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 Abstract :Successful application of Adomian decomposition method (ADM) in solving problems in nonlinear 

ordinary and partial differential equations depend strictly on the Adomian polynomial. In this paper, we present 

a simple modified known Adomian polynomial for nonlinear polynomial functionals with index as integers. The 

simple modified Adomian polynomial was tested for nonlinear functional with index 3 and 4 respectively. The 

result shows remarkable exact results as that given by Adomian himself. Also, the modifed simple Adomian 

polynomial was further tested on concrete problems and the numerical results were exactly the same as the 

exact solution. The large scale computation and evaluation was made possible by Maple software package. 
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I. INTRODUCTION 
              The Adomian Polynomial in ADM has been subject of some studies [1] to [9]. This method generates a 

solution in form of a series whose terms are determined by a recursive relationship using the Adomian 

Polynomial. Several authors have suggested different algorithms for computing Adomian Polynomial, 

prominent among them are [2], [3]. Using the algorithm presented by Adomian himself [1] requires 

classification of terms in both the ordinary and the accelerated form, which is very complicated for large n 

(order of the derivative). 

            Algorithm presented by [2] uses Taylor series expansion of the functional which is complicated 

especially when the unknown appears at the denominator. Calculation of the nth Adomian Polynomials using 

[3] requires computing the nth order derivative which is complicated for large n. That is why most literatures 

gives, at most, the first five generated Adomian Polynomial. Despite all the difficulties in applying the used 

method in [5], it cannot be applied to functionals with several variables. Here we suggest a new simplified 

single line algorithm that can be implemented in any computer algebraic system. To generate the Adomian 

Polynomial without resulting to writing codes before implementation 

          

II. THE ADOMIAN POLYNOMIAL IN ADM 
Consider the general nonlinear differential equation; 

                                            fFu                                                                                          (1) 

F is nonlinear differential operator and u, f are functions of  t. Equation (1) in operator form is given as; 

                                               fNuRuLu                                                                           (2) 

where L is an operator representing linear portion of f which is easily invertible, R is a linear operator for the 

remainder of the linear portion. N is a nonlinear operator representing the nonlinear term in f. Applying the 

inverse operator L
-1

 on equation (2) we have; 

                                                      NuLRuLfLLuL
1111 

                                           (3) 

By virtue of L, L
-1

 would represent integration with any given initial/boundary conditions. Equation (3) 

becomes; 

                                                        NuLRuL)t(g)t(u
11 

                                              (4) 

where g(t) represent the function generated by integrating f and using the initial/boundary conditions.  

                ADM admit the decomposition into an infinite series with equation (4) given as; 
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where An is the Adomian Polynomial which is given as; 
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The recursive relation is found to be 
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Having determined the components un; n ≥ 0 the solution 
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is in series form. The series may be summed to provide the solution in closed form. Or, for concrete problems 

the nth partial sum may be used to give the approximate solution. 

                 We give the simple modification to the Adomian Polynomial of equation (5) as; 
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III. IMPLEMENTATION OF THE SIMPLE MODIFIED ADOMIAN POLYNOMIAL 

              In this section, we present some examples that resulted from the use of the simple modified Adomian 

polynomial. 

1. For N(u) =  3,u 
  and using equation (9), the first ten plus one Adomian Polynomials are given as; 
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2. For N(u) = 4,u 


 and using equation (9), the first ten plus one Adomian Polynomials are also given as; 
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IV. APPLICATION OF THE SIMPLE MODIFIED ADOMIAN POLYNOMIAL TO 

CONCRETE PROBLEMS 
                   In this section, we apply the modified Adomian polynomials to concrete problems. 

Problem 1 

Consider 

                      3
uu5

dt

du
 ,  u(0) = 1                                                                                          (10) 

The exact solution of equation (10) is given as; 
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And in series form equation (11) is given as 
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Applying the ADM  to equation (10), we have; 
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where An in this case is given as 
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Applying equation (6), (7) and (9) to equation (10), we obtain; 
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Continuing in this order, the sum of the first few terms of un,  is given as; 
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This is obviously the same as the series form of the exact solution given in equations (12). The similarity 

between the exact solution, equation (11) and the numerical solution of the first 12th terms is further given in 

Fig. 1 and Fig. 2 respectively. 

 
 

Problem 2 

Consider 

                                                              1)0(u,uu
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du 4
                                                             (13) 

The exact solution of equation (13) is  
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And in series form equation (14) is given as 
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Applying the Adomian decomposition method to equation (13) we have 
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where An in this case is given as; 

                                                 An = N(u) = u
4
 

Also, applying the recursive relation and the simple modified Adomian polynomial to equation (13), we obtain; 
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Continuing in this order, we have; 
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    The first few terms of the series are obviously the same as equation (15) of the exact solution of Problem 2. 

The resemblance of the numerical solution using the simple modified Adomian polynomial of equation (9) and 

the exact result is further depicted in Fig. 3 and Fig. 4. 

 
 

In Fig. 2 and Fig. 4, finite terms of the series, 
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uu , were used in the plot. The remarkable similarities 

between the exact and ADM using equation (9) (the simple modified Adomian polynomial) of problems 1and 2 

is further shown in Tables 1 and 2.  
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Table I: Exact versus ADM solution of Problem 1 

t Exact solution  Solution by ADM,  


11

0n n
uu  

-0.14 4.5480323980 x 10
-1 

4.6293121480 x 10
-1

 

-0.13 4.8432134540 x 10
-1

 4.8776680970 x 10
-1

 

-0.12 5.1270154680 x 10
-1

 5.1406304520 x 10
-1

 

-0.11 5.4143250440 x 10
-1

 5.4192787600 x 10
-1

 

-0.10 5.7131765330 x 10
-1

 5.7148099190 x 10
-1

 

0.00 1.0000000000 x 10
-1

 1.0000000000 x 10
-1

 

0.10 2.0345383800 x 10
0
 2.0350805430 x 10

0
 

0.11 2.2372482020 x 10
0
 2.2391733070 x 10

0
 

0.12 2.4825644110 x 10
0
 2.4888789140 x 10

0
 

0.13 2.7861415940 x 10
0
 2.8056466280 x 10

0
 

0.14 3.1707781130 x 10
0
 3.2288930710 x 10

0
 

 

Table II: Exact versus ADM solution of Probem 2 

t Exact solution Solution by ADM,  


11

0n n
uu  

-0.14 7.8784892490 x 10
-1

 7.8797386830 x 10
-1

 

-0.13 7.9983309430 x 10
-1

 7.9988581050 x 10
-1

 

-0.12 8.1214566950 x 10
-1

 8.1216639740 x 10
-1

 

-0.11 8.2483167170 x 10
-1

 8.2483917380 x 10
-1

 

-0.10 8.3792754430 x 10
-1

 8.3793000380 x 10
-1

 

0.00 1.0000000000 x 10
-1

 1.0000000000 x 10
-1

 

0.10 1.2757283730 x 10
0
 1.2757342650 x 10

0
 

0.11 1.3168990780 x 10
0
 1.3169189670 x 10

0
 

0.12 1.3624449460 x 10
0
 1.3625060770 x 10

0
 

0.13 1.4113293205 x 10
0
 1.4137672060 x 10

0
 

0.14 1.4706510740 x 10
0
 1.4711161140 x 10

0
 

 

V. CONCLUSION 

                  In this paper, we proposed an efficient simple modification of the standard Adomian Polynomial in 

the popular Adomian decomposition method for solving nonlinear functional whose nonlinear term is of the 

form N(u) = u
n
. The study showed that the modified Adomian polynomial is simple and is efficient, and also 

effective in any computer algebra system to get as many term of the Adomian polynomials as required without 

difficulties.  The outcome from the modifications is the same as those presented by Adomian himself. And when 

applied to concrete problems the results were remarkable. 
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