On the Gram-Schamidt method and the orthogonal Polynomials

Mohammed A. Gubara¹

¹(Mathematics Department, College of mathematical Sciences/Alneelain University, Sudan)

Abstract: In this paper we use the gram-Schmid method to define an orthogonal Polynomials such as Legendre – Hermit – Laguir with their corresponding weight functions. Also we get a new generating function for Legendre polynomials.

Keywords: Gram – Schamidt – Orthogonal functions - Weight functions-Generating functions

I.

Introduction

The basic concepts of Gram-Schamidt method

Gram-Schamidt method constructs an orthogonal vector's from any set of linearly independent vector's $x_1, x_2, x_3, ..., x_n$ the construction as follows:

Put
$$y_1 = x_1$$
 (1.1)

and then

$$y_2 = x_2 - \frac{\langle y_1, x_2 \rangle}{\langle y_1, y_1 \rangle} y_1$$
(1.2)

Where $\langle \cdot, \cdot \rangle$ represent the scalar product on the vector space it is clear from equation (1,2) that y_2 is equal to x_2 minus to projection on y_1 .

Following (1,2) we lead generally to

$$y_j = x_j - \sum_{k=1}^{j-1} \frac{\langle y_k, x_j \rangle}{\langle y_k, y_k \rangle} y_k$$
 (1,3)

II. Finding orthogonal Polynomials using Gram- Schmidt method

In this subsection we construct some important polynomials by using Gram- Schmidt method. (a) Lagendre Polynomials:

We know that the set $1, x, x^2, ..., x^n$ is linearly independent set. Defined the set of Polynomials $f_1(x), f_2(x), f_3(x), ..., f_n(x)$ let $x_i = x^{i-1}$, $y_j = f_j(x)$, i, j = 1, 2, 3, ...

The using equation (1,3) we have

$$y_1 = f_1(x) = x_1 = 1$$
 (2.1.a)

$$y_2 = f_2(x) = x_2 - \frac{\langle x_2, y_1 \rangle}{\langle y_1, y_1 \rangle} y_1$$
 (2.2.a)

$$y_3 = f_3(x) = x_3 - \frac{\langle y_1, x_3 \rangle}{\langle y_1, y_1 \rangle} y_1 - \frac{\langle y_2, x_3 \rangle}{\langle y_2, y_2 \rangle} y_2$$
 (2.3.a)

$$y_4 = f_4(x) = x_4 - \frac{\langle y_1, x_4 \rangle}{\langle y_1, y_1 \rangle} y_1 - \frac{\langle y_2, x_4 \rangle}{\langle y_2, y_2 \rangle} y_2 - \frac{\langle y_3, x_4 \rangle}{\langle y_3, y_3 \rangle} y_3 \quad (2.4.a)$$

Define the scalar product as $\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) dx$ with weight function equal to one

$$\begin{cases} f_1(x) = 1 \\ f_2(x) = x \\ f_3(x) = \frac{1}{3} (3x^2 - 1) \\ f_4(x) = \frac{1}{5} (5x^3 - 3x) \\ \vdots \end{cases}$$

$$(2.5.a)$$

If we put $f_1(x) = A_i P_{i-1}(x)$ where $P_i(x)$ is Legendre Polynomial, A is constant and use the condition $P_i(1) = 1$ then we get

$$P_{0}(x) = 1$$

$$P_{1}(x) = x$$

$$P_{2}(x) = \frac{1}{2}(3x^{2} - 1)$$

$$P_{3}(x) = \frac{1}{2}(5x^{3} - 3x)$$

$$\vdots$$

$$(2.6.a)$$

(b) Hermite Polynomials:

Following section (a) and define the scalar product in the form

$$= \int_{-\infty}^{\infty} e^{-x^2} f(x) g(x) dx$$
 (2.7.a)

and using the identity

$$\int_{-\infty}^{\infty} x^{2n} e^{-x^2} dx = \frac{(2n-1)!}{2^{2n}(n-1)!} \sqrt{i}$$

We can derive Hermit Polynomials as

$$\begin{array}{c}
H_{0}(x) = 1 \\
H_{1}(x) = 2x \\
H_{2}(x) = 4x^{2} - 2 \\
H_{3}(x) = 8x^{3} - 12x \\
\vdots \end{array}$$
(2.8.a)

III. New generating function for lagendre Polynomails

We know that
$$L J_0(t) = \frac{1}{\sqrt{S^2 + 1}}$$
 and $L f(at) = \frac{1}{a} F(S/a)$ where $F(S)$ is Laplace transform for the

function for the function f(t) and therefore

$$L\left[e^{xt} J_0\left(t\sqrt{1-x^2}\right)\right] = \frac{1}{\sqrt{S^2 + 1 - x^2}} = \frac{1}{\sqrt{s^2 + 1 - x^2}} = \frac{1}{\sqrt{s^2 + 1 - x^2}} = \sum_{n=0}^{\infty} P_n(x) S^{-(n+1)} = L\sum_{n=0}^{\infty} \frac{P_n}{n!} t^n$$

$$\therefore \left[e^{xt} J_0\left(t\sqrt{1-x^2}\right) \right] = L \sum_{n=0}^{\infty} \frac{P_n}{n!} t^n$$

That means the function $e^{xt} J_0\left(t\sqrt{1-x^2}\right)$ is generating function for the Legendre Polynomial $P_n(x)$.

References

Boas.M'Mathemtical methods in the physical sinces (2006) Debnath.l and Bhatta "Integral trnsforms and their application"(2003) Sanson.G''Expansion in series of Legendre polynomials and spherical harnomics "pp 169-294 (1991) [1]. [2]. [3].