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Abstract: A circulant graph 𝐶𝑛(𝑅) is said to have the Cayley Isomorphism (CI) property if whenever 𝐶𝑛(𝑆) is 

isomorphic to 𝐶𝑛(𝑅), there is some a∈𝑍𝑛
∗   for which S = aR. In this paper, we prove that for 1  n, 3  k, 1  i  

7, 𝑑𝑖= 7n(i-1)+1 and 𝑅𝑖= {𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , . . . , 294n-𝑑𝑖 , 294n+𝑑𝑖 , 343n-𝑑𝑖 , 7p1, 7p2, . . . , 

7pk-2}, graphs 𝐶343𝑛(𝑅𝑖) are circulant without CI-property with 𝑚𝑗 = gcd(343n, 𝑟𝑗 ) = 7, 𝑟𝑗𝑅𝑖 ,  gcd(p1,p2,…,pk-2) 

= 1 and  n,p1,p2,…,pk-2N. 
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I. Introduction 
In 1846 Catalan (cf. [3]) introduced circulant matrix. If a graph G  is circulant, then its adjacency 

matrix A(G) is circulant. It follows that if the first row of the adjacency matrix of a circulant graph is 

[a1,a2,…,an],  then a1 = 0 and  ai = an-i+2, 2  i  n [3], [8]. Circulant graphs have been investigated by many 

authors [1]-[15]. An excellent account can be found in the book by Davis [3] and in [6]. 

Cayley Isomorphism (CI) problem determines which graphs (or which groups) have the CI-property and its 

investigation started with the investigation of isomorphism of circulant graphs. An important achievement in 

this area is the complete classification of cyclic CI-groups by Muzychuk [7], [9]. But study on graphs without 

CI-property is not much done. Type-2 isomorphism, a new type of isomorphism of circulant graphs other than 

already known Adam’s isomorphism, was defined and studied in [10], [12]. Type-2 isomorphic circulant graphs 

have the property that they are isomorphic circulant graphs without CI-property. Theorems 1.9, 1.10 and 1.11 

give classes of isomorphic circulant graphs of Type 2 (and without CI-property) with 𝑚𝑗  = 2, 3 or 5. In this 

paper, we obtain new families of circulant graphs without CI-property with 𝑚𝑗  = 7 and prove that for 1  n, 3  

k, 1  i  7, 𝑑𝑖  = 7n(i-1)+1 and  𝑅𝑖  = {𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , . . . , 294n-𝑑𝑖 , 294n+𝑑𝑖 , 343n-𝑑𝑖 , 

7p1,7p2, . . . ,7pk-2}, circulant graphs 𝐶343𝑛(𝑅𝑖) are graphs without CI-property with 𝑚𝑗  = gcd(343n, 𝑟𝑗 ) = 7, 

𝑟𝑗𝑅𝑖 ,  gcd(p1,p2,…,pk-2) = 1 and  n,p1,p2,…,pk-2N. 

Through-out this paper, for a set R = {𝑟1 , 𝑟2, … , 𝑟𝑘}, 𝐶𝑛(𝑅) denotes circulant graph 𝐶𝑛(𝑟1 , 𝑟2 , … , 𝑟𝑘) where 1  

𝑟1 < 𝑟2 < ⋯ < 𝑟𝑘   [n/2]. We consider only connected circulant graphs of finite order, V(𝐶𝑛(𝑅)) = 

{v0,v1,v2,…,vn-1} with vi adjacent to vi+r for each rR, subscript addition taken modulo n and all cycles have 

length at least 3, unless otherwise specified, 0  i  n-1. However when 
𝑛

2
R, edge 𝑣𝑖𝑣𝑖+

𝑛

2
 is taken as a single 

edge for considering the degree of the vertex 𝑣𝑖  or 𝑣
𝑖+

𝑛

2
 and as a double edge while counting the number of 

edges or cycles in 𝐶𝑛(𝑅), 0  i  n-1. We will often assume, with-out further comment, that the vertices of 

𝐶𝑛(𝑅) are the corners of a regular n-gon, labeled clockwise. Circulant graph is also defined as a Cayley graph or 

digraph of a cyclic group.Isomorphic circulant graphs 𝐶16(1,2,7) and 𝐶16(2,3,5) are given in Figures 1 and 2 and 

isomorphic circulant graphs 𝐶27(1,3,8,10), 𝐶27(3,4,5,13) and 𝐶27(2,3,7,11) are shown in Figures 3, 4 and 5, 

respectively.  

Theorem 1.1 [11] If 𝐶𝑛(𝑅)  𝐶𝑛(𝑆), then there is a bijection f from R to S so that for all rR, gcd(n, r) = 

gcd(n,f(r)).  

Proof: The proof is by induction on the order of R.   

Definition 1.2 [7] A circulant graph 𝐶𝑛(𝑅) is said to have the CI-property if whenever 𝐶𝑛(𝑆) is isomorphic to 

𝐶𝑛(𝑅), there is some a∈𝑍𝑛
∗  for which S = aR. 

Lemma 1.3 [12] Let S be a non-empty subset of 𝑍𝑛  and x𝑍𝑛 . Define a mapping 𝑛,𝑥 : S  𝑍𝑛  such that 𝑛,𝑥 (s) 

=xs for every sS under multiplication modulo n. Then 𝑛,𝑥  is bijective if and only if S =𝑍𝑛  and gcd(n,x) = 1.  

Definition 1.4 [1] Circulant graphs, 𝐶𝑛(𝑅) and 𝐶𝑛(𝑆) for R = {r1,r2,…,rk} and S = {s1,s2,...,sk} are Adam’s 

isomorphic or Type-1 isomorphic if there exists a positive integer x relatively prime to n with S = 
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{𝑥𝑟1 , 𝑥𝑟2 , … , 𝑥𝑟𝑘}𝑛
∗  where < 𝑟𝑖 >𝑛

∗ , the reflexive modular reduction of a sequence <ri> is the sequence obtained 

by reducing each ri modulo n to yield 𝑟𝑖
′ and then replacing all resulting terms 𝑟𝑖

′ which are larger than 
𝑛

2
 by n-𝑟𝑖

′.  

Lemma 1.5 [12] Let j,m,q,r,t,x𝑍𝑛  such that gcd(n, r) = m > 1, x = j+qm, 0  j  m-1 and 

0  q,t  
𝑛

𝑚
 -1. Then the mapping 𝑛,𝑟,𝑡 : 𝑍𝑛   𝑍𝑛  defined by 𝑛,𝑟,𝑡(x) = x+jtm for every x𝑍𝑛  under arithmetic 

modulo n is bijective. 

Proof: From the definition of 𝑛,𝑟,𝑡  we get the following properties:  

i) 𝑛,𝑟,𝑡(km) = km for every kZn, km𝑍𝑛 . 

ii) For 0  i,j  m-1, 𝑛,𝑟,𝑡(i) = 𝑛,𝑟,𝑡(j) if and only if i = j if and only if 𝑛,𝑟,𝑡(i+qm) = 𝑛,𝑟,𝑡(j+qm), 0  qm  n-

1 and 

iii) For 0  i  m-1 and 0  km,qm  n-1, 𝑛,𝑟,𝑡(i+km) = 𝑛,𝑟,𝑡(i+qm)  if and only if k = q.  
From the above three properties, we get, 

iv) For 0  i,j  m-1 and 0  km,qm  n-1, 𝑛,𝑟,𝑡(i+km) = 𝑛,𝑟,𝑡(j+qm) if and only if i = j and k = q. This implies 

that the mapping 𝑛,𝑟,𝑡  is bijective. 

Hence the result follows.     

Theorem 1.6 [12] Let V(𝐶𝑛(𝑅)) = {v0,v1,v2,…,vn-1}, V(𝐾𝑛 ) = {u0,u1,u2,…,un-1}, rR and j,m,q,t,x𝑍𝑛  such that 

gcd(n, r) = m > 1,  x = j+qm, 0  j  m-1 and 0  q,t  
𝑛

𝑚
 -1. Then the mapping 𝑛,𝑟,𝑡 : V(𝐶𝑛(𝑅))  

V(𝐶𝑛 (1,2,…,n-1)) = V(𝐾𝑛 ) defined by 𝑛,𝑟,𝑡(𝑣𝑥 ) = 𝑢𝑥+𝑗𝑡𝑚  and 𝑛,𝑟,𝑡((vx,vx+s)) = (𝑛,𝑟 ,𝑡(vx), 𝑛,𝑟,𝑡(vx+s)) for every 

x𝑍𝑛  and sR, under subscript arithmetic modulo n, for a set R = {r1,r2,…,rk, n-rk,n-rk-1,…,r1} is one-to-one, 

preserves adjacency and 𝑛,𝑟,𝑡(𝐶𝑛(𝑅)) 𝐶𝑛(𝑅) for t = 0,1,2,…,
𝑛

𝑚
 - 1.   

And for a particular value of t if 𝑛,𝑟,𝑡(𝐶𝑛(𝑅)) = 𝐶𝑛(𝑆) for some S  [1, [n/2]] and S  xR for all x𝑛  under 

reflexive modulo n, then 𝐶𝑛(𝑅) and 𝐶𝑛(𝑆) are called Type-2isomorphiccirculant graphs w.r.t. r, 0  q,t  
𝑛

𝑚
 -1.    

Definition 1.7 [12] The symmetric equidistance condition with respect to 𝑣𝑖  in 𝐶𝑛(𝑅) for a set R = {r1,r2,…,rk} 

is that 𝑣𝑖+𝑗  is adjacent to 𝑣𝑖  if and only if 𝑣𝑛−𝑗+𝑖  is adjacent to 𝑣𝑖 , using subscript arithmetic modulo n, 0  i,j  

n-1.  

Theorem 1.8 [12] For a set R = {r1,r2,…,rk}  [1, n/2], 1  i  k and 0  t  
𝑛

𝑚
 -1, 𝑛,𝑟𝑖 ,𝑡

(𝐶𝑛(𝑅)) = 𝐶𝑛(𝑆) for 

some S  [1, n/2] if and only if 𝑛,𝑟𝑖 ,𝑡
(𝐶𝑛(𝑅)) satisfies the symmetric equidistance condition w.r.t. v0.  

Theorem 1.9 [12] For 2  n, 3  k, 1  2s-1  2n-1,  n  2s-1, R = {2s-1, 4n-2s+1, 2p1,2p2,…,2pk-2} and S = 

{2n-2s+1, 2n+2s-1, 2p1,2p2,...,2pk-2}, circulant graphs C8n(R) and C8n(S) are Type-2 isomorphic (and without 

CI-property) where gcd(p1,p2,…,pk-2) = 1 and n,s,p1,p2,…,pk-2N.    

Theorem 1.10 [14] For 3  k, R = {1, 9n-1, 9n+1, 3p1,3p2,…,3pk-2}, S = {3n+1, 6n-1, 12n+1, 3p1,3p2,…,3pk-2} 

and T = {3n-1, 6n+1, 12n-1, 3p1,3p2,…,3pk-2}, C27n(R), C27n(S) and C27n(T) are Type-2 isomorphic (and without 

CI-property) where gcd(p1,p2,…,pk-2) = 1 and n,p1,p2,…,pk-2N.   

Theorem 1.11 [15] For i = 1 to 5, 𝑑𝑖  = 5n(i-1)+1, 3  k and 𝑅𝑖  = {𝑑𝑖 , 25n-𝑑𝑖 , 25n+𝑑𝑖 , 50n-𝑑𝑖 , 50n+𝑑𝑖 , 

5p1,5p2,…,5pk-2}, circulant graphs𝐶125𝑛(𝑅𝑖)are Type-2 isomorphic (and without CI-property) where 

gcd(p1,p2,…,pk-2) = 1 and n,p1,p2,…,pk-2N.  

Theorem 1.12 [12] For R = {2, 2s-1, 2s’-1}, 1  t  [ 
𝑛

2
], 1  2s-1  2s’-1  [ 

𝑛

2
] and n,s,s’,tN, if 𝐶𝑛(𝑅) and 

𝑛,2,𝑡(𝐶𝑛(𝑅)) are Type-2 isomorphic circulant graphs for some t, then n  0 (mod 8), 2s-1+2s’-1 = 
𝑛

2
, t = 

𝑛

8
 or 

3𝑛

8
, 

2s’-1  
𝑛

8
, 1  2s-1  

𝑛

4
 and 16  n.    

Theorem 1.13 [12] Let x𝑍𝑛 . Define mapping 𝑛,𝑥 : 𝑉(𝐶𝑛(𝑅))  𝑉(𝐾𝑛) for a set R = {r1,r2,…,rk, n-rk,n-rk-1, ..., 

n-r1} such that 𝑛,𝑥 (vi) = uxi and 𝑛,𝑥((vi , vi+s)) = (𝑛,𝑥 (vi), 𝑛,𝑥 (vi+s)) for every sR and i𝑍𝑛  under subscript 

arithmetic modulo n where V(𝐶𝑛(𝑅)) = {v0, v1, . . . , vn-1} and V(𝐾𝑛 ) = {u0,u1,…,un-1}. Then 𝑛,𝑥(𝐶𝑛(𝑅)) = 

𝐶𝑛(𝑥𝑅) and the mapping 𝑛,𝑥  is one-to-one if and only if  gcd(n, x) = 1.  

Definition 1.14 [12] Let 𝐴𝑑𝑛 (𝐶𝑛(𝑅)) = 𝑇1𝑛 (𝐶𝑛(𝑅)) = {𝑛,𝑥(𝐶𝑛(𝑅)): x𝑛} = {𝐶𝑛 (xR): x𝑛} for a set R = 

{r1,r2,…,rk, n-rk,n-rk-1,...,n-r1}. Define ‘o’ in 𝐴𝑑𝑛 (𝐶𝑛(𝑅)) such that 𝑛,𝑥 (𝐶𝑛(𝑅)) o 𝑛,𝑦 (𝐶𝑛(𝑅)) = 𝑛,𝑥𝑦 (𝐶𝑛(𝑅)) 

and 𝐶𝑛 (xR) o 𝐶𝑛 (yR) = 𝐶𝑛 ((xy)R) for every x,y𝑛 , under arithmetic modulo n. Clearly, 𝐴𝑑𝑛 (𝐶𝑛(𝑅)) is the set 

of all circulant graphs which are Adam’s isomorphic to 𝐶𝑛(𝑅) and (𝐴𝑑𝑛 (𝐶𝑛(𝑅)), o) = (𝑇1𝑛 (𝐶𝑛(𝑅)), o) is an 

abelian group called the Adam’s group or theType-1 group on 𝐶𝑛(𝑅) under ‘o’. 

Definition 1.15 [12] Let V(𝐶𝑛(𝑅)) = {v0,v1,v2,…,vn-1}, V(𝐾𝑛 ) = {u0,u1,u2,…,un-1}, rR, m,q,t,t’,x𝑍𝑛  such that 

gcd(n, r) = m > 1, x = j+qm, 0  j  m-1 and 0  q,t,t ’ 
𝑛

𝑚
 -1. Define 𝑛,𝑟,𝑡 : 𝑍𝑛   𝑍𝑛  and 𝑛,𝑟,𝑡 : V(𝐶𝑛(𝑅))  

V(𝐶𝑛 (1,2,…,n-1)) = V(𝐾𝑛 ) such that 𝑛,𝑟,𝑡(x) = x+jtm, 𝑛,𝑟,𝑡(𝑣𝑥 ) = 𝑢𝑥+𝑗𝑡𝑚  and 𝑛,𝑟,𝑡((vx,vx+s)) = (𝑛,𝑟,𝑡(vx), 

𝑛,𝑟,𝑡(vx+s)) for every x𝑍𝑛  and sR, under arithmetic modulo n. Let s𝑍𝑛 , 𝑉𝑛,𝑟  = {𝑛,𝑟,𝑡 : t = 0,1,…,
𝑛

𝑚
 -1}, 
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𝑉𝑛,𝑟 (s) = {𝑛,𝑟,𝑡(s): t = 0,1,…,
𝑛

𝑚
 -1} and 𝑉𝑛,𝑟 (𝐶𝑛(𝑅)) = {𝑛,𝑟,𝑡(𝐶𝑛(𝑅)): t = 0,1,…,

𝑛

𝑚
 -1}. Define ‘o’ in 𝑉𝑛,𝑟  such 

that 𝑛,𝑟,𝑡  o 𝑛,𝑟,𝑡′  = 𝑛,𝑟,𝑡+𝑡′, (𝑛,𝑟,𝑡o𝑛,𝑟,𝑡′)(x) ( = 𝑛,𝑟,𝑡(𝑛,𝑟,𝑡′(x)) = 𝑛,𝑟,𝑡(x+jt’m) = (x+jt’m)+jtm = x+j(t+t’)m ) 

= 𝑛,𝑟,𝑡+𝑡′(x) and 𝑛,𝑟,𝑡(𝐶𝑛(𝑅)) o 𝑛,𝑟,𝑡′(𝐶𝑛(𝑅)) = 𝑛 ,𝑟,𝑡+𝑡′(𝐶𝑛(𝑅)) for every 𝑛,𝑟 ,𝑡 ,𝑛,𝑟,𝑡′𝑉𝑛,𝑟  where t+t’ is 

calculated under addition modulo  
𝑛

𝑚
. Clearly, for every s𝑍𝑛 , (𝑉𝑛,𝑟 (s), o) and (𝑉𝑛,𝑟 (𝐶𝑛(𝑅)), o) are abelian 

groups. 

𝑉𝑛,𝑟 (𝐶𝑛(𝑅)) contains all isomorphic circulant graphs of Type 2 of 𝐶𝑛(𝑅) w.r.t. r, if exist. Let 𝑇2𝑛,𝑟 (𝐶𝑛(𝑅)) = 

{𝐶𝑛(𝑅)}  {𝐶𝑛(𝑆): 𝐶𝑛(𝑆) is Type-2 isomorphic to 𝐶𝑛(𝑅) w.r.t. r}. Thus, 𝑇2𝑛,𝑟 (𝐶𝑛(𝑅)) = {𝐶𝑛(𝑅)}  

{𝑛,𝑟,𝑡(𝐶𝑛(𝑅)): 𝑛,𝑟,𝑡(𝐶𝑛(𝑅)) = 𝐶𝑛(𝑆) and 𝐶𝑛(𝑆) is Type-2 isomorphic to 𝐶𝑛(𝑅) w.r.t. r, 0  t  
𝑛

𝑚
 -1}  

𝑉𝑛,𝑟 (𝐶𝑛(𝑅)) and (𝑇2𝑛,𝑟 (𝐶𝑛(𝑅)), o) is a subgroup of (𝑉𝑛,𝑟 (𝐶𝑛(𝑅)), o). Clearly, 𝑇1𝑛 (𝐶𝑛(𝑅))  𝑇2𝑛,𝑟 (𝐶𝑛(𝑅)) = 

{𝐶𝑛(𝑅)}. 𝐶𝑛(𝑅) has Type-2 isomorphic circulant graph w.r.t. r iff  𝑇2𝑛,𝑟 (𝐶𝑛(𝑅))  {𝐶𝑛(𝑅)} iff  𝑇2𝑛,𝑟 (𝐶𝑛(𝑅))  

{𝐶𝑛(𝑅)}  iff  |𝑇2𝑛,𝑟 (𝐶𝑛(𝑅))| > 1 [14]. 

Definition 1.16 [14] For any circulant graph 𝐶𝑛(𝑅), if 𝑇2𝑛,𝑟 (𝐶𝑛(𝑅))  {𝐶𝑛(𝑅)}, then (𝑇2𝑛,𝑟 (𝐶𝑛(𝑅)), o) is called 

the Type-2 group of  𝐶𝑛(𝑅) w.r.t. r under ‘o’. 

Effort to obtain new families of circulant graphs without CI-property is the motivation for this work. For all 

basic ideas in graph theory, we follow [5]. 

 

II. Main result 

Theorem 2.1 For i = 1 to 7, nN, 𝑑𝑖  = 7n(i-1)+1 and 𝑅𝑖  = {7, 𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , 147n-𝑑𝑖 , 

147n+𝑑𝑖}, circulant graphs 𝐶343𝑛(𝑅𝑖) are isomorphic. 

Proof: We prove that for i = 1 to 7, 𝑑𝑖  = 7n(i-1)+1 and 𝑅𝑖  = {7, 𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , 147n-𝑑𝑖 , 

147n+𝑑𝑖}, 343𝑛,7,𝑖𝑛 (𝐶343𝑛(𝑅1)) = 𝐶343𝑛(𝑅𝑖+1) where i+1 is calculated under addition modulo 7.  

To simplify our calculation let us consider 𝑅𝑖  = {7, 𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , … , 294n-𝑑𝑖 , 294n+𝑑𝑖 , 

343n-𝑑𝑖 , 343n-7}, 𝑑𝑖  = 7n(i-1)+1 and i = 1 to 7. In particular, 

𝑅1 = {1, 7, 49n-1, 49n+1, 98n-1, 98n+1, 147n-1, 147n+1, 196n-1, 196n+1,  

                                                                               245n-1, 245n+1, 294n-1, 294n+1, 343n-7, 343n-1}, 

𝑅2 = {7, 7n+1, 42n-1, 56n+1, 91n-1, 105n+1, 140n-1, 154n+1, 189n-1, 203n+1,  

                                                                               238n-1, 252n+1, 287n-1, 301n+1, 336n-1, 343n-7}, 

𝑅3 = {7, 14n+1, 35n-1, 63n+1, 84n-1, 112n+1, 133n-1, 161n+1, 182n-1, 210n+1,  

                                                                               231n-1, 259n+1, 280n-1, 308n+1, 329n-1, 343n-7}, 

𝑅4= {7, 21n+1, 28n-1, 70n+1, 77n-1, 119n+1, 126n-1, 168n+1, 175n-1, 217n+1,  

                                                                               224n-1, 266n+1, 273n-1, 315n+1, 322n-1, 343n-7}, 

𝑅5 = {7, 21n-1, 28n+1, 70n-1, 77n+1, 119n-1, 126n+1, 168n-1, 175n+1,  

                                                                               217n-1, 224n+1, 266n-1, 273n+1, 315n-1, 322n+1, 343n-7}, 

𝑅6 = {7, 14n-1, 35n+1, 63n-1, 84n+1, 112n-1, 133n+1, 161n-1, 182n+1,  

                                                                               210n-1, 231n+1, 259n-1, 280n+1, 308n-1, 329n+1, 343n-7}, 

𝑅7 = {7, 7n-1, 42n+1, 56n-1, 91n+1, 105n-1, 140n+1, 154n-1, 189n+1, 203n-1,  

                                                                               238n+1, 252n-1, 287n+1, 301n-1, 336n+1, 343n-7}. 

For 1  i,j  7, using the definition of 𝑛,r,𝑡 , we get the following: 

343𝑛,7,𝑛 (𝑅1) = 343𝑛,7,𝑛 ({1, 7, 49n-1, 49n+1, 98n-1, 98n+1, 147n-1, 147n+1, 196n-1, 196n+1, 245n-1, 245n+1, 

294n-1, 294n+1, 343n-7, 343n-1}) = 343𝑛,7,𝑛 ({7, 343n-7})  343𝑛,7,𝑛 ({1, 49n+1, 98n+1, 147n+1, 196n+1, 

245n+1, 294n+1})  343𝑛,7,𝑛 ({49n-1, 98n-1, 147n-1, 196n-1, 245n-1, 294n-1, 343n-1}) = {7, 343n-7}  

(7n+({1, 49n+1, 98n+1, 147n+1, 196n+1, 245n+1, 294n+1}))  (42n+({49n-1, 98n-1, 147n-1, 196n-1, 245n-1, 

294n-1, 343n-1})) = {7, 343n-7}  {7n+1, 56n+1, 105n+1, 154n+1, 203n+1, 252n+1, 301n+1}  {91n-1, 

140n-1, 189n-1, 238n-1, 287n-1, 336n-1, 42n-1} = 𝑅2; 

343𝑛,7,𝑖𝑛 (𝑅1) =  343𝑛,7,𝑖𝑛 ({7, 343n-7})  343𝑛,7,𝑖𝑛 ({1, 49n+1, 98n+1, 147n+1, 196n+1, 245n+1, 294n+1})  

343𝑛,7,𝑖𝑛 ({49n-1, 98n-1, 147n-1, 196n-1, 245n-1, 294n-1, 343n-1}) = {7, 343n-7}  (7in+({1, 49n+1, 98n+1, 

147n+1, 196n+1, 245n+1, 294n+1}))  (42in+({49n-1, 98n-1, 147n-1, 196n-1, 245n-1, 294n-1, 343n-1})) = {7, 

343n-7}  {7in+1, 49n+7in+1, 98n+7in+1, 147n+7in+1, 196n+7in+1, 245n+7in+1, 294n+7in+1}  

{49n+42in-1 = (49+49i)n-(7in+1), 98n+42in-1 = (2x49+49i)n-(7in+1), 147n+42in-1 = (3x49+49i)n-(7in+1), 

196n+42in-1 = (4x49+49i)n-(7in+1), 245n+42in-1 = (5x49+49i)n-(7in+1), 294n+42in-1 = (6x49+49i)n-(7in+1), 

343n+42in-1 = (7x49+49i)n-(7in+1) = (0x49+49i)n-(7in+1)} = 𝑅𝑖+1 where 𝑑𝑖+1 = 7in+1. 

In a similar way we can prove that for 1  i,j  7, 343𝑛,7,𝑗𝑛 (𝑅𝑖) = 𝑅𝑖+𝑗  where i+j is calculated under addition 

modulo 7. This implies that for 1  i,j  7, 343𝑛,7,𝑗𝑛 (𝐶343𝑛(𝑅𝑖)) = 𝐶343𝑛(𝑅𝑖+𝑗 ) where i+j is calculated under 

addition modulo 7. 
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Hence the result follows since the mapping 𝑛,𝑟,𝑡  is one-to-one and preserves adjacency on circulant graph 

𝐶𝑛(𝑅).      

Theorem 2.2 For i = 1 to 7, nN, 𝑑𝑖  = 7n(i-1)+1 and 𝑅𝑖  = {7, 𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , 147n-𝑑𝑖 , 

147n+𝑑𝑖}, 343𝑛,7,𝑗𝑛 (𝐶343𝑛(𝑅𝑖)) = 𝐶343𝑛(𝑅𝑖+𝑗 ) where i+j is calculated under addition modulo 7 and 𝐶343𝑛(𝑅𝑖) 

are Type-2 isomorphic circulant graphs. 

Proof: To prove that for i = 1,2,…,7, circulant graphs 𝐶343𝑛(𝑅𝑖) are of Type-2 isomorphic, it is enough to prove 

that every pair of the circulant graphs are different (not the same), isomorphic and not of Adam’s isomorphic. 

When 𝑅𝑖  = {7, 𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , 147n-𝑑𝑖 , 147n+𝑑𝑖}, 𝑑𝑖  = 7n(i-1)+1, 1  i,j  7 and nN, 𝑅𝑖  

= 𝑅𝑗  iff i  = j. Thus for different i, the set of jump sizes of the seven circulant graphs 𝐶343𝑛(𝑅𝑖) are different and 

thereby the seven circulant graphs are also different. 

In the proof of Theorem 2.1, we have seen that when 𝑅𝑖  = {7, 𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , 147n-𝑑𝑖 , 

147n+𝑑𝑖}, 𝑑𝑖  = 7n(i-1)+1, 1  i,j  7and nN, 343𝑛,7,𝑖𝑛 (𝐶343𝑛(𝑅𝑗 )) = 𝐶343𝑛(𝑅𝑖+𝑗 ) where i+j is calculated under 

addition modulo 7. This implies that for i = 1 to 7 all the seven circulant graphs 𝐶343𝑛(𝑅𝑖) are isomorphic since 

the mapping 𝑛,𝑟,𝑡  is one-to-one and preserves adjacency on circulant graph 𝐶𝑛(𝑅).  

To complete the proof we are left with establishing their isomorphism is of Type-2. Now it is enough to prove 

that each pair of isomorphic circulant graphs 𝐶343𝑛(𝑅𝑖) and 𝐶343𝑛(𝑅𝑗 ) for ij are not of Type-1, 1  i,j  7. At 

first let us prove the result for the circulant graph 𝐶343𝑛(𝑅1).  

Claim: 𝐶343𝑛(𝑅1) and 𝐶343𝑛 𝑅𝑖  are Type-2 isomorphic for every i, 2  i  7. 

If not, they are of Adam’s isomorphic. This implies, there exists sN such that 𝐶343𝑛(𝑠𝑅1) = 𝐶343𝑛 𝑅𝑖   where 2 

 i  7, s = 7x-j, xN, j = 1 to 6, 1  7x-j  343𝑛-1 and gcd(343𝑛, s) = 1. In particular, now choose s such that s 

= 7x-1, gcd(343n, 7x-1) = 1, 𝐶343𝑛((7𝑥 − 1)𝑅1) = 𝐶343𝑛 𝑅𝑖 , 2  i  7 and xN. This implies, (7x-1){1,7,49n-1, 

49n+1, 98n-1, 98n+1, 147n-1, 147n+1, 196n-1, 196n+1, 245n-1, 245n+1, 294n-1, 294n+1, 343n-7, 343n-1} = 

{7x-1,7(7x-1),(7x-1)(49n-1), (7x-1)(49n+1), (7x-1)(98n-1), (7x-1)(98n+1), (7x-1)(147n-1), (7x-1)(147n+1), (7x-

1)(196n-1), (7x-1)(196n+1), (7x-1)(245n-1), (7x-1)(245n+1), (7x-1)(294n-1), (7x-1)(294n+1), (7x-1)(343n-7), 

(7x-1)(343n-1)} under arithmetic modulo 343n. This implies, 7(7x-1), (7x-1)(343n-7), 7+343n𝑝1 and 343n-

7+343n𝑝2 are the only numbers, each is a multiple of 7, in the two sets for some p1,p2𝑁0. Here the following 

two cases arise.  

Case i 7(7x-1) = 7+343np1,  p1𝑁0,  xN, 1  7x-1  343n-1. 

In this case, p1 = 0,1,…,5 or 6 since 1  7x-1 343n-1 and n,xN. When p1 = 0, 7x-1 = 1; p1 = 1, 7x-1 = 49n+1; 

p1 = 2, 7x-1 = 98n+1; p1 = 3, 7x-1 = 147n+1; p1 = 4, 7x-1 = 196n+1; p1 = 5, 7x-1 = 245n+1; p1 = 6, 7x-1 = 

294n+1. Now let us calculate (7𝑥 − 1)𝑅1 for 7x-1 = 49n+1, 98n+1, 147n+1, 196n+1, 245n+1, 294n+1 under 

arithmetic modulo 343𝑛. 

When 7x-1 = 49n+1, under arithmetic modulo 343n,  

(7𝑥 − 1)𝑅1 = (49𝑛 + 1)𝑅1 = (49n+1){1, 7, 49n-1, 49n+1, 98n-1, 98n+1, 147n-1, 147n+1, 196n-1,  

                                                                                  196n+1, 245n-1, 245n+1, 294n-1, 294n+1, 343n-7, 343n-1} 

                    = {49n+1, 7, 343n-1, 98n+1, 49n-1, 147n+1, 98n-1, 196n+1, 147n-1,  

                                                                                  245n+1, 196n-1, 294n+1, 245n-1, 1, 343n-7, 294n-1}= 𝑅1. 

Similarly, we can prove that (7𝑥 − 1)𝑅1 = 𝑅1 when 7x-1 = 98n+1, 147n+1, 196n+1, 245n+1 or 294n+1 under 

arithmetic modulo 343𝑛. This implies, 𝐶343𝑛((7𝑥 − 1)𝑅1) = 𝐶343𝑛(𝑅1) when 7x-1 = 49n+1, 98n+1,147n+1, 

196n+1, 245n+1 or 294n+1. Similarly, we can prove that for j = 2,3,4,5,6, (7𝑥 − 𝑗)𝑅1 = 𝑅1under arithmetic 

modulo 343n when 7x-j = 49n+1, 98n+1, 147n+1, 196n+1, 245n+1, 294n+1. This implies,  𝐶343𝑛((7𝑥 − 𝑗)𝑅1) 

= 𝐶343𝑛(𝑅1) for j = 1,2,…,6 and 7x-j = 49n+1, 98n+1, 147n+1, 196n+1, 245n+1, 294n+1. 

Case ii 7(7x-1) = 343n-7+343n𝑝2,  p2𝑁0, xN, 1  7x-1  343n-1. 

In this case, p2 = 0,1,2,3,4,5 or 6 since 1  7x-1  343n-1 and n,xN. When p2 = 0, 7x-1 = 49n-1; p2 = 1, 7x-1 = 

98n-1; p2 = 2, 7x-1 = 147n-1; p2 = 3, 7x-1 = 196n-1; p2 = 4, 7x-1 = 245n-1; p2 = 5, 7x-1 = 294n-1; p2 = 6, 7x-1 = 

343n-1. Now let us calculate (7𝑥 − 1)𝑅1 for 7x-1 = 49n-1, 98n-1, 147n-1, 196n-1, 245n-1, 294n-1, 343n-1 

under arithmetic modulo 343n. 

When (7𝑥 − 1) = 49n-1, under arithmetic modulo 343n, 

(7𝑥 − 1)𝑅1 = (49𝑛 − 1)𝑅1 = (49n-1){1, 7, 49n-1, 49n+1, 98n-1, 98n+1, 147n-1, 147n+1,  

                                                                      196n-1, 196n+1, 245n-1, 245n+1, 294n-1, 294n+1, 343n-7, 343n-1} 

                    = {49n-1, 343n-7, 245n+1, 343n-1, 196n+1, 294n-1, 147n+1, 245n-1,98n+1,  

                                                                      196n-1, 49n+1, 147n-1, 1, 98n-1, 7, 294n+1} = 𝑅1. 

Similarly, we can prove that (7𝑥 − 1)𝑅1 = 𝑅1 when 7x-1 = 98n-1, 147n-1, 196n-1, 245n-1, 294n-1, 343n-1 

under arithmetic modulo 343n. This implies, 𝐶343𝑛((7𝑥 − 1)𝑅1) = 𝐶343𝑛(𝑅1) when 7x-1 = 49n-1, 98n-1, 147n-

1, 196n-1, 245n-1, 294n-1, 343n-1. Similarly, we can prove that (7𝑥 − 𝑗)𝑅1= 𝑅1, under arithmetic modulo 

343n, when 7x-j = 49n-1, 98n-1, 147n-1, 196n-1, 245n-1, 294n-1, 343n-1for j = 2,3,4,5,6. This implies, 
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𝐶343𝑛((7𝑥 − 𝑗)𝑅1) = 𝐶343𝑛(𝑅1) when 7x-j = 49n-1, 98n-1, 147n-1, 196n-1, 245n-1, 294n-1, 343n-1for j = 

1,2,3,4,5,6. 

This implies, 𝐶343𝑛(𝑅1) is not Adam’s isomorphic to all the other six isomorphic circulant graphs. Similarly, we 

can prove that 𝐶343𝑛(𝑅𝑖) is not Adam’s isomorphic to all the other six circulant graphs, 1 i 7. This implies, all 

the seven isomorphic circulant graphs 𝐶343𝑛(𝑅𝑖) are Type 2 isomorphic circulant graphs only, 1  i  7.  

Theorem 2.3 For i = 1 to 7, 𝑑𝑖  = 7n(i-1)+1, 3  k and 𝑅𝑖  = {𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , 147n-𝑑𝑖 , 

147n+𝑑𝑖 , 7p1,7p2,…,7pk-2}, circulant graphs 𝐶343𝑛(𝑅𝑖) are Type-2 isomorphic (and without CI-property) where 

gcd(p1,p2,…,pk-2) = 1 and n,p1,p2,…,pk-2N. 

Proof: For i = 1 to 7, 𝑑𝑖  = 7n(i-1)+1, 3  k and 𝑅𝑖  = {7, 𝑑𝑖 , 49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , 147n-𝑑𝑖 , 147n+𝑑𝑖}, 

circulant graphs 𝐶343𝑛(𝑅𝑖) are Type-2 isomorphic, using Theorem 2.2, nN. Lemma 1.5 helps us while 

searching for possible value(s) of t such that the transformed graph 𝑛,𝑟,𝑡(𝐶𝑛(𝑅)) is circulant of the form 𝐶𝑛(𝑆) 

for some S  [1, n/2], the calculation on 𝑟𝑗  which are integer multiples of m = gcd(n, r) need not be done as there 

is no change in these 𝑟𝑗  under the transformation 𝑛,𝑟,𝑡 . Therefore, for i = 1 to 7, 𝑑𝑖  = 7n(i-1)+1 and 𝑅𝑖  = {𝑑𝑖 , 

49n-𝑑𝑖 , 49n+𝑑𝑖 , 98n-𝑑𝑖 , 98n+𝑑𝑖 , 147n-𝑑𝑖 , 147n+𝑑𝑖 , 7p1,7p2,…,7pk-2}, circulant graphs 𝐶343𝑛(𝑅𝑖) are Type-2 

isomorphic circulant graphs where 3  k, gcd(p1,p2,…,pk-2) = 1 and n,p1,p2,…,pk-2N. Type-2 isomorphic 

circulant graphs are graphs without CI-property. Hence the result follows.    

For n = 1, let 

C343(1, 7, 48, 50, 97, 99, 146, 148, 195, 197, 244, 246,293,295,336,342) = C343(𝑅1), 

C343(7, 8, 41, 57, 90, 106, 139, 155, 188, 204, 237, 253, 286, 302, 335, 336)= C343(𝑅2), 

C343(7, 15, 34, 64, 83, 113, 132, 162, 181, 211, 230, 260, 279, 309, 328, 336)= C343(𝑅3), 

C343(7, 22, 27, 71, 76, 120, 125, 169, 174, 218, 223, 267, 272, 316, 321, 336)= C343(𝑅4), 

C343(7, 20, 29, 69, 78, 118, 127, 167, 176, 216, 225, 265, 274, 314, 323, 336)= C343(𝑅5), 

C343(7, 13, 36, 62, 85, 111, 134, 160, 183, 199, 232, 258, 281, 307, 330, 336)= C343(𝑅6), 

C343(7, 6, 43, 55, 92, 104, 141, 153, 190, 192, 239, 251, 288, 300, 337, 336)= C343(𝑅7).  

Then, circulant graphs C343(𝑅𝑖) are Type 2 isomorphic, 1  i  7. 

Theorem 2.4 For i = 1 to 7, 𝑑𝑖  = 7n(i-1)+1, 3  k and 𝑅𝑖  = {𝑑𝑖 ,49n-𝑑𝑖 ,49n+𝑑𝑖 ,98n-𝑑𝑖 ,98n+𝑑𝑖 ,147n-𝑑𝑖 ,147n+𝑑𝑖 , 

7p1,7p2,…,7pk-2}, (𝑉343𝑛,5(𝐶343𝑛(𝑅𝑖)), o) is an abelian group where gcd(p1,p2,…,pk-2) = 1, n,p1,p2,…,pk-2N. 

Proof: The result follows from Theorem 2.3 and from the definitions of 𝑛,𝑟,𝑡  and 𝑉𝑛,𝑟 . □ 

For n = 1 and 𝑅𝑖s as given just above Theorem 2.4,  (𝑇2343,7(𝐶343 (𝑅𝑖)), o) is the required Type 2 group of 

𝐶343 (𝑅𝑖) w.r.t. r = 7 where 𝑇2343,7(𝐶343 (𝑅𝑖)) = {343,7,𝑗 (𝐶343 (𝑅𝑖)): j = 0,1,2,3,4,5,6} = {𝐶343 (𝑅𝑗 ): j = 

1,2,3,4,5,6,7} since 343,7,𝑗 (𝐶343 (𝑅𝑖)) = 𝐶343𝑛(𝑅𝑖+𝑗 ) where i+j is calculated under addition modulo 7,  1  i  7. 

 

III.   Conclusion 
In this paper and in [12], [14], [15] we obtained families of isomorphic circulant graphs of Type-2 (and 

without CI-property), each with 𝑚𝑖  = gcd(n, 𝑟𝑖) = 2, 3, 5 or 7. One can go for general result with 𝑚𝑖 , an odd 

number greater than 7.  
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