs has both Pullbacks and Pushouts by actually constructing them.

Keywords: homomorphism, pullbacks, pushouts, projection, surjective.

I. Introduction

A graph G consists of a pair $G=(V(G), E(G))$ (also written as $G=(V, E)$ whenever the context is clear) where $V(G)$ is a finite set whose elements are called vertices and $E(G)$ is a set of unordered pairs of distinct elements in $\mathrm{V}(\mathrm{G})$ whose members are called edges. The graphs as we have defined above are called simple graphs. Throughout our discussions all graphs are considered to be simple graphs [1,2].

Let G and G_{1} be graphs. A homomorphisms $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}_{1}$ is a pair $f=\left(f^{*}, \tilde{f}\right)$ where
$\mathrm{f}^{*}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{V}\left(\mathrm{G}_{1}\right)$ and $\tilde{f}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{E}\left(\mathrm{G}_{1}\right)$ are functions such that $\tilde{f}((\mathrm{u}, \mathrm{v}))=\left(f^{*}(\mathrm{u}), f^{*}(\mathrm{v})\right)$ for all edges $(\mathrm{u}, \mathrm{v}) \in \mathrm{E}(\mathrm{G})$. For convenience if $(\mathrm{u}, \mathrm{v}) \in \mathrm{E}(\mathrm{G})$ then $\tilde{f}((\mathrm{u}, \mathrm{v}))$ is simply denoted as $\tilde{f}(\mathrm{u}, \mathrm{v})$ [3].

Then we have the category of graphs say \mathscr{C}, where objects are graphs and morphisms are as defined above, where equality, compositions and the identity morphisms are defined in the natural way. It is also proved that two homomorphisms $f=\left(f^{*}, \tilde{f}\right)$ and $g=\left(g^{*}, \tilde{g}\right)$ of graphs are equal if and only if $f^{*}=g^{*}$ (Lemma 1.6 in [3]).

II. Pullbacks

Definition 2.1: Given two graph homomorphisms $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ a commutative diagram is called a pullback for f and g , if for every pair of morphisms $\beta_{1}: Q \rightarrow X$ and $\beta_{2}: Q \rightarrow Y$ such that $f \beta_{1}=g \beta_{2}$, there exists a unique homomorphism $\gamma: Q \rightarrow P$ such that $\beta_{1}=\alpha_{1} \gamma$ and $\beta_{2}=\alpha_{2} \gamma$ [see figure 1].

Figure 1
Proposition 2.2: The category of graphs has pullbacks.
Proof: Consider any diagram where f and g are homomorphism of graphs [see figure 2, 3].

Figure 2

Figure 3

Let P be the graph defined as below. $V(P)=\left\{(x, y) \in V(X) \times V(Y)\right.$ such that $\left.f^{*}(x)=g^{*}(y)\right\}$; Also $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \sim\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ in P if and only if $\mathrm{x}_{1} \sim \mathrm{x}_{2}$ in X and $\mathrm{y}_{1} \sim \mathrm{y}_{2}$ in Y .
Consider the projection maps $p_{1}: P \rightarrow X$ and $p_{2}: P \rightarrow Y$ as defined below: For $(\mathrm{x}, \mathrm{y}) \in \mathrm{V}(\mathrm{P})$,

$$
\begin{aligned}
p_{1}^{*}: V(P) & \rightarrow V(X) \quad \text { and } p_{2}^{*}: \quad V(P) \rightarrow V(Y) \\
(x, y) & \mapsto x \text { and }(x, y) \mapsto y
\end{aligned}
$$

Then $p_{1}{ }^{*}$ and $p_{2}{ }^{*}$ are surjective maps. Moreover if $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \sim\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ in P , then by definition $\mathrm{x}_{1} \sim \mathrm{x}_{2}$ and $\mathrm{y}_{1} \sim \mathrm{y}_{2}$. This shows that $p_{1}{ }^{*}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \sim p_{1}{ }^{*}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$. Hence we have a well defined map

$$
\widetilde{p_{1}}: E(P) \rightarrow E(X)
$$

$$
\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \quad\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right) \mapsto\left(p_{1}^{*}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), p_{1}^{*}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)
$$

thus showing that $p_{1}: P \rightarrow X$ is a homomorphism of graphs. Similarly $p_{2}: P \rightarrow Y$ is also a homomorphism of graphs.
Moreover for all $(\mathrm{x}, \mathrm{y}) \in \mathrm{V}(\mathrm{P})$

$$
\begin{aligned}
\left(f p_{1}\right)^{*}(x, y)= & f^{*} p_{1}^{*}(x, y)=f^{*}(x) \\
& =g^{*}(y) \quad(\text { by definition of } P) \\
& =g^{*} p_{2}{ }^{*}(x, y) \\
& =\left(g p_{2}\right)^{*}(x, y)
\end{aligned}
$$

and hence $f p_{1}=g p_{2}($ by Lemma 1.6 in [3] $)$
Suppose there exists homomorphism of graphs $\alpha_{1}: Q \rightarrow X$ and $\alpha_{2}: Q \rightarrow Y$ such that $f \alpha_{1}=g \alpha_{2}$ [See figure 4].

Figure 4
Then $\left(f \alpha_{1}\right)^{*}=\left(g \alpha_{2}\right)^{*}$. i.e. $f^{*} \alpha_{1}{ }^{*}=g^{*} \alpha_{2}{ }^{*}$. Now we define a homomorphism
$\gamma: Q \rightarrow P$ as follows: If $u \in V(Q)$, then $f^{*} \alpha_{1}{ }^{*}(u)=g^{*} \alpha_{2}{ }^{*}(u)$ and so by definition of P ,
$\left(\alpha_{1}{ }^{*}(u), \alpha_{2}{ }^{*}(u) \in V(P)\right.$.
So define

$$
\gamma^{*}(u)=\left(\alpha_{1}^{*}(u), \alpha_{2}^{*}(u)\right) .
$$

Then $p_{1}{ }^{*} \gamma^{*}(u)=p_{1}{ }^{*}\left(\alpha_{1}{ }^{*}(u), \alpha_{2}{ }^{*}(u)\right)$

$$
=\alpha_{1}^{*}(u)
$$

so that $p_{1} \gamma=\alpha_{1}$ (by Lemma 1.6 in [3]). Similarly $p_{2} \gamma=\alpha_{2}$.
Suppose there exists $\delta: Q \rightarrow P$ such that $p_{1} \delta=\alpha_{1}$ and $p_{2} \delta=\alpha_{2}$.
For $u \in V(Q)$ let $\delta^{*}(u)=\left(x_{1}, y_{1}\right) \in P$

Then

$$
\begin{aligned}
p_{1}^{*} \delta^{*}(u) & =x_{1} \\
& =\alpha_{1}^{*}(u)
\end{aligned}
$$

and

$$
\begin{aligned}
p_{2}{ }^{*} \delta^{*}(u) & =y_{1} \\
& =\alpha_{2}^{*}(u)
\end{aligned}
$$

Therefore $\gamma^{*}(u)=\left(\alpha_{1}{ }^{*}(u), \alpha_{2}{ }^{*}(u)\right)$

$$
\begin{gathered}
=\left(x_{1}, y_{1}\right) \\
=\delta^{*}(u)
\end{gathered}
$$

and so (by Lemma 1.6 in [3]) $\gamma=\delta$, proving the uniqueness of γ.
Thus P is a pull back for f and g [4].
Example 2.3: Let $\overline{\mathbb{K}}$ denote the full subcategory of complete graphs. Then $\overline{\mathbb{K}}$ has pull backs.
Proof: Since any two pull backs are isomorphic we follow the construction as in the Proposition 2.2. Consider the diagram [see figure 5] where $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are complete graphs.

Figure 5

Figure 6

Let P be the graph with the obvious adjacency relation, where $V(P)=\left\{(x, y) \in V(X) \times V(Y) / f *(x)=g^{*}(y)\right\}$. Consider the diagram [see figure 6] where p_{1} and p_{2} are the restrictions of the canonical projections from the product.
Claim: P is a complete graph. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be any two distinct vertices in $v(P)$. Then either $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$ or both. Suppose $x_{1}=x_{2}$. Then $y_{1} \neq y_{2}$ and $\operatorname{sof}\left(x_{1}\right)=g\left(y_{1}\right)$ and $f\left(x_{1}\right)=f\left(x_{2}\right)=g\left(y_{2}\right)$. Therefore $g\left(y_{1}\right)=g\left(y_{2}\right)$. However $y_{1} \neq y_{2}$ and Y is a complete graph implies that $y_{1} \sim y_{2}$ and hence $g\left(y_{1}\right) \sim g\left(y_{2}\right)$ which is a contradiction. Hence $x_{1} \neq x_{2}$. Similarly $y_{1} \neq y_{2}$. Thus $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ in $V(P)$ implies that $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$ which in turn implies that $x_{1} \sim x_{2}$ and $y_{1} \sim y_{2}$.Thus $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$. Therefore any two distinct vertices in P are adjacent and so P is a complete graph. Therefore $\mathrm{P} \in \overline{\mathbb{K}}$ i.e. $\overline{\mathbb{K}}$ has pullbacks.

Example 2.4: The full subcategory C of connected graphs does not have pullbacks.
Proof: Let X, Y and Z be connected graphs defined by the following diagrams [see figure 7].

X
Y

$\xi_{7} \quad Z$
Figure 7
[X and Y are the same (isomorphic). However to avoid some confusions in constructing the pullbacks as in Proposition 2.2, we give different names to the vertices].

Figure 8
Consider the homomorphism of graphs $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ defined as follows [see figure 8].
$\mathrm{f}\left(\mathrm{x}_{1}\right)=\xi_{1}$
$g\left(y_{1}\right)=\xi_{2}$
$\mathrm{f}\left(\mathrm{x}_{2}\right)=\mathcal{F}_{3}$
$g\left(y_{2}\right)=\xi_{3}$
$\mathrm{f}\left(\mathrm{x}_{3}\right)=y_{4}$
$g\left(y_{3}\right)=\xi_{5}$
$\mathrm{f}\left(\mathrm{x}_{4}\right)=\boldsymbol{\xi}_{6}$
$g\left(y_{4}\right)=\xi_{6}$

Then the pull back of f and g in G is given by the subgraph P of $X \times Y$ where
$\mathrm{V}(\mathrm{P})=\{(\mathrm{x}, \mathrm{y}) \in \mathrm{V}(\mathrm{X}) \times \mathrm{V}(\mathrm{Y}) / \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{y})\}$

Figure 9
and p_{1} ' and p_{2} ' are the restrictions of the canonical projections p_{1} and p_{2},

$X \times Y \rightarrow X \quad, \quad X \times Y \rightarrow Y$ [see figure 9] .

In this example $V(P)=\left\{\left(x_{2}, y_{2}\right),\left(x_{4}, y_{4}\right)\right\}$. Since $x_{2} \nsim x_{4}\left(\right.$ or $\left.y_{2} \nsim y_{4}\right),\left(x_{2}, y_{2}\right) \nsim\left(x_{4}, y_{4}\right)$. Hence p is the empty graph on two vertices which is totally disconnected and so $\mathrm{p} \notin \mathrm{C}$.

Therefore C does not have pullbacks.

III. Pushouts

Definition 3.1: Given a diagram [figure 10] in the category of graphs, a commutative diagram [figure 11]

Figure 10

Figure 11
is called a pushout for f and g if for every pair of morphisms $\beta_{1}: Q \rightarrow A_{1}$ and $\beta_{2}: Q \rightarrow A$ such that $\beta_{1} \mathrm{f}=\beta_{2} \mathrm{~g}$, there exists a unique morphism $\gamma: P \rightarrow Q$ such that $\gamma \alpha_{1}=\beta_{1}$ and $\gamma \alpha_{2}=\beta_{2}$ [see figure 12].

Figure 12
Proposition 3.2: The Category of graphs \mathscr{G} has pushouts.
Proof: Consider any diagram in G as given below [see figure 13].

Figure 13
Step 1: We construct a graph T as follows:
$V(T)=(V(Y) \times\{0\}) \cup(V(Z) \times\{1\})$
(i.e. the disjoint union of sets $\mathrm{V}(\mathrm{Y})$ and $\mathrm{V}(\mathrm{Z})$).

$$
=\{(y, 0) / y \in V(Y)\} \cup\{(\xi, 1) / \xi \in \mathrm{Z}\} .
$$

The edges in T are defined as follows.
i) $\quad\left(\left(y_{1}, 0\right),\left(y_{2}, 0\right)\right) \in E(T)$ if and only if $\left(y_{1}, y_{2}\right) \in E(Y)$, and
ii) $\quad\left(\left(\mathcal{y}_{1,1},\left(\mathcal{\xi}_{2}, 1\right)\right) \in E(T)\right.$ if and only if $\left(\xi_{1}, \mathcal{F}_{2}\right) \in E(Z)$

In T define a relation R by declaring $(y, 0) R(\xi, 1)$ if and only if there exists an $\mathrm{x} \in \mathrm{X}$ such that $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\bar{y}=\mathrm{g}(\mathrm{x}) \ldots \ldots$. (1)

Let " \sim " be the smallest equivalence relation in T generated by R. Let $\mathrm{A}=\mathrm{T} / \sim$ denote the quotient set.
i.e. $A=$ set of all equivalence classes of \sim. Let any such equivalence class be denoted as [a] for $a \in T$.

Then $\mathrm{A}=\mathrm{T} / \sim=\{[(\mathrm{y}, 0)],[(\mathcal{\xi}, 1)] / \mathrm{y} \in \mathrm{V}(\mathrm{Y}), \mathcal{\xi} \in \mathrm{V}(\mathrm{Z})\}$ where
$[(y, 0)]=[(\xi, 1)]$ if and only if there exists $x \in X$ such that $y=f(x)$ and $\xi=g(x)$.
In particular $\left[\left(\mathrm{f}^{*}(\mathrm{x}), 0\right)\right]=\left[\left(\mathrm{g}^{*}(\mathrm{x}), 1\right)\right]$ by (1).
Step: 2 Let us consider the graph Q where $\mathrm{V}(\mathrm{Q})=\mathrm{A}$; The edges in Q are defined by
i) $\quad\left(\left[\left(y_{1}, 0\right)\right],\left[\left(y_{2}, 0\right)\right]\right) \in E(Q)$ if and only if $\left(y_{1}, y_{2}\right) \in E(Y)$
ii) $\quad\left(\left[\left(y_{1}, 1\right)\right],\left[\left(\xi_{2}, 1\right)\right]\right) \in \mathrm{E}(\mathrm{Q})$ if and only if $\left(\xi_{1}, \xi_{2}\right) \in \mathrm{E}(\mathrm{Z}) \ldots \ldots$. (3)

Define $p_{1}: Y \rightarrow Q$ and $p_{2}: Z \rightarrow Q$ as follows [see figure 14].

Figure 14

$$
\begin{aligned}
\mathrm{p}_{1}{ }^{*}: \quad \mathrm{V}(\mathrm{Y}) & \rightarrow \mathrm{V}(\mathrm{Q}) \\
\mathrm{y} & \rightarrow[(\mathrm{y}, 0)]
\end{aligned}
$$

and $\quad \mathrm{p}_{2}{ }^{*}: \mathrm{V}(\mathrm{Z}) \rightarrow \mathrm{V}(\mathrm{Q})$

$$
\xi \rightarrow[(\mathrm{z}, 1)]
$$

Clearly p_{1} and p_{2} are homomorphisms of graphs by (3).
Moreover for all $\mathrm{x} \in \mathrm{V}(\mathrm{X})$

$$
\begin{aligned}
\mathrm{P}_{1}{ }^{*} \mathrm{f}^{*}(\mathrm{x}) & =\left[\left(\mathrm{f}^{*}(\mathrm{x}), 0\right)\right] \\
& =\left[\left(\mathrm{g}^{*}(\mathrm{x}), 1\right)\right] \text { by }(2) \\
& =\mathrm{p}_{2}{ }^{*} \mathrm{~g}^{*}(\mathrm{x})
\end{aligned}
$$

and so $\mathrm{p}_{1} \mathrm{f}=\mathrm{p}_{2} \mathrm{~g}$ by (Lemma 1.6 in [3]).
Step: 3 Suppose there exists a graph W with $\beta_{1}: Y \rightarrow W$ and $\beta_{2}: Z \rightarrow W$
and such that $\beta_{1} f=\beta_{2} g$ \qquad
Define a homomorphism $\gamma: Q \rightarrow W$ as follows.
$\gamma^{*}[(y, 0)]=\beta_{1}{ }^{*} y$ and $\gamma^{*}[(\xi, 1)]=\beta_{2}{ }^{*}(\xi)$ for $\mathrm{y} \in \mathrm{Y}$ and $\xi \in \mathrm{Z}$.
Clearly γ^{*} is well defined, since
$\left[\left(\mathrm{y}_{1}, 0\right)\right]=\left[\left(\mathrm{y}_{2}, 0\right)\right]$ implies $\mathrm{y}_{1}=\mathrm{y}_{2}$
so that $\gamma^{*}\left[\left(y_{1}, 0\right)\right]=\beta_{1}{ }^{*}(y)$

$$
\beta_{2}^{*}\left(y_{2}\right)=\gamma^{*}\left[\left(y_{2}, 0\right)\right]
$$

Similarly $\left[\left(\xi_{1}, 1\right)\right]=\left[\left(\xi_{2}, 1\right)\right]$ implies that $\xi_{1}=\xi_{2}$ and so $\beta_{1}{ }^{*}\left(\xi_{1}\right)=\beta_{2}{ }^{*}\left(\xi_{2}\right)$
Also $[(\mathrm{y}, 0)]=[(\xi, 1)]$ implies there exists $x \in X$ such that $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\xi=\mathrm{g}(\mathrm{x})$ and
hence $\gamma^{*}[(y, 0)]=\beta_{1}{ }^{*}(y)=\beta_{1}{ }^{*} f(x)=\beta_{2}{ }^{*} g(x)=\beta_{2}{ }^{*}(\xi)=\gamma^{*}[(\xi, 1)]$ and so γ^{*} is well defined.
Moreover γ preserves edges as β_{1} and β_{2} does so.
Now for all $\mathrm{y} \in \mathrm{V}(\mathrm{Y})$
$\gamma^{*} p_{1}{ }^{*}(y)=\beta_{1}{ }^{*}(y)$ by definition implies that $\quad \gamma p_{1}=\beta_{1}$. Similarly $\gamma p_{2}=\beta_{2}$.
Finally to prove the uniqueness of γ; Suppose there exists $\delta: Q \rightarrow W$ such that $\delta p_{1}=\beta_{1}$.
$\delta p_{2}=\beta_{2}$. Then for all $\mathrm{y} \in \mathrm{V}(\mathrm{Y})$ and $\xi \in \mathrm{V}(\mathrm{Z})$.

$$
\begin{aligned}
\gamma^{*}[(\mathrm{y}, 0)] & =\gamma^{*} p_{1}^{*}(y)=\beta_{1}^{*}(y) \\
& =\delta^{*}{p_{1}}^{*}(y)=\delta^{*}[(\mathrm{y}, 0)] .
\end{aligned}
$$

Similarly $\gamma^{*}[(\xi, 1)]=\delta^{*}[(\xi, 1)]$.
Hence $\gamma^{*}=\delta^{*}$ and so $\gamma=\delta$ proving the uniqueness of γ [3]. Thus Q is a push out.

IV. Conclusion

The above discussions show that the representation of homomorphism between graphs as a pair of functions $\left(f^{*}, \tilde{f}\right)$ is useful in proving some properties in the category of graphs.

Acknowledgements

The authors are pleased to thank the referees for their useful suggestions and recommendations.

References

[1] C. Godsil and G.Royle, Algebraic Graph Theory, (Springer-Verlag, New York NY, 2001).
[2] V. K. Balakrishnan, Schaum's Outline of Graph Theory: Including Hundreds of Solved Problems (Schaum's Outline Series, 1997)
[3] S.Buvaneswari and P.Alphonse Rajendran, A study on Category of Graphs, IOSR Journal of Mathematics (IOSR-JM), 11(4), 2015, 38-46.
[4] P. Vijayalakshmi and P. Alphonse Rajendran, Intersections and Pullbacks, IOSR Journal of Mathematics (IOSR-JM), 11(2), 2015, 61-69.

