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Abstract: The concept of statistical limit inferior and superior for single sequences was introduced by Fridy 

and Orhan (1997) where some inequalities and Knopp type core theorem were obtained. Cakan and Altay 

extended these results to double sequences, similar results were obtained for 𝐶1.1 𝑆𝑡2 −sequences by Siddiqui 

et al. (2012). Demirci (2001), Lahiri and Das (2003) used the same concept to define the 𝐼 −limit inferior, 

𝐼 −limit superior and obtained some 𝐼 −analogue of the properties of limit inferior and superior for single 

sequences. Kumar (2007) further extended this concept to double sequences. In this paper we define 

𝐶,1.1
𝐼  𝑆𝑡2 −limit inferior, superior and 𝐶,1.1

𝐼  𝑆𝑡2 −Core which are 𝐼 −analogues of 𝐶1.1 𝑆𝑡2 −limit inferior, 

superior and 𝐶1.1 𝑆𝑡2 −Core for double sequences respectively. 

Key Words: Double sequence, 𝐶1.1
𝐼  𝑆𝑡2 −limit superior and inferior, 𝐶1.1

𝐼 −core of double sequences. 
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I. Introduction 
Pringsheim (1900) introduced the notion of convergence for double sequences. Using this definition, 

Robison (1926) and Hamilton [(1936),(1938a),(1938b),(1939)], defined and extensively studied the four 

dimensional matrix transformation  𝐴𝑥 𝑚𝑛 =  𝑎𝑖𝑗
𝑚𝑛 𝑥𝑖𝑗 .𝑖𝑗  Siddiqui et al. (2012) defined and studied Ces𝑎 ro 

statistical Core of double sequences  𝐶1.1 𝑆𝑡2 − 𝐶𝑜𝑟𝑒 . Using these concepts and the notion of 𝐼 −Core 

defined and studied by Kumar (2007), we analogously, define 𝐶1.1
𝐼  𝑆𝑡2 −limit inferior and superior, 

𝐶1.1
𝐼  𝑆𝑡2 −Core which are 𝐼 −analogues of the 𝐶1.1(𝑆𝑡2) −limit inferior and superior, 𝐶1.1 𝑆𝑡2 −Core of 

double sequences respectively. Inequalities relating  𝐶1.1 𝑆𝑡2 −Core and 𝐶1.1
𝐼  𝑆𝑡2 −Core were also presented. 

 

II. Background and Preliminaries 
Throughout the paper ℕ, ℝ will denote respectively the sets of positive integers and real numbers where 

as ℕ2 will denote the usual product set ℕ × ℕ. For any set 𝑋, 𝑃(𝑋) stands for the power set of 𝑋 and 𝐴𝑐  will 

denote the complement of the set 𝐴. 

Definition 2.1: If 𝑋 is a non-empty set then a family of set 𝐼 ⊂ 𝑃(𝑋) is called an ideal in 𝑋 if and only if 

(i) Φ ∈ 𝐼; (𝑖𝑖) For each 𝐴, 𝐵 ∈ 𝐼 we have 𝐴 ∪ 𝐵 ∈ 𝐼;  𝑖𝑖𝑖  For each 𝐴 ∈ 𝐼 and 𝐵 ⊂ 𝐴 we have 𝐵 ∈ 𝐼. 
Definition 2.2: Let 𝑋 is a non-empty set. A non-empty family of sets 𝐹 ⊂ 𝑃 𝑋  is called a filter on 𝑋 if and 

only if (i) Φ ∉ 𝐹;  𝑖𝑖  For each 𝐴, 𝐵 ∈ 𝐹 we have 𝐴 ∩ 𝐵 ∈ 𝐹;  𝑖𝑖𝑖  For each 𝐴 ∈ 𝐹 and 𝐵 ⊃ 𝐴 we have 𝐵 ∈ 𝐹. 
 An ideal 𝐼 is called non-trivial if 𝐼 ≠ Φ and 𝑋 ∉ 𝐼. 
Definition 2.3: A non-trivial ideal 𝐼 ⊂ 𝑃(𝑋) is called an admissible ideal in 𝑋 if and only if it contains all 

singletons, i.e., if it contains   𝑥 : 𝑥 ∈ 𝑋 . 
For further study we shall take 𝑋 = ℕ2 and 𝐼 will denote an ideal of subsets of  ℕ2. The following proposition 

express a relation between the notions of an ideal and a filter. 

Proposition 2.1: Let 𝐼 ⊂ 𝑃(ℕ2) be a non- trivial ideal. Then the class  

𝐹 = 𝐹 1 =  𝑀 ⊂ ℕ2: 𝑀 = ℕ2 − 𝐴, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐴 ∈ 𝐼  is a filter on ℕ2 (we shall call 

𝐹 = 𝐹 1  𝑡𝑕𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡𝑕 𝐼). 

Definition 2.4: Let 𝐼 ⊂ 𝑃(ℕ2) be a non-trivial ideal in ℕ2. A double sequence 𝑥 = (𝑥𝑖𝑗 ) of real numbers is said 

to be 𝐼 −convergent to a number 𝐿 if for each 𝜀 > 0 the set 𝐴 𝜀 =   𝑖, 𝑗 ∈ ℕ2:  𝑥𝑖𝑗 − 𝐿 ≥ 𝜀  belongs to 𝐼.The 

number 𝐿 is called the 𝐼 −limit of the sequence (𝑥𝑖𝑗 ) and we write 𝐼 − lim𝑖𝑗 𝑥𝑖𝑗 = 𝐿. 

Remark 2.1: If we take 𝐼 =  𝐸 ⊂ ℕ2: 𝐸 𝑖𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑  ℕ × 𝐴 ∪  𝐴 × ℕ 𝑤𝑕𝑒𝑟𝑒 𝐴 𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁 .  
Then 𝐼 − convergent is equivalent to the usual Pringsheim’s convergence. 

Definition 2.5: A double sequence 𝑥 = (𝑥𝑖𝑗 ) is said to be convergent to 𝐿 in the Pringsheim’s sense (1900) if 

for each 𝜀 > 0 there exists 𝑚 ∈ ℕ such that  𝑥𝑖𝑗 − 𝐿 < 𝜀 whenever 𝑖, 𝑗 ≥ 𝑚. The number 𝐿 is called the 

Pringsheim limit of the sequence 𝑥. 
Definition 2.6:  A double sequence 𝑥 = (𝑥𝑖𝑗 ) is said to be bounded if ther exists a real number 𝑀 > 0 such that 

 𝑥𝑖𝑗  < 𝑀 for each 𝑖 and𝑗, i.e., if  𝑥 (∞,2) = sup𝑖𝑗  𝑥𝑖𝑗  < ∞. 

We shall denote the set of al bounded double sequence by ℓ∞
2 . Note that in contrast to the case for single 

sequences, a convergent double sequence need not be bounded. By 

𝑐2
∞, 𝑤𝑒 𝑚𝑒𝑎𝑛 𝑡𝑕𝑒 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 P−convergent and bounded double sequences whereas 𝐼2 denotes the space of 
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𝐼 −convergent double sequences. Let 𝐴 = [𝑎𝑖𝑗
𝑚𝑛 ]𝑗 ,𝑘=0

∞  be a four dimensional infinite matrix of real numbers for 

all 𝑚, 𝑛 = 0,1,2, …. The sums 𝑦𝑚𝑛 =  𝑎𝑖𝑗
𝑚𝑛 𝑥𝑖𝑗

∞,∞
𝑖 ,𝑗  are called the 𝐴 −transformation of the sequence  𝑥𝑖𝑗  . A 

double sequence 𝑥 = (𝑥𝑖𝑗 ) is said to be  𝐴 −summable to the number 𝐿 if 𝐴 −transformed sequence (𝑦𝑚𝑛 ) of 

the sequence 𝑥 converges to 𝐿 (in the Pringsheim’s sense) as 𝑚, 𝑛 → ∞. A two dimensional matrix 

transformation is said to be regular if it maps every convergent sequence into convergent sequence with the 

same limit. In 1926, Robison presented a 4- dimensional analogue of regularity for double sequences in which 

he added an additional assumption of boundedness: A four dimensional matrix 𝐴 = [𝑎𝑖𝑗
𝑚𝑛 ]𝑖,𝑗 =0

∞  is said to be 

𝑅𝐻 −regular if and only if it maps every bounded 𝑃 −convergent sequence into a 𝑃 −convergent sequence with 

the same 𝑃 −limit. Let 𝑋 and 𝑌 be two sequence spaces. We denote by (𝑋, 𝑌) the class of all matrices 𝐴 which 

map 𝑋 into 𝑌, and by (𝑋, 𝑌)𝑟𝑒𝑔  we mean 𝐴 ∈(𝑋, 𝑌) such that the limit preserved. A matrix 𝐴 = [𝑎𝑖𝑗
𝑚𝑛 ]𝑖,𝑗 =0

∞  is 

said to be 𝑅𝐻 −regular if and only if 𝐴 ∈  𝑐2
∞, 𝑐2

∞  reg [see Hamilton (1936) and Robison (1926)]. In 1936 

Hamilton proved the following theorem for the regularity of any four dimensional infinite matrix. 

Theorem 2.1: A four dimensional matrix 𝐴 = [𝑎𝑖𝑗
𝑚𝑛 ]𝑖,𝑗 =0

∞  is 𝑅𝐻 −regular if and only if (i) 𝑃 − lim𝑚,𝑛→∞ 𝑎𝑖𝑗
𝑚𝑛 =

0 for each 𝑖,𝑗, (𝑖𝑖) 𝑃−lim𝑚,𝑛→∞𝑖,𝑗𝑎𝑖𝑗𝑚𝑛=1, 𝑖𝑖𝑖 𝑃−lim𝑚,𝑛→∞𝑖𝑎𝑖𝑗𝑚𝑛=0, 𝑖𝑣𝑃−lim𝑚,𝑛→∞𝑖,𝑗𝑎𝐽𝑚𝑛=0, (𝑣) 
𝑃−lim𝑚,𝑛→∞𝑖,𝑗𝑎𝑖𝑗𝑚𝑛exists; (vi) 𝐴=sup𝑚,𝑛𝑖,𝑗𝑎𝑖𝑗𝑚𝑛<∞. 

The idea of 𝑃 −limit inferior, 𝑃 −limit superior and 𝑃 −Core for double sequences was presented by Patterson 

(1999). We state here the two important theorems of Patterson (1999) related to the Core of double sequence. 

Theorem 2.2: If A is a non-negative 𝑅𝐻 −regular summability matrix, then the 𝑃 −Core 𝐴𝑥 ⊆ 𝑃 −Core 𝑥 , 
for any bounded sequence 𝑥 = (𝑥𝑖𝑗 ) for which (𝐴𝑥) exists. 

Theorem 2.3: If a four dimensional matrix, then the following are equivalent (i) for all real double sequences 

(𝑥𝑖𝑗 ), 𝑃 − 𝑙𝑖𝑚𝑠𝑢𝑝 𝐴𝑥 ≤ 𝑝 − 𝑙𝑖𝑚𝑠𝑢𝑝 𝑥; (ii) A is𝑅𝐻 −regular summability matrix with 

𝑃 − lim𝑚,𝑛→∞   𝑎𝑖𝑗
𝑚𝑛  = 1𝑖 ,𝑗 .  

Mursaleen and Osama (2003), Morciz (2003) introduced the two dimensional analogue of natural density as 

follows; Let 𝐾 ⊂ ℕ2 and 𝐾(𝑚, 𝑛) denotes the number of (𝑖, 𝑗) in 𝐾 such that 𝑖 ≤ 𝑚 and 𝑗 ≤ 𝑛. Then the lower 

asymptotic density of 𝐾 is defined by 𝛿2 𝐾 = lim𝑚,𝑛→∞ 𝑖𝑛𝑓𝑚 ,𝑛→∞
𝐾(𝑚,𝑛)

𝑚𝑛
. In case the sequence  

𝐾(𝑚,𝑛)

𝑚𝑛
   has a 

limit in Pringsheim’s sense then we say that 𝐾 has double natural density and is defined by lim𝑚,𝑛→∞
𝐾(𝑚,𝑛)

𝑚𝑛
=

𝛿2 𝐾 . Cakan and Altay (2006) defined the statistical limit superior and inferior for a double sequence as 

follow. 

Let 𝐵𝑥 =  𝑏 ∈ ℝ: 𝛿2   𝑖, 𝑗 : 𝑥𝑖𝑗 > 𝑏  ≠ 0 , and 𝐴𝑥 =  𝑎 ∈ ℝ: 𝛿2   𝑖, 𝑗 : 𝑥𝑖𝑗 < 𝑎  ≠ 0 . where 𝛿2(𝐸) ≠ 0, 

means that either 𝛿2 𝐸 > 0 or does not have double natural density. 

Definition 2.7: If 𝑥 = (𝑥𝑖𝑗 ) be a double sequence. Then statistical-limit superior of 𝑥 is defined by 

𝑆𝑡𝟐 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 =  
𝑠𝑢𝑝𝐵𝑥 ,   𝑖𝑓 𝐵𝑥 ≠ Φ

−∞       𝐵𝑥 = Φ       
  

Also the statistical-limit inferior of 𝑥 is defined by 

𝑆𝑡𝟐 − 𝑙𝑖𝑚inf𝑥 =  
𝑖𝑛𝑓𝐴𝑥 ,   𝑖𝑓 𝐴𝑥 ≠ Φ

+∞       𝐴𝑥 = Φ       
  

Remark 2.2: Define the first means 𝜎𝑚,𝑛  of a double sequence (𝑥𝑖𝑗 ) by setting  

𝜎𝑚,𝑛
𝑥 =

1

𝑚𝑛
  𝑥𝑖𝑗

𝑛

𝑗 =1

𝑚

𝑖=1

 

Definition 2.5.1[Siddiqui et al., (2012)]: We say a double sequence 𝑥 = (𝑥𝑖𝑗 ) is statistically summable  𝐶, 1.1  

to 𝐿, if the sequence 𝜎 = (𝜎𝑚𝑛 ) is statistically convergent to 𝐿 in Pringsheim’s sense, that is, 𝑆𝑡2 −
lim𝑚,𝑛 𝜎𝑚𝑛 = 𝐿. We denote by 𝐶1.1 𝑆𝑡2 , the set of all double sequences which are statistically summable 

(C,1.1). 

Definition 2.6.1 [Siddiqui et al., (2012)]: (i) A double sequence 𝑥 =  𝑥𝑖𝑗   is said to be lower 𝐶1.1 −staistically 

bounded if there exists a constant 𝑀 such that 𝛿  𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 < 𝑀 = 0, or equivalently, we write 𝛿𝐶11

  𝑖, 𝑗 : 𝑥𝑖𝑗 <

𝑀=0. 
(ii) A double sequence 𝑥 = 𝑥𝑖𝑗  is said to be upper 𝐶1.1 −statistically bounded if there exists a constant 𝑁 such 

that 𝛿  𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 > 𝑁 = 0, or equivalently, we write 

𝛿𝐶11
  𝑖, 𝑗 : 𝑥𝑖𝑗 > 𝑁 = 0. 

(iii) If 𝑥 = 𝑥𝑖𝑗  is both lower and upper 𝐶1.1 −statistically bounded, we say that 𝑥 = (𝑥𝑖𝑗 ) is 𝐶11 −statistically 

bounded, equivalently written 𝑥 is 𝐶1.1 𝑠𝑡 −bdd. 

We denote the set of all 𝐶11 𝑠𝑡 −bdd sequences by 𝐶1.1 𝑆𝑡2∞  whereas 𝐶,1.1
𝐼 (𝑆𝑡2) denotes the space of 

𝐼 −convergent 𝐶,1.1 −statistically convergent double sequences. 
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Definition 2.7.1[Siddiqui et al., (2012)]: For 𝑀, 𝑁 ∈ ℝ, let 

𝐾𝑥 =  𝑀: 𝛿   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 < 𝑀   , 

𝐿𝑥 =  𝑁: 𝛿   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 > 𝑁   . 

Then 

                                            𝐶𝟏.𝟏 𝑆𝑡𝟐 −superior of 𝑥 = inf 𝐿𝑥 , 
                                            𝐶𝟏.𝟏 𝑆𝑡𝟐 −inferior of 𝑥 = sup 𝐾𝑥 . 
Remark 2.3: Note that every bounded double sequence is Pringsheim bounded and every Pringsheim bounded 

double sequence is 𝐶1.1 −statistically bounded but not conversely, in general. 

The following is an example of 𝑥 = (𝑥𝑖𝑗 ) which is neither bounded above nor bounded below, but the 

Pringsheim limit superior and inferior are both finite numbers: 

𝑥𝑖𝑗 =  

𝑖                     𝑖𝑓 𝑗 = 0
−𝑗                      𝑖𝑓 𝑖 = 0

(−1)𝑖                       𝑖 = 𝑗
0,                 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.

  

Thus 𝑃 − 𝑙𝑖𝑚𝑖𝑛𝑓[𝑥] and 𝑃 − 𝑙𝑖𝑚𝑠𝑢𝑝 𝑥 = 1. 
 

III. 𝑰 −Limit Superior and Inferior 
The following concept and results are by Kumar (2007). 

Definition 3.1 [Kumar (2007)]: A real double sequence 𝑥 = (𝑥𝑖𝑗 ) is said to be 𝐼 −bounded below if there exists 

a real number 𝑀 such that   𝑖, 𝑗 : 𝑥𝑖𝑗 < 𝑀 ∈ 𝐼. 𝑥 = (𝑥𝑖𝑗 ) is said to be 𝐼 −bounded above if there exists a real 

number 𝑀 such that   𝑖, 𝑗 : 𝑥𝑖𝑗 > 𝑀 ∈ 𝐼. A sequence which is both 𝐼 −bounded below as well as 𝐼 −bounded 

above is called 𝐼 −bounded. 

Remark 3.1[Kumar (2007)]: One can observe easily that any bounded double sequence is 𝐼 −bounded. Let ℓ∞
2

 

denote the space of all 𝐼 −bounded double sequences. Let 𝐼 ⊂ 𝑃(ℕ2) be an admissible ideal. For a real double 

sequence 𝑥 =  𝑥𝑖𝑗  , let 

𝐵𝑥 =  𝑏 ∈ ℝ:   𝑖, 𝑗 : 𝑥𝑖𝑗 > 𝑏 ∉ 𝐼  and 𝐴𝑥 =  𝑎 ∈ ℝ:   𝑖, 𝑗 : 𝑥𝑖𝑗 < 𝑎 ∉ 𝐼 . 

Definition 3.2 [Kumar (2007)]: Let 𝐼 ⊂ 𝑃(ℕ2) be an admissible ideal. If 𝑥 = (𝑥𝑖𝑗 ) be a real double sequence. 

Then 𝐼 −limit ssuperior of 𝑥 is defined by 

𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 =  
𝑠𝑢𝑝𝐵𝑥 ,   𝑖𝑓 𝐵𝑥 ≠ Φ

−∞               𝑖𝑓 𝐵𝑥 = Φ.
  

Also the 𝐼 −limit inferior of 𝑥 is defined by 

𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 =  
𝑠𝑢𝑝𝐴𝑥 ,   𝑖𝑓 𝐴𝑥 ≠ Φ

+∞               𝑖𝑓 𝐴𝑥 = Φ.
  

Proposition 3.1: If 𝛽 = 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 is finite, then for each 𝜀 > 0, the sets 

  𝑖, 𝑗 : 𝑥𝑖𝑗 > 𝛽 − 𝜀 ∉ 𝐼 and   𝑖, 𝑗 : 𝑥𝑖𝑗 > 𝛽 + 𝜀 ∈ 𝐼                   (1) 

Conversely if (1) holds for each 𝜀 > 0, then 𝛽 = 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥. 
Proposition 3.2: If 𝛼 = 𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 is finite, then for each 𝜀 > 0, the sets 

  𝑖, 𝑗 : 𝑥𝑖𝑗 > 𝛼 − 𝜀 ∉ 𝐼 and   𝑖, 𝑗 : 𝑥𝑖𝑗 > 𝛼 + 𝜀 ∈ 𝐼                                                                   (2) 

Conversely if (2) holds for each 𝜀 > 0, then 𝛼 = 𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥. 

Theorem 3.1 For every real double sequence 𝑥 =  𝑥𝑖𝑗  ,   𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 ≤ 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥. 

Remark 3.2: For any real double sequence 𝑥 = (𝑥𝑖𝑗 ) 𝑃 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 ≤ 𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 ≤ 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 ≤ 𝑃 −

𝑙𝑖𝑚𝑠𝑢𝑝𝑥. 
Remark 3.3: I-boundedness of a sequence 𝑥 = (𝑥𝑖𝑗 ) implies that 𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 and 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 are finite, so 

(1) and (2) hold. 

Theorem 3.2: If 𝑥 =  𝑥𝑖𝑗  , 𝑦 = (𝑦𝑖𝑗 ) are two 𝐼 −bounded sequences, then we have (i) 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝(𝑥 + 𝑦) ≤

𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 + 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑦.  𝑖𝑖 𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓 𝑥 + 𝑦 ≥ 𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 + 𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑦. 
 

IV. 𝑰 −Core of double sequences 
The following notions and results are by Kumar (2007) 

Definition 4.1: For any 𝐼 −bounded real sequence ( 𝑥𝑖𝑗 ), the 𝐼 −Core of 𝑥 is defined as the closed interval 

[𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓 and 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥]. In case, 𝑥 is not 𝐼 −bounded, 𝐼 −Core of the sequence 𝑥 is defined by either 

(−∞,∞). 𝐼 −Core 𝑥  will denote 𝐼 −Core of the sequence 𝑥 =  𝑥𝑖𝑗  . 

It is clear from remark 3.2 that 𝐼 −Core 𝑥 ⊆ 𝑃 −Core 𝑥 , for any real double sequence 𝑥. 

Lemma 4.1: Let 𝑐2
∞,0

 be the space of all sequences which are bounded and 𝑃 −convergent to zero. Then 

𝐴 ∈  ℓ∞
2 , 𝑐2

∞,0 , if and only if,  
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(i)  𝐴 = sup𝑚,𝑛   𝑎𝑖𝑗
𝑚𝑛  < ∞,  𝑖𝑖  𝑃 − lim𝑚,𝑛→∞ 𝑎𝑖𝑗

𝑚𝑛 = 0𝑖 ,𝑗  for each 𝑖, 𝑗 ∈ ℕ, (iii) 𝑃 − lim𝑚,𝑛→∞  𝑎𝑖𝑗
𝑚𝑛

𝑗  for 

each 𝑖 ∈ ℕ,  𝑖𝑣 𝑃 − lim𝑚,𝑛→∞  𝑎𝑖𝑗
𝑚𝑛

𝑖 = 0  for each 𝑗 ∈ ℕ,  𝑣  𝑃 − lim𝑚,𝑛→∞   𝑎𝑖𝑗
𝑚𝑛  = 0.𝑖 ,𝑗  

Let us assume that 𝐼 be an admissible ideal of such that 𝐼 contains all sets of the form 𝐻 × ℕ, ℕ × 𝐻 where 𝐻 is 

a finite subset of ℕ. 
Lemma 4.2: If 𝐴 = [𝑎𝑖𝑗

𝑚𝑛 ] be a four dimensional matrix. Then, 

𝐴 ∈  𝐼2 ∩ ℓ∞
2 , 𝑐2

∞ 
𝑟𝑒𝑔

, if and only if,                                                                                    (3) 

A is 𝑅𝐻 −regular and 𝑃 − lim𝑚,𝑛→∞   𝑎𝑖𝑗
𝑚𝑛  = 0𝑖 ,𝑗∈𝐸  for every 𝐸 ⊂ ℕ2 in 𝐼. 

Theorem 4.1:  Let  𝐴 < ∞ and 𝑥 =  𝑥𝑖𝑗  ∈ ℓ∞
2 . Then, 𝑃 − 𝑙𝑖𝑚𝑠𝑢𝑝𝐴𝑥 ≤ 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 if and only if  

𝐴 ∈  𝐼2 ∩ ℓ∞
2 , 𝑐2

∞ 
𝑟𝑒𝑔

, and 𝑃 − lim𝑚,𝑛→∞   𝑎𝑖𝑗
𝑚𝑛  =  1                       𝑖 ,𝑗                                  (5)  

 

V.      𝑪𝟏.𝟏
𝑰  𝑺𝒕𝟐 −Limit Superior and Inferior 

In this section we shall in analogy to Kumar (2007), define the concepts of 𝐶,1.1 𝑆𝑡2 −superior and inferior for 

double sequences and prove some fundamental properties of 𝐶,1.1
𝐼  𝑆𝑡2 −limit superior and inferior. 

Definition 5.1: A real 𝐶,1.1 −statistically convergent double sequences [𝐶1.1(𝑆𝑡2)] 𝑥 = (𝑥𝑖𝑗 ) is said to be 

𝐶1.1
𝐼  𝑆𝑡2 −bounded below if there exists a real number 𝑀 such that   𝑖, 𝑗 : 𝜎𝑖𝑗 < 𝑀 ∈ 𝐼. 𝑥 = (𝑥𝑖𝑗 ) is said to be 

𝐶1.1
𝐼  𝑆𝑡2 −bounded above if there exists a real number 𝑀 such that   𝑖, 𝑗 : 𝜎𝑖𝑗 > 𝑀 ∈ 𝐼. A sequence which is 

𝐶1.1
𝐼  𝑆𝑡2 −bounded below and also 𝐶1.1

𝐼  𝑆𝑡2 −bounded above is called 𝐶1.1
𝐼  𝑆𝑡2 −bounded. 

Remark 5.1: It can be easily seen that all 𝐼 −bounded double sequences are 𝐶1.1
𝐼  𝑆𝑡2 −bounded. Let 

𝐶,1.1
𝐼 (𝑆𝑡2∞) denote the space of all 𝐼 −bounded−Ces𝑎 ro 𝐶1.1 −statistically convergent double sequences. 

Following the introduction of the concept of 𝐼 −limit superior and inferior [see Kumar (2007)] we introduce 

𝐶,1.1
𝐼  𝑆𝑡2 −limit superior and inferior as follows: 

Let 𝐼 ⊂ 𝑃(ℕ2) be an admissible ideal. For a real double sequence 𝑥 =  𝑥𝑖𝑗  , let, 

𝐴𝑥 =  𝑎 ∈ ℝ:   𝑖, 𝑗 : 𝜎𝑖𝑗 < 𝑎 ∈ 𝐼  and  𝐵𝑥 =  𝑏 ∈ ℝ:   𝑖, 𝑗 : 𝜎𝑖𝑗 > 𝑏 ∈ 𝐼 . 

Definition 5.2: Let 𝐼 ⊂ 𝑃(ℕ2) be an admissible ideal. Let 𝑥 = (𝑥𝑖𝑗 ) be a real double sequence. Then 

𝐶,1.1
𝐼  𝑆𝑡2 −limit superior of 𝑥 is defined by  

𝐶,1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 =  

𝑠𝑢𝑝𝐵𝑥 ,          𝑖𝑓 𝐵𝑥 ≠ Φ

−∞                𝑖𝑓   𝐵𝑥 = Φ
  

Also  

𝐶,1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 =  

𝑠𝑢𝑝𝐴𝑥 ,            𝑖𝑓 𝐴𝑥 ≠ Φ

−∞                𝑖𝑓   𝐴𝑥 = Φ
  

Proposition 5.1 If 𝛽 = 𝐶,1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 is finite, then for each 𝜀 > 0, the sets   𝑖, 𝑗 : 𝜎𝑖𝑗 > 𝛽 − 𝜀 ∈ 𝐼 and  

  𝑖, 𝑗 : 𝜎𝑖𝑗 > 𝛽 + 𝜀 ∈ 𝐼                                                      (1.1) 

Conversely, if (1.1) holds for each 𝜀 > 0, then 𝛽 = 𝐶,1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥. 

Proposition 5.2 If 𝛼 = 𝐶,1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 is finite, then the sets  

  𝑖, 𝑗 : 𝜎𝑖𝑗 < 𝛼 + 𝜀 ∉ 𝐼 and   𝑖, 𝑗 : 𝜎𝑖𝑗 < 𝛼 − 𝜀 ∈ 𝐼                                                         (1.2) 

Conversely, if (1.2) holds, for each 𝜀 > 0, then 𝛼 = 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥. 

Theorem 5.1: For any real double sequence 𝜎 =  𝜎𝑖𝑗  , 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 ≤ 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 

Proof: Case (i): If 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 = −∞, then we have 𝐵𝑥 = ∅ and therefore for each 𝑏 ∈ ℝ,   𝑖, 𝑗 : 𝜎𝑖𝑗

𝑥 >

𝑏∈I. This implies that for each 𝑎∈ℝ, 𝑖,𝑗:𝜎𝑖𝑗𝑥∈𝐹𝐼. Hence 𝐶1.1𝐼𝑆𝑡2−𝑙𝑖𝑚𝑠𝑢𝑝𝑥=−∞. Case (ii): 

𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 = ∞, then we have nothing to prove. Case (iii): Suppose that 𝛽 = 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 is 

finite then we have 𝐵𝑥 ≠ ∅ and 𝛽 = 𝑠𝑢𝑝𝐵𝑥 . Let 𝛼 = 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥. To prove the result it is sufficient to 

prove that given 𝜀 > 0, 𝛽 + 𝜀 ∈ 𝐴𝑥 , so that 𝛼 ≤ 𝛽 + 𝜀. Let 𝜀 > 0. By proposition 5.1,   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 > 𝛽 +

𝜀

2
 ∈ 𝐼 

and therefore the set   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 ≤ 𝛽 +

𝜀

2
 ∈ 𝐹 𝐼 . Since   𝑖, 𝑗 : 𝜎𝑖𝑗

𝑥 ≤ 𝛽 +
𝜀

2
 ⊆   𝑖, 𝑗 : 𝜎𝑖𝑗

𝑥 < 𝛽 +
𝜀

2
  and 𝐹(𝐼) is a 

filter on ℕ2 therefore   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 < 𝛽 + 𝜀 ∈ 𝐹 𝐼 . This implies that the set   𝑖, 𝑗 : 𝜎𝑖𝑗

𝑥 < 𝛽 + 𝜀 ∉ 𝐼 and therefore 

by definition of 𝐴𝑥 , 𝛽 + 𝜀 ∈ 𝐴𝑥 . As 𝛼 = 𝑖𝑛𝑓𝐴𝑥  so we have, 𝛼 ≤ 𝛽 + 𝜀. Since 𝜀 is arbitrary this proves that 

𝛼 ≤ 𝛽. 

Remark 5.2: For any real double sequence 𝑥 =  𝑥𝑖𝑗  , 𝐼 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 ≤ 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 ≤ 𝐶1.1

𝐼  𝑆𝑡2 −

𝑙𝑖𝑚𝑠𝑢𝑝𝑥 ≤ 𝐼 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥. 
Remark 5.3: 𝐶1.1

𝐼  𝑆𝑡2 −boundedness of a sequence 𝑥 = (𝑥𝑖𝑗 ) implies 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 and 𝐶1.1

𝐼  𝑆𝑡2 −

𝑙𝑖𝑚𝑠𝑢𝑝𝑥 are finite, as such (1.1) and (1.2) hold. 

Theorem 5.2: If 𝑥 =  𝑥𝑖𝑗  , 𝑦 = (𝑦𝑖𝑗 ) are two 𝐶1.1
𝐼  𝑆𝑡2 −bounded sequences, then we have 

(i) 𝐶𝟏.𝟏
𝑰  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝 𝑥 + 𝑦 ≤ 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 + 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑦 
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(ii) 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓 𝑥 + 𝑦 ≥ 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 + 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑦 

Proof:  Since 𝑥 and 𝑦 are 𝐶1.1
𝐼  𝑆𝑡2 −bounded sequences therefore by remark 5.3, 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 and 

𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑦 are both finite. We may also assume that 𝐵𝑥+𝑦  is non-void. Let 𝛼 = 𝐶1.1

𝐼  𝑆𝑡2 −

𝑙𝑖𝑚𝑠𝑢𝑝𝑥, 𝛽 = 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑦 and 𝛾 = 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝 𝑥 + 𝑦 . Take 𝜀 > 0. Then by proposition 5.1 

we have the sets 𝐴 =   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 > 𝛼 +

𝜀

2
  and 𝐵 =   𝑖, 𝑗 : 𝜎𝑖𝑗

𝑦
> 𝛽 +

𝜀

2
  belong to 𝐼. Now it is clear that the set 

𝐶 =   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 + 𝜎𝑖𝑗

𝑦
> 𝛼 + 𝛽 + 𝜀 ∈ 𝐴 ∪ 𝐵. Since the set on the right side belongs to 𝐼 therefore 𝐶 ∈ 𝐼. Next we 

shall prove that for every 𝑏 ∈ 𝐵𝑥+𝑦 , 𝑏 ≤ 𝛼 + 𝛽 + 𝜀. 

Let 𝑏 ∈ 𝐵𝑥+𝑦 , then by definition   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 + 𝜎𝑖𝑗

𝑦
> 𝑏 ∉ 𝐼. If 𝑏 > 𝛼 + 𝛽 + 𝜀, then   𝑖, 𝑗 : 𝜎𝑖𝑗

𝑥 + 𝜎𝑖𝑗
𝑦

> 𝑏 ⊂ 𝐶 

and therefore   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 + 𝜎𝑖𝑗

𝑦
> 𝑏  belongs to 𝐼 as 𝐶 ∈ 𝐼. In this way we obtained a contradiction as   𝑖, 𝑗 : 𝜎𝑖𝑗

𝑥 +

𝜎𝑖𝑗𝑦>𝑏∉𝐼. Hence 𝑏≤𝛼+𝛽+𝜀 for every 𝑏∈𝐵𝑥+𝑦.This shows that 𝐶1.1𝐼𝑆𝑡2−𝑙𝑖𝑚𝑠𝑢𝑝𝑥+𝑦=𝑠𝑢𝑝𝐵𝑥+𝑦≤𝛼+𝛽+𝜀. 
Since 𝜀>0 is arbitrary so 𝛾 ≤ 𝛼 + 𝛽. We can prove (ii) analogously. This completes the proof. 

Theorem 5.3: A real double 𝐶1.1
𝐼 (𝑆𝑡2) −bounded sequence 𝑥 =  𝑥𝑖𝑗   is 𝐶1.1

𝐼 (𝑆𝑡2) −convergent if and only if 

                               𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 = 𝐶1.1

𝐼 (𝑆𝑡2) − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 

Proof: Since 𝑥 = (𝑥𝑖𝑗 ) is 𝐶1.1
𝐼 (𝑆𝑡2) −bounded therefore by remark 5.3 𝐶1.1

𝐼 (𝑆𝑡2) − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 and 𝐶1.1
𝐼 (𝑆𝑡2) −

𝑙𝑖𝑚𝑠𝑢𝑝𝑥 are both finite. Let, 𝛼 = 𝐶1.1
𝐼 (𝑆𝑡2) − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 and 𝛽 = 𝐶1.1

𝐼 (𝑆𝑡2) − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥. Suppose that 𝑥 = (𝑥𝑖𝑗 ) is 

convergent with 𝐶1.1
𝐼 (𝑆𝑡2) − lim𝑖,𝑗→∞ 𝑥𝑖𝑗 = 𝐿. Let 𝜀 > 0 be given. Then we have the set   𝑖, 𝑗 :  𝜎𝑖𝑗

𝑥 − 𝐿 ≥ 𝜀 ∈

𝐼. Thus for each 𝑏 > 𝐿 + 𝜀, we have   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 > 𝑏 ⊂   𝑖, 𝑗 : 𝜎𝑖𝑗

𝑥 > 𝐿 + 𝜀 . Since 𝐼 is an ideal and the set on the 

right side belongs to 𝐼, therefore the set   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 > 𝑏 ∈ 𝐼. Thus for each 𝑏 > 𝐿 + 𝜀, the set   𝑖, 𝑗 : 𝜎𝑖𝑗

𝑥 > 𝑏 ∈

𝐼, which implies that 𝛽 ≤ 𝐿 + 𝜀. As 𝜀 is arbitrary, we have 𝛽 ≤ 𝐿. We also have by proposition 5.2,   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 <

𝐿−𝜀∈𝐼, which yields that 𝐿≤𝛼. Therefore we have 𝛽≤𝛼. Combining this with theorem 5.1, we conclude that 

𝛼 = 𝛽. Conversely, suppose that 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥 = 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥 = 𝐿 i.e., both are finite then by 

proposition 5.1 and 5.2, we have the set 𝐴 𝜀 =   𝑖, 𝑗 :  𝜎𝑖𝑗
𝑥 − 𝐿 ≥ 𝜀 ∈ 𝐼. Hence 𝐶1.1

𝐼 − lim𝑖𝑗→∞ 𝑥𝑖𝑗 = 𝐿. 

 

VI.   𝑪𝟏.𝟏
𝑰  𝑺𝒕𝟐 −Core of Double Sequences 

Analogous to 𝐼 −Core [see Kumar (2007)] and 𝐶1.1 𝑆𝑡2 −Core [see Siddiqui (2012)], we define 

𝐶1.1
𝐼  𝑆𝑡2 −Core as follows: 

Definition 6.1: For any 𝐶1.1
𝐼  𝑆𝑡2  −bounded sequence 𝑥 = (𝑥𝑖𝑗 ), then 𝐶1.1

𝐼  𝑆𝑡2  −Core of 𝑥 is defined as the 

closed interval [𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥, 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥. In case 𝑥 is not 𝐶1.1
𝐼  𝑆𝑡2 −bounded, 

𝐶1.1
𝐼  𝑆𝑡2 −Core is given by either (−∞, 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑥]  (𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑥] or  −∞,∞ . We shall 

denote by 𝐶1.1
𝐼  𝑆𝑡2 −Core 𝑥 , the 𝐶1.1

𝐼  𝑆𝑡2 −Core of the sequence 𝑥 =  𝑥𝑖𝑗  . 

It can be seen from remark 5.2 that 𝐶1.1
𝐼  𝑆𝑡2 −Core 𝑥 ⊆ 𝐼 −Core 𝑥 , for any double sequence 𝑥. 

Lemma 6.1: Let 𝐶1.1
𝐼  𝑆𝑡2∞

0  , be the space of all double sequences which are bounded and 𝐼 −statistically 

convergent to zero.Then 𝐴 ∈  ℓ∞
2 , 𝐶1.1

𝐼  𝑆𝑡2∞
0    if and only if 

(i)  𝐴 = 𝑠𝑢𝑝   𝑎𝑖𝑗
𝑚𝑛  < ∞𝑖𝑗   

(ii) 𝐼 − lim𝑚𝑛 →∞  𝑎𝑖𝑗
𝑚𝑛 = 0𝑖 ,𝑗  for each 𝑖, 𝑗 ∈ ℕ 

(iii) 𝐼 − lim𝑚𝑛 →∞  𝑎𝑖𝑗
𝑚𝑛

𝑗 = 0 for each 𝑖 ∈ ℕ 

(iv) 𝐼 − lim𝑚𝑛 →∞  𝑎𝑖𝑗
𝑚𝑛 = 0𝑖  for each 𝑗 ∈ ℕ 

(v) 𝐼 − lim𝑚𝑛 →∞   𝑎𝑖𝑗
𝑚𝑛  = 0𝑖 ,𝑗  

Assuming that 𝐼 is an admissible ideal such that 𝐼 contains all sets of the form  

𝐻 × ℕ, ℕ × 𝐻 where 𝐻 is a finite subset of ℕ. 
Lemma 6.2: If 𝐴 = [𝑎𝑖𝑗

𝑚𝑛 ] is a four dimensional matrix. Then,  

𝐴 ∈ [𝐶1.1
𝐼  𝑆𝑡2∞, 𝐶1.1(𝑆𝑡2 ]𝑟𝑒𝑔   If and only if                                         (6.1) 

𝐴 is 𝑅𝐻 −regular and 𝐶1.1 𝑆𝑡2 − lim𝑚𝑛 →∞   𝑎𝑖𝑗
𝑚𝑛  = 0𝑖𝑗  for every 𝐸 ⊂ ℕ2 in 𝐼. 

Proof: Suppose that 𝐴 ∈  𝐶1.1
𝐼  𝑆𝑡2∞ , 𝐶1.1(𝑆𝑡2) 𝑟𝑒𝑔 .Since 𝐼 is an admissible ideal which contain all sets of the 

form 𝐻 × ℕ, ℕ × 𝐻 wher 𝐻 is a subset of ℕ. Therefore 𝐶1.1 𝑆𝑡2 −convergene for any bounded double sequence 

 𝑥𝑖𝑗  .This implies that 𝐶1.1 𝑆𝑡2 ⊂ 𝐶1.1
𝐼  𝑆𝑡2∞  and the 𝑅𝐻 −regular of 𝐴 as follows. Let 𝐸 ⊂ ℕ2 be any set 

belongs to the ideal 𝐼 and 𝑥 =  𝑥𝑖𝑗  ∈ ℓ∞
2 . Define the sequence 𝜎 =  𝜎𝑖𝑗   as follows: 

𝜎𝑖𝑗 =  
𝜎𝑖𝑗

𝑥 ,   𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸

0        𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.
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Then it is obvious that 𝜎 ∈ 𝐶1.1
𝐼 (𝑆𝑡2,∞) with 𝐶1.1 𝑆𝑡2 − lim𝑖𝑗→∞ 𝑧𝑖𝑗 = 0. By (6.1) we have 𝐴𝜎 ∈ 𝐶1.1 𝑆𝑡2,∞

0  . 

Also we have 𝐴𝜎 =
1

𝑚𝑛
 𝑎𝑖𝑗

𝑚𝑛 𝑥𝑖𝑗 =
1

𝑚𝑛
 𝑎𝑖𝑗

𝑚𝑛 𝑥𝑖𝑗 .𝑖 ,𝑗 ∈𝐸
𝑚𝑛
𝑖𝑗  Define the matrix 𝐵 = [𝑏𝑖𝑗

𝑚𝑛 ] as follows: For each 

𝑚, 𝑛 ∈ ℕ 

𝑏𝑖𝑗
𝑚𝑛 =  

𝑎𝑖𝑗
𝑚𝑛 ,   𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸

0          𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.
  

It is obvious that the matrix 𝐵 defined above is in the class  𝐶1.1
𝐼 (𝑆𝑡2,∞) , and therefore by (lemma 6.1), we 

have, 𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞   𝑏𝑖𝑗  = 0.𝑖 ,𝑗  This implies that  

𝐶1.1 𝑆𝑡2 − lim
𝑚,𝑛→∞

  𝑎𝑖𝑗
𝑚𝑛  = 0.

𝑖,𝑗 ∈𝐸

 

Conversely, suppose that 𝐴 is 𝑅𝐻 −regular and 𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞   𝑎𝑖𝑗
𝑚𝑛  = 0𝑖 ,𝑗∈𝐸  for every𝐸 ⊂ ℕ2 in . Let 

𝑥 ∈ 𝐶1.1
𝐼 (𝑆𝑡2,∞) and suppose that 𝐶1.1

𝐼  𝑆𝑡2 − lim𝑖,𝑗 𝑥𝑖𝑗 = 𝐿. Then for each 𝜀 > 0, the set 

  𝑖, 𝑗 :  𝜎𝑖𝑗
𝑥 − 𝐿 ≥ 𝜀 ∈ 𝐼 and   𝑖, 𝑗 :  𝜎𝑖𝑗

𝑥 − 𝐿 < 𝜀 ∈ 𝐹 𝐼 .                                                 (6.2) 

Now we can write  𝑎𝑖𝑗
𝑚𝑛 𝑥𝑖𝑗 =  𝑎𝑖𝑗

𝑚𝑛  𝑥𝑖𝑗 − 𝐿 + 𝐿  𝑎𝑖𝑗
𝑚𝑛 .𝑖𝑗𝑖 ,𝑗𝑖𝑗 This implies that 𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞ 𝐴𝜎𝑥 = 

𝐶1.1 𝑆𝑡2 −
lim𝑚,𝑛→∞  𝑎𝑖𝑗

𝑚𝑛 𝑥𝑖𝑗𝑖,𝑗 = 𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞( 𝑎𝑖𝑗
𝑚𝑛 (𝑥𝑖𝑗 − 𝐿))𝑖,𝑗 + 𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞(𝐿  𝑎𝑖𝑗

𝑚𝑛 )𝑖 ,𝑗 .  Since 

𝐴 is 𝑅𝐻 −regular matrix therefore by lemma(6.1), we have 𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞ 𝐴𝜎𝑥 = 𝐶1.1 𝑆𝑡2 −

lim𝑚,𝑛→∞  𝑎𝑖𝑗
𝑚𝑛  𝑥𝑖𝑗 − 𝐿 + 𝐿.𝑖,𝑗  Also we have   𝑎𝑖𝑗

𝑚𝑛 (𝑥𝑖𝑗 − 𝐿)𝑖,𝑗  =   𝑎𝑖𝑗
𝑚𝑛 (𝑥𝑖𝑗 − 𝐿)𝑖 ,𝑗 ∈𝐸  +  𝑎𝑖𝑗

𝑚𝑛 (𝑥𝑖𝑗 −𝑖 ,𝑗 ∉𝐸

𝐿)≤𝑥𝑖𝑗−𝐿𝑖,𝑗𝑎𝑖𝑗𝑚𝑛+𝜀𝐴 by (6.2). It follows that 𝐶1.1𝑆𝑡2−lim𝑚,𝑛→∞𝑖,𝑗𝑎𝑖𝑗𝑚𝑛(𝑥𝑖𝑗−𝐿)=0. 
Since𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞ 𝐴𝜎𝑥 = 𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞  𝑎𝑖𝑗

𝑚𝑛  𝑥𝑖𝑗 − 𝐿 + 𝐿𝑖 ,𝑗  we have, therefore 𝐶1.1 𝑆𝑡2 −

lim𝑚,𝑛→∞ 𝐴𝜎𝑥 = 𝐿. Hence 𝐴 ∈ [𝐶1.1
𝐼  𝑆𝑡2,∞ , 𝐶1.1 𝑆𝑡2 ]𝑟𝑒𝑔 . 

Theorem 6.1:  Let  𝐴 < ∞ and 𝑥 =  𝑥𝑖𝑗  ∈ ℓ∞
2 . Then, 𝐶1.1 𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝐴𝜎𝑥 ≤ 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝜎𝑥  if 

and only if  

𝐴 ∈  𝐶1.1
𝐼  𝑆𝑡2,∞ , 𝐶1.1(𝑆𝑡2) 

𝑟𝑒𝑔
, and 𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞   𝑎𝑖𝑗

𝑚𝑛  = 1                      (6.3)𝑖𝑗  

Proof First suppose that 𝐶1.1 𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝐴𝜎 ≤ 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝜎 holds. Then, by an easy argument, one 

has that  

𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝜎 ≤ 𝑐1.1 𝑆𝑡2 − 𝑙𝑖𝑚𝑖𝑛𝑓𝐴𝜎 ≤ 𝐶1.1 𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝐴𝜎

≤ 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝜎                                                                  (6.4) 

Let 𝑥 =  𝑥𝑖𝑗  ∈ 𝐶1.1
𝐼  𝑆𝑡2,∞ . As 𝑥 is 𝐶1.1

𝐼  𝑆𝑡2 −convergent we take 𝐶1.1
𝐼  𝑆𝑡2 − lim𝑖𝑗→∞ 𝑥𝑖𝑗 = 𝐿. Since 

𝐶1.1
𝐼 (𝑆𝑡2,∞) is a subspace of ℓ∞

2 , so 𝑥 ∈ ℓ∞
2

 and therefore by assumption we have 

 𝐶1.1 𝑆𝑡2 − lim sup 𝐴𝜎 ≤ 𝐶1.1
𝐼  𝑆𝑡2 − lim sup 𝜎. As (𝑥𝑖𝑗 ) is 𝐶1.1

𝐼  𝑆𝑡2 −convergent to 𝐿, so by theorem 5.2 we 

have 𝐶1.1
𝐼  𝑆𝑡2 − lim inf 𝜎 = 𝐶1.1

𝐼  𝑆𝑡2 − lim sup 𝜎 = 𝐿 by (6.4) we can observe that 𝐶1.1 𝑆𝑡2 − lim 𝐴𝜎 = 𝐿. 

This implies that 𝐴𝜎𝑥 ∈  𝐶1.1
𝐼  𝑆𝑡2,∞ , 𝐶1.1(𝑆𝑡2) 

𝑟𝑒𝑔
. Also by remark 5.2 

We have 𝐶1.1
𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝜎 ≤ 𝐶1.1 𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝜎. On combining the above inequalities we get, 

𝐶1.1 𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝐴𝜎 ≤ 𝐶1.1 𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝜎. But then by theorem (4.1), We have 𝐴 is 𝑅𝐻 −regular 

summability matrix with 𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→∞   𝑎𝑖𝑗
𝑚𝑛  = 1.𝑖 ,𝑗  

Conversely suppose that (6.3) holds. Let 𝑥 = (𝑥𝑖𝑗 ) be any bounded double sequence, then we have 𝐴𝜎 is 

bounded and 𝑥 is 𝐶1.1
𝐼  𝑆𝑡2 −bounded sequences. Therefore by remark 5.3, 𝐶1.1

𝐼  𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝜎 is finite say 

𝐿.So by proposition 5.1, for each 𝜀 > 0 the set 𝐸 =   𝑖, 𝑗 : 𝜎𝑖𝑗
𝑥 > 𝐿 + 𝜀 ∈ 𝐼. Also we have 𝜎𝑖𝑗

𝑥 ≤ 𝐿 + 𝜀 whenever 

𝑖, 𝑗 ∉ 𝐸. Now we can write  

𝐴𝜎 =  𝑎𝑖𝑗
𝑚𝑛 𝑥𝑖𝑗 ≤   

 𝑎𝑖𝑗
𝑚𝑛 𝑥𝑖𝑗  + 𝑎𝑖𝑗

𝑚𝑛 𝑥𝑖𝑗

2
+  

 𝑎𝑖𝑗
𝑚𝑛 𝑥𝑖𝑗  − 𝑎𝑖𝑗

𝑚𝑛 𝑥𝑖𝑗

2
+

𝑖𝑗𝑖𝑗

 

𝑖𝑗

≤   𝑎𝑖𝑗
𝑚𝑛 𝑥𝑖𝑗

𝑖𝑗

 

+    𝑎𝑖𝑗
𝑚𝑛  − 𝑎𝑖𝑗

𝑚𝑛   𝑥𝑖𝑗  

𝑖𝑗

≤   𝑎𝑖𝑗
𝑚𝑛 𝑥𝑖𝑗 +  𝑎𝑖𝑗

𝑚𝑛 𝑥𝑖𝑗

𝑖 ,𝑗∉𝐸𝑖,𝑗∈𝐸

 

+  𝑥    𝑎𝑖𝑗
𝑚𝑛  − 𝑎𝑖𝑗

𝑚𝑛  ≤  𝑥   𝑎𝑖𝑗
𝑚𝑛  + (𝐿 + 𝜀)

𝑖𝑗 ∈𝐸𝑖𝑗

  𝑎𝑖𝑗
𝑚𝑛  +  𝑥   𝑎𝑖𝑗

𝑚𝑛  − 𝑎𝑖𝑗
𝑚𝑛  .

𝑖 ,𝑗∉𝐸
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Since 𝐴 ∈  𝐶1.1
𝐼  𝑆𝑡2,∞ , 𝐶1.1(𝑆𝑡2) 

𝑟𝑒𝑔
, therefore by lemma (5.2) 𝐴 is 𝑅𝐻 −regular and 

𝐶1.1 𝑆𝑡2 − lim𝑚,𝑛→   𝑎𝑖𝑗
𝑚𝑛  = 0𝑖 ,𝑗 ∈𝐸  for every 𝐸 ⊂ ℕ2 in 𝐼. Since 𝐴 is 𝑅𝐻 −regular and 𝐶1.1 𝑆𝑡2 −

lim𝑚,𝑛→   𝑎𝑖𝑗
𝑚𝑛  = 1,𝑖 ,𝑗  therefore theorem (2.2) and theorem (2.3) implies that 𝐶1.1 𝑆𝑡2 − 𝑙𝑖𝑚𝑠𝑢𝑝𝐴𝜎 ≤

 𝐿 + 𝜀 . This completes the proof as 𝜀 was arbitrary selected. 
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