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I — Cesaro Statistical Core Of Double Sequences
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Abstract: The concept of statistical limit inferior and superior for single sequences was introduced by Fridy
and Orhan (1997) where some inequalities and Knopp type core theorem were obtained. Cakan and Altay
extended these results to double sequences, similar results were obtained for C; ; (St,) —sequences by Siddiqui
et al. (2012). Demirci (2001), Lahiri and Das (2003) used the same concept to define the I —limit inferior,
I —limit superior and obtained some I —analogue of the properties of limit inferior and superior for single
sequences. Kumar (2007) further extended this concept to double sequences. In this paper we define
| 1 (Sty) —limit inferior, superior and C,! ; (St,) —Core which are I —analogues of C, ; (St,) —limit inferior,
superior and C; ;(St,) —Core for double sequences respectively.

Key Words: Double sequence, C! ; (St,) —limit superior and inferior, C{; —core of double sequences.
Mathematics subject classification: Primary 40F05, 40J05, 40G05.

I. Introduction

Pringsheim (1900) introduced the notion of convergence for double sequences. Using this definition,
Robison (1926) and Hamilton [(1936),(1938a),(1938b),(1939)], defined and extensively studied the four
dimensional matrix transformation (Ax),, = X;; aj" x;;. Siddiqui et al. (2012) defined and studied Cesdro
statistical Core of double sequences (C;;(St,) — Core). Using these concepts and the notion of I —Core
defined and studied by Kumar (2007), we analogously, define C/,(St,) —limit inferior and superior,
C!,(St,) —Core which are I —analogues of the C;(St,) —limit inferior and superior, C;(St,) —Core of
double sequences respectively. Inequalities relating C, ;(St,) —Core and C{ ; (St,) —Core were also presented.

Il. Background and Preliminaries

Throughout the paper N, R will denote respectively the sets of positive integers and real numbers where
as N2 will denote the usual product set N x N. For any set X, P(X) stands for the power set of X and A¢ will
denote the complement of the set A.
Definition 2.1: If X is a non-empty set then a family of set I c P(X) is called an ideal in X if and only if
(i) @ € I; (ii) For each A,B € I we have AU B € I; (iii) Foreach A € I and B ¢ A we have B € I.
Definition 2.2: Let X is a non-empty set. A non-empty family of sets F < P(X) is called a filter on X if and
only if (i) ® ¢ F; (ii) Foreach A,B € F we have AN B € F; (iii) ForeachA € Fand B > Awehave B € F.
An ideal I is called non-trivial if I = ®and X € I.
Definition 2.3: A non-trivial ideal I ¢ P(X) is called an admissible ideal in X if and only if it contains all
singletons, i.e., if it contains {{x}: x € X}.
For further study we shall take X = N? and I will denote an ideal of subsets of NZ2. The following proposition
express a relation between the notions of an ideal and a filter.
Proposition 2.1: Let I ¢ P(N?) be a non- trivial ideal. Then the class
F=F(1)={M cN?>:M=N?—A,forsomeA€l} is a fiter on N2(we shall call
F = F(1) the filter associated with I).
Definition 2.4: Let I ¢ P(N?) be a non-trivial ideal in N%. A double sequence x = (x;;) of real numbers is said
to be I —convergent to a number L if for each & > 0 the set A(e) = {(i, j) € N?: |x; — L| > &} belongs to .The
number L is called the I —limit of the sequence (x;;) and we write I — lim;; x;; = L.
Remark 2.1: If we take I = {E c N2: E is contained (N x A) U (A X N)where A is a finite subset of N}.
Then I — convergent is equivalent to the usual Pringsheim’s convergence.
Definition 2.5: A double sequence x = (x;;) is said to be convergent to L in the Pringsheim’s sense (1900) if
for each € > 0 there exists m € N such that |x; — L| < & whenever i,j > m. The number L is called the
Pringsheim limit of the sequence x.
Definition 2.6: A double sequence x = (x;;) is said to be bounded if ther exists a real number M > 0 such that
|x;;| < M for each i andj, i.e., if llx|l 2y = supy; |x;; | < .
We shall denote the set of al bounded double sequence by £%. Note that in contrast to the case for single
sequences, a convergent double sequence need not be bounded. By
cy’,we mean the space of all P—convergent and bounded double sequences whereas I, denotes the space of
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I —convergent double sequences. Let A = [aji™ |7 —, be a four dimensional infinite matrix of real numbers for
all m,n=10,1,2,... The sums y,,, = Zf;w a;i" x;; are called the A —transformation of the sequence (xi]-). A
double sequence x = (x;;) is said to be A —summable to the number L if A —transformed sequence (¥, ) of
the sequence x converges to L (in the Pringsheim’s sense) asm,n — . A two dimensional matrix
transformation is said to be regular if it maps every convergent sequence into convergent sequence with the
same limit. In 1926, Robison presented a 4- dimensional analogue of regularity for double sequences in which
he added an additional assumption of boundedness: A four dimensional matrix 4 = [a;j" ]7;_, is said to be
RH —regular if and only if it maps every bounded P —convergent sequence into a P —convergent sequence with
the same P —limit. Let X and Y be two sequence spaces. We denote by (X,Y) the class of all matrices A which
map X into Y, and by (X,Y),., we mean A €(X,Y) such that the limit preserved. A matrix A = [aj" |7, Is
said to be RH —regular if and only if 4 € (¢, c5) reg [see Hamilton (1936) and Robison (1926)]. In 1936
Hamilton proved the following theorem for the regularity of any four dimensional infinite matrix.

Theorem 2.1: A four dimensional matrix A = [a;j" |7, is RH —regular if and only if (i) P — lim,, .., ajj" =
0 for each 7/, (77) P-limm,n—wijaymn=1, iii P-limmn—woiaymn=0, ivP-limmn—wija/mn=0, (v)
P-limm,n—oo g jarymnexists; (Vi) A=supmz,nijaijmn<o.

The idea of P —limit inferior, P —limit superior and P —Core for double sequences was presented by Patterson
(1999). We state here the two important theorems of Patterson (1999) related to the Core of double sequence.
Theorem 2.2: If A is a non-negative RH —regular summability matrix, then the P —Core{Ax} € P —Core{x},
for any bounded sequence x = (x;;) for which (Ax) exists.

Theorem 2.3: If a four dimensional matrix, then the following are equivalent (i) for all real double sequences
(xij), P — limsup Ax < p — limsup x; (i) A iSRH —regular summability matrix with
P —limy, o X lag™ | = 1.

Mursaleen and Osama (2003), Morciz (2003) introduced the two dimensional analogue of natural density as
follows; Let K = N2 and K(m,n) denotes the number of (i, /) in K such that i < m and j < n. Then the lower

asymptotic density of K is defined by &, (K) = limy, o0 iNfrp oo Knm 1n case the sequence (%) has a

mn
K(mmn) _

limit in Pringsheim’s sense then we say that K has double natural density and is defined by lim,, , —
8,(K). Cakan and Altay (2006) defined the statistical limit superior and inferior for a double sequence as
follow.

Let B, ={b € R:&,({(i, ):x; > b}) # 0}, and A, ={a € R:8,({(i,):x; < a}) #0}. where &,(E) #0,
means that either §,(E) > 0 or does not have double natural density.

Definition 2.7: If x = (x;;) be a double sequence. Then statistical-limit superior of x is defined by

supB,, if B, # ®

—00 B, =®

Sty — limsupx = {
Also the statistical-limit inferior of x is defined by
infA,, if A, # ®
+o A, =0
Remark 2.2: Define the first means o, , of a double sequence (x;;) by setting
m n

. 1
Gm’"_mnzzxij

i=1j=1
Definition 2.5.1[Siddiqui et al., (2012)]: We say a double sequence x = (x;;) is statistically summable (C,1.1)
toL, if the sequence o = (o,,) Iis statistically convergent to L in Pringsheim’s sense, that is, St, —
lim,, , 6,,, = L. We denote by C;(St;), the set of all double sequences which are statistically summable
(C,1.2).
Definition 2.6.1 [Siddiqui et al., (2012)]: (i) A double sequence x = (x;;) is said to be lower C; ; —staistically
bounded if there exists a constant M such that 5{(i,j): o < M} = 0, or equivalently, we write 8¢, {(i,/):x; <
M=0.
(i) A double sequence x = x;; is said to be upper C,; —statistically bounded if there exists a constant N such
that 5{(i, j): 0¥ > N} = 0, or equivalently, we write

8¢, G, Dixy; > N} =0.
(i) If x = x;; is both lower and upper C, —statistically bounded, we say that x = (x;;) is Cy; —statistically
bounded, equivalently written x is C; ; (st) —bdd.
We denote the set of all Cj;(st) —bdd sequences by C;;(St,,)whereas C};(St,) denotes the space of
I —convergent C, 1 —statistically convergent double sequences.

St, — liminfx = {
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Definition 2.7.1[Siddiqui et al., (2012)]: For M, N € R, let
K. = {M:8({(i,)): 0} < M})},
L, = {N:6({Ci,): 7 > N})}.
Then
C1.1(St,) —superior of x = infL,,
C1.1(Sty) —inferior of x = sup K,.
Remark 2.3: Note that every bounded double sequence is Pringsheim bounded and every Pringsheim bounded
double sequence is C; ; —statistically bounded but not conversely, in general.
The following is an example of x = (x;) which is neither bounded above nor bounded below, but the
Pringsheim limit superior and inferior are both finite numbers:

i ifj=0
v = —j ifi=0
T D! i=j
0, otherwise.

Thus P — liminf[x] and P — limsup[x] = 1.

I11. I —Limit Superior and Inferior
The following concept and results are by Kumar (2007).
Definition 3.1 [Kumar (2007)]: A real double sequence x = (x;;) is said to be I —bounded below if there exists
a real number M such that {(i,j):xij <M}ElLx= (x;;) is said to be I —bounded above if there exists a real
number M such that {(i,j):x; > M} € I. A sequence which is both I —bounded below as well as I —bounded
above is called I —bounded.
Remark 3.1[Kumar (2007)]: One can observe easily that any bounded double sequence is I —bounded. Let &
denote the space of all I —bounded double sequences. Let I ¢ P(N?) be an admissible ideal. For a real double
sequence x = (x;;), let
B, ={p e R:{(i,):x; >b} e I}and 4, = {a e R:{(i, ):x; < a} &I}
Definition 3.2 [Kumar (2007)]: Let I ¢ P(N?) be an admissible ideal. If x = (x;;) be a real double sequence.
Then I —limit ssuperior of x is defined by
, supB,, if B, # ®
I — limsupx = {_Oo if B, = ®.

Also the I —limit inferior of x is defined by

o [ supA,, ifA,+®

I — liminfx = {+oo if A, =,
Proposition 3.1: If 8 = I — limsupx is finite, then for each € > 0, the sets
{@):x; >p—e}eland {(i,j):x; >p+elel (1)

Conversely if (1) holds for each € > 0, then g = I — limsupx.

Proposition 3.2: If « = I — liminfx is finite, then for each € > 0, the sets

{@)ix; >a—e}eland {(i,):x; >a+e}el @)

Conversely if (2) holds for each € > 0, then « = I — liminfx.

Theorem 3.1 For every real double sequence x = (x;;), I — liminfx < I — limsupx.

Remark 3.2: For any real double sequence x = (x;;) P — liminfx <[ — liminfx < — limsupx < P —
limsupx.

Remark 3.3: I-boundedness of a sequence x = (x;;) implies that I — liminfx and I — limsupx are finite, so
(1) and (2) hold.

Theorem 3.2: If x = (x;;),y = (y;) are two I —bounded sequences, then we have (i) I — limsup(x + y) <
I = limsupx + I — limsupy. (ii)I — liminf(x + y) = I — liminfx + [ — liminfy.

IV. I —Core of double sequences
The following notions and results are by Kumar (2007)
Definition 4.1: For any I —bounded real sequence ( x;;), the I —Core of x is defined as the closed interval
[ = liminf and I — limsupx]. In case, x is not I —bounded, I —Core of the sequence x is defined by either
(—o0,0).I —Core{x} will denote I —Core of the sequence x = (x;; ).
It is clear from remark 3.2 that I —Core{x} € P —Core{x}, for any real double sequence x.
Lemma 4.1: Let c;"o be the space of all sequences which are bounded and P —convergent to zero. Then
A€ (6,¢77), if and only if,
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(i) Al = suppn Zi,}-|a{]’-’"| <o, (i) P —limy, 5, afi" =0 for each i,j € N, (iii) P —limy, ., X; aji" for
each i € N, (iv)P — lim,, ,,, X @l = 0 for each j € N, (v) P — lim,y, 0 X |a™ | = 0.

Let us assume that I be an admissible ideal of such that I contains all sets of the form H x N,N X H where H is
a finite subset of N.

Lemma 4.2: If A = [a;i" ] be a four dimensional matrix. Then,

Ae(Lné, C?)reg' if and only if, (3)

A'is RH —regular and P — lim,,, ;, ., Zi,;eE|a§}m| =0forevery E c N%inl.

Theorem 4.1: Let ||All < oo and x = (x;;) € £5. Then, P — limsupAx < I — limsupx if and only if
Ae(Lndé, C;O)Teg, and P — limy, o, X ;|a™ | = 1 (5)

V. €% ,(Sty) —Limit Superior and Inferior
In this section we shall in analogy to Kumar (2007), define the concepts of €, ;(St,) —superior and inferior for
double sequences and prove some fundamental properties of C,’Ll(Stz) —limit superior and inferior.
Definition 5.1: A real C;, —statistically convergent double sequences [C;1(St;)] x = (x;;) is said to be
¢! 1(St,) —bounded below if there exists a real number M such that {(i, j): o < M}elx= (x;;) is said to be
C!1(St,) —bounded above if there exists a real number M such that {(i, ): g > M} € I. A sequence which is
!, (St,) —bounded below and also C{ ;(St,) —bounded above is called C{ ; (St,) —bounded.
Remark 5.1: It can be easily seen that all I —bounded double sequences are C!,(St,) —bounded. Let
C' 1(Sty.,) denote the space of all I —bounded—Cesaro C; ; —statistically convergent double sequences.
Following the introduction of the concept of I —limit superior and inferior [see Kumar (2007)] we introduce
C' 1(St,) —limit superior and inferior as follows:
Let I ¢ P(N?) be an admissible ideal. For a real double sequence x = (xi]-), let,
A, ={aeR{(i):0; <a}el}and B, ={b € R:{(i,):0; > b} € I}.
Definition 5.2: Let I ¢ P(N?) be an admissible ideal. Let x = (x;;) be a real double sequence. Then
C' 1(St,) —limit superior of x is defined by

B if B ®
Ch1(Sty) — limsupx = {Sup o if B, #

—» if B.=®
Also
I T _ (supA,, ifA, @
C11(Sty) — liminfx = {_OO if A =®
Proposition 5.1 If g = C} 1 (St,) — limsupx s finite, then for each & > 0, the sets {(i, )):0;; > p — €} € I and
{.))ioy >p+e}el (1.1)

Conversely, if (1.1) holds for each ¢ > 0, then 8 = €}, (St,) — limsupx.

Proposition 5.2 If & = C} ;(St,) — liminfx is finite, then the sets

{G,): o <a+ e} ¢ Iand {(i, )): o <a-— etel 1.2

Conversely, if (1.2) holds, for each £ > 0, then a = C{ ;(St;) — liminfx.

Theorem 5.1: For any real double sequence o = (), C{ 1 (St) — liminfx < C{(St;) — limsupx

Proof: Case (i): If C/(St,) — limsupx = —oo, then we have B, = @ and therefore for each b € R, {(i, ): o >
b€l This implies that for each «eR i :oyxeF/. Hence C(1.1/5t2-/limsupr=—o. Case (ii):
€1, (Sty) — limsupx = oo, then we have nothing to prove. Case (iii): Suppose that g = C/,(St,) — limsupx is
finite then we have B, # @ and 8 = supB,. Let a = C{(St,) — liminfx. To prove the result it is sufficient to
prove that given € > 0,8 + € € A,, so that « < B + &. Let £ > 0. By proposition 5.1, {(i,j): o >p+ %} €l
and therefore the set {(i,j): o <B+ %} € F(I). Since {(i,j): gf < B+ %} c {(i,j):oij? <B+ %} and F(I) is a
filter on N? therefore {(i, /): 0} < B + €} € F(I). This implies that the set {(i,/): 0} < B + &} & I and therefore
by definition of A, + e € A,. As a = infA, so we have, a« < 8 + €. Since ¢ is arbitrary this proves that
a<p.

Remark 5.2: For any real double sequence x = (x;),I — liminfx < Cl(St;) — liminfx < C{,(St) —
limsupx < I — limsupx.

Remark 5.3: C{,(St,) —boundedness of a sequence x = (x;;) implies C{;(St;) — liminfx and C{,(St;) —
limsupx are finite, as such (1.1) and (1.2) hold.

Theorem 5.2: If x = (x;;),y = (y;) are two C{, (St,) —bounded sequences, then we have

(i) ¢f,(Sty) — limsup(x +y) < C{,(St,) — limsupx + C!,(St,) — limsupy
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(i) ¢l (Sty) — liminf(x + y) = €/, (Sty) — liminfx + C{ (St,) — liminfy

Proof: Since x and y are C!,(St,) —bounded sequences therefore by remark 5.3, C{;(St,) — limsupx and
C{1(Sty) — limsupy are both finite. We may also assume that B,., is non-void. Let a = C{;(St;) —
limsupx, f = CI,(St,) — limsupy and ¥ = C!,(St,) — limsup(x + y). Take £ > 0. Then by proposition 5.1
we have the sets A = {(i,j): o > a +§} and B = {(i,j):ag > B+ %} belong to I. Now it is clear that the set
C= {(i,j): o + 037 >a+f+ e} € A U B. Since the set on the right side belongs to I therefore C € I. Next we
shall prove that for every b € B, ,,,b < a+ f +¢.

Let b € B,.,, then by definition {(i,)):0 + 0 >b} & I If b>a+ B +¢, then {(i,): 0} + 0 >b}cC
and therefore {(i, /): 0¥ + gy > b} belongs to I as C € I. In this way we obtained a contradiction as {(i, )): 0¥ +

ojy>b&/. Hence b<a+f+¢ for every LeBx+y.This shows that C1.1/85¢2— limsupx+y=supBrx+y<a+pf+¢.
Since €>0 is arbitrary so y < a + . We can prove (ii) analogously. This completes the proof.

Theorem 5.3: A real double €/ (St,) —bounded sequence x = (xl-j) is €/ ,(St,) —convergent if and only if
Cl,(Sty) — liminfx = C!,(St;) — limsupx

Proof: Since x = (x;;) is C{(St,) —bounded therefore by remark 5.3 C{,(St,) — liminfx and C{,(St;) —
limsupx are both finite. Let, & = C{ ;(St,) — liminfx and B = C{;(St,) — limsupx. Suppose that x = (x;;) is
convergent with C{;(St,) — lim; ;.. x;; = L.Let & > 0 be given. Then we have the set {(i,/): |0} —L| = ¢} €
I. Thus for each b > L + &, we have {(i,/): 6} > b} c {(i,/): % > L + ¢}. Since I is an ideal and the set on the
right side belongs to I, therefore the set {(i, j):o}f > b} € I. Thus for each b > L + ¢, the set {(i, )): 0} > b} €
I, which implies that g < L + €. As ¢ is arbitrary, we have f < L. We also have by proposition 5.2, {(i,j): o <
L—e€/, which yields that Z<a. Therefore we have f<a. Combining this with theorem 5.1, we conclude that
a = B. Conversely, suppose that C!, (St,) — liminfx = C!,(St,) — limsupx = L i.e., both are finite then by
proposition 5.1 and 5.2, we have the set A(e) = {(i,/): |o}f — L| = &} € I. Hence C{; —lim;;_,.. x;; = L.

VI. ¢! ,(St;) —Core of Double Sequences
Analogous to I —Core [see Kumar (2007)] and C;;(St;) —Core [see Siddiqui (2012)], we define
cl,(St,) —Core as follows:
Definition 6.1: For any C{,(St,) —bounded sequence x = (x;;), then C{, (St,) —Core of x is defined as the
closed interval [C{,(Sty) — liminfx, C!,(St,) — limsupx. In case x is not C/,(St,) —bounded,
Cl,(St,) —Core is given by either (—oo, C!,(St,) — limsupx] (Cl,(Sty) — liminfx] or (—oo,). We shall
denote by C{, (St;) —Core{x}, the C{; (St,) —Core of the sequence x = (x;;).
It can be seen from remark 5.2 that C{ ; (St,) —Core{x} < I —Core{x}, for any double sequence x.
Lemma 6.1: Let C/,(St2,), be the space of all double sequences which are bounded and I —statistically
convergent to zero.Then A € (ffo C{ll(Stgw)) if and only if
() 14l = sup Ty lap| < o
(ii) [ —limyy, ., ¥ al* = 0 foreachi,j € N
(iii) I — lim,p, o, X af" = O foreachi € N
(iv) I —limyy, o, X; aff" = 0 foreach j € N
(V) I —limyy, ., 3 |af™| =0
Assuming that I is an admissible ideal such that I contains all sets of the form
H x N,N x H where H is a finite subset of N.
Lemma 6.2: If A = [ajf" ] is a four dimensional matrix. Then,
A € [Cf1(Stys, C1.1(Sty)]rey If and only if (6.1)
Ais RH —regular and Cy ; (St3) — lim,y, .o, X |a§}’-m| =0 foreveryE c N2 in|.
Proof: Suppose that A € (C{;(Stz.), C11(St2))req-Since I is an admissible ideal which contain all sets of the
form H x N, N x H wher H is a subset of N. Therefore C; ; (St,) —convergene for any bounded double sequence
(x;; ). This implies that C;,(St;) © C{;(St,,,) and the RH —regular of A as follows. Let E c N? be any set
belongs to the ideal I and x = (x;;) € ¢>. Define the sequence o = (a;;) as follows:
) _{a;;, if (i,j) €E
O-L] - ,
0 otherwise.
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Then it is obvious that o € C{, (St,.) with Cy;(St;) —lim; . z; = 0. By (6.1) we have Ao € C;4(St).,).
Also we have Ao = min qrantxy = ﬁzi_jeE a;’" x;;. Define the matrix B = [bji"] as follows: For each
m,n €N
gy = (4" Y GDEE
0 otherwise.
It is obvious that the matrix B defined above is in the class (C{_l(Stzm)), and therefore by (lemma 6.1), we
have, C; 1 (St;) — limy, ., X ;| by | = 0. This implies that
Ca(St) = Tim Z |az | = o.
i,jEE
Conversely, suppose that A is RH —regular and C; 1 (St;) — lim,, ,, ., Zi,je5|aZ-m| = 0 for everyE < N? in . Let
x € C{,(St,,) and suppose that C{ ; (St,) — lim;; x;; = L. Then for each & > 0, the set
{6, ):|oF —L| = e} e Tand {(i, ): |0} — L| < &} € F(I). (6.2)
Now we can write 3. al x; = ¥ ; ai™ (x;; — L) + L X;; a™ This implies that C; ;(St) — limyy, o Ad™ =
C11(Sty) —
limyy, oo Xij @ Xy = Cpa(Sty) — limy, 00 (X aff™ (xy — L)) + C1(Sty) — limy, o (LY aff™ ). Since
A is RH —regular matrix therefore by lemma(6.1), we have C;;(Sty) —lim,, ,_,Ac* =C;1(St;) —
My, 0 X ap™ (x; — L) + L. Also we have |3, al™ (x;; — L)| = |Xijer al™ (¢ — L)| + X jer al™ (x; —
L)<xij-LijaiymnteA by  (6.2). It follows that  C1.1522-limmn—wljaiimn(xi/—L)=0.
SinceCy 1 (Sty) — limyy, o AT = Cy1(Sty) = limyy, e Xy @™ (x;; — L) + L we have, therefore C;;(St;) —
limy, ., Ac* = L. Hence A € [C];(Sty..), C11(St)]reg-
Theorem 6.1: Let [|All <o and x = (x;;) € £5. Then, C;4(Sty) — limsupAc™ < € (St,) — limsupo™ if
and only if
A€ (Cl1(Sty), 61.1(5t2))reg' and Cy 1 (Sty) — lim,y, 00 225 |a§;m |=1 (6.3)
Proof First suppose that C; ; (St,) — limsupAo < C{(St;) — limsupo holds. Then, by an easy argument, one
has that
cl,(St,) — liminfo < ¢y 1(Sty) — liminfAo < C;1(St,) — limsupAc
< ¢{,(St,) — limsupo (6.4)
Let x = (x;) € Cl1(Sty.). As x is Cl,(Sty) —convergent we take Cf;(St;)—lim;_,x; = L. Since
C{1(Sty,,) is a subspace of 2,50 x € ¢2 and therefore by assumption we have
C1.1(Sty) —limsup Ao < C{;(St;) — lim sup 0. As (x;;) is C{;(St,) —convergent to L, so by theorem 5.2 we
have C{,(St;) —lim inf o = C{(St;) — lim supo = L by (6.4) we can observe that C; ; (St,) —lim Ao = L.
This implies that Ac* € (C!1(Stz.), Cl_l(StZ))Teg . Also by remark 5.2
We have C{,(St,) — limsupo < C;,(St,) — limsups. On combining the above inequalities we get,
C,1(Sty) — limsupAo < C;1(Sty) — limsupo. But then by theorem (4.1), We have Ais RH —regular
summability matrix with C; 1 (St;) — limy, ., X @™ | = 1.
Conversely suppose that (6.3) holds. Let x = (x;;) be any bounded double sequence, then we have Ao is
bounded and x is C{(St,) —bounded sequences. Therefore by remark 5.3, C{ ;(St,) — limsupo is finite say
L.So by proposition 5.1, for each € > 0 the set E = {(i,j): oj >L+ e} € . Also we have ojj < L + & whenever
i,j € E. Now we can write

|alfr,mxl..|+an.mx.. |amnx..|—amnx..

J Y Y Y Y Y Y
Aa=Za?’-‘”x--S Z / +Z +
v - 2 - 2
y y

i
< Z ai" x;;
i
> (lag | = ag)lay |
ij

mn mn
< z a;" x; + Z a;" X

i,jEE ij€E

el Y (lag| = agm) < el Y e[+ L+ 2) ) fagn |+ lxli(jag™] - ap).
J

ij EE ij&E
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Since Ae(C{_l(Stz,w),CM(StZ))reg, therefore by lemma (5.2) A is RH —regular and

C1.1(5t5) = limyy -, X jeglal™ | = 0 for every EcN? in I. Since A is RH —regular and C;,(St;) —
lim,, .-, ¥ |ap™ | = 1, therefore theorem (2.2) and theorem (2.3) implies that Ci;(St;) — limsupAc <
(L + ). This completes the proof as ¢ was arbitrary selected.
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