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Abstract: In this paper we use the gram-Schmid method to define an orthogonal Polynomials such as Legendre 

– Hermit – Laguir with their corresponding weight functions. Also we get a new generating function for 

Legendre polynomials. 
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I. Introduction 
The basic concepts of Gram-Schamidt method 

Gram-Schamidt method constructs an orthogonal vector’s from any set of linearly independent vector’s 

nxxxx ,...,,, 321  the construction as follows: 

                          Put       11 xy                                        (1.1) 

and then 
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Where 
 ,

 represent the scalar product on the vector space it is clear from equation )2,1(  that 2y
 is 

equal to 2x
 minus to projection on 1y . 

Following )2,1( we lead generally to 
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II. Finding orthogonal Polynomials using Gram- Schmidt method 
In this subsection we construct some important polynomials by using Gram- Schmidt method. 

(a) Lagendre Polynomials: 

We know that the set 
nxxx ,...,,,1 2

 is linearly independent set. Defined the set of Polynomials   

)(,...,)(,)(,)( 321 xfxfxfxf n  let 
1 i

i xx   ,    )(xfy jj     ,   ...,3,2,1, ji  

The using equation )3,1(  we have 

1)( 111  xxfy                                                                                      ( 2.1.a )                                                                         
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    ( 2.4.a )   

Define the scalar product as dxxgxfgf )()(,
1

1




  with weight function equal to one 
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If we put )()( 11 xxf ii   where )(xi  is Legendre Polynomial,  is constant and use the 

condition 1)1( i  then we get 
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                                                                              ( 2.6.a )   

                                                         

(b) Hermite Polynomials: 

    Following section (a) and define the scalar product in the form 

 dxxgxfegf x )()(,
2






                                                                         ( 2.7.a )                                                   

and using the identity  
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 We can derive Hermit Polynomials as 
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III. New generating function for lagendre Polynomails 

We know that 
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)(   where  SF is Laplace transform for the 

function for the function )(tf  and therefore 
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    That means the function   2

0 1 xtJe xt   is generating function for the Legendre Polynomial  xPn . 
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