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Abstract: Pneumonia is one of the leading causes of serious illness and deaths among children around the 

world. In this paper we develop a deterministic Susceptible-Exposed-Infectious-Recovered or SEIR model to 

study the spread of pneumonia using data from the Boloso Sore of Ethiopia. The study also evaluates the impact 

of control measures, mainly vaccination, the spread Streptococcus pneumonia disease. Conditions for the 

clearance or persistence of the pneumonia infection through the stability of the equilibria are derived. The 

vaccine impact to assess the degree of transmission as well as to determine the power of the vaccine in reducing 

the transmission is calculated. It is concluded that rapid vaccination is the most important factor to control the 

spread of streptococcus pneumonia in the case of an outbreak and that of the susceptible population needs to be 

vaccination in order to bring the disease under control. Numerical simulation study in made and it is observed 

that a combination of vaccination programs targeting children can effectively eliminate the pneumonia infection 

from the population. 

Key words: Pneumonia, Mathematical modeling, SEIR Modeling, vaccination, stability, basic reproduction 

number. 

 

I. Introduction 
Pneumonia is an air-borne respiratory disease caused by infection inside the lungs. It may be contacted 

by breathing in droplets containing disease causing organisms, released into air when an infected person coughs 

or sneezes .Pneumonia may also be contacted when bacteria or viruses that are normally present in the mouth, 

throat, or nose inadvertently enter the lungs. The most common cause of bacterial pneumonia is Streptococcus 

pneumonia. The symptoms of pneumonia include: cough, difficult breathing, fever, muscle aches, loss of 

appetite and lethargy. The risk factors for pneumonia include smoking and passive smoking, alcohol and drug 

abuse, crowded living conditions and certain medical conditions. These include conditions that interfere with the 

gag relax; weaken the immune system and organ transplant. A weak immune system may be as a result of 

prolonged malaria exposure, malnutrition among other factors. Children have a higher risk of developing 

pneumonia if they have weakened immune systems [15].                               

Vaccines to prevent certain types of pneumonia are available. Treatment depends on the underlying 

cause. Pneumonia presumed to be bacterial is treated with antibiotics. If the pneumonia is severe, the affected 

person is generally hospitalized [5]. Current Streptococcus pneumonia vaccines are based on the use of the 

bacterial capsular polysaccharides (PS), which induce specific type antibodies that activate and fix complement 

and promote bacterial opsonization and phagocytosis. The two types of currently licensed vaccines are the 

pneumococcal polysaccharide vaccine (PPV), based on purified capsular (PS) and pneumococcal conjugate 

vaccines (PCV), and obtained by chemical conjugation of the capsular (PS) to a protein carrier [1].  

Some of these vaccines have a proven record of safety e.g. PPV in pregnant and breast-feeding mothers 

for preventing pneumococcal pneumonia in young infants [13]. Statistics shows that of all children outpatients 

suffering from respiratory complications, every year 1.9 million children under 5 years of age die from 

Pneumonia [11]. Looking at the situations, pneumonia is the single leading cause of death among children 

younger than five years in Ethiopia. The 2008 WHO report showed there were 389,000 under five deaths, of 

which 22 percent were due to pneumonia1. In 2010, pneumonia was responsible for 21 percent of all under five 

deaths in the country, only one percent reduction over the 4 years period.  

According to the recent 2014 countdown to 2015 report, however, the toll of in 5 deaths of pneumonia 

has supposedly to 18 percent, which is among the highest even compared to the load in the majority of African 

countries. Nonetheless, there are only scant source of data on this problem locally. For instance, a case control 

study in Gilgel Gibe revealed that 42 percent of post neonatal and 22:6 percent of neonatal mortality were 

attributable to pneumonia. (Ethiopia. J. Health Dev. 2014/15). 

Therefore to realize the Millennium Development Goal 4 or MDG 4, in this study, we develop and 

analyze using mathematical models the pneumonia dynamics under five years children in particular Boloso Sore 

Woreda, Wolaita Zone, SNNPR, Ethiopia. For this study we use the secondary data of 2014-15. An SEIR model 

is formulated and is used to find local and global stability of disease free equilibrium point or DFE and local 

stability of an endemic equilibrium point or EEP. The model will be simulated to determine the behavior of each 

embedded parameter for the impact of control measures of pneumonia.  Numerical study and validation of the 
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model, estimated and secondary data is used. Simulation of the model is also done with MATLAB by using 

ode45 method.  

 

II. Model formulation 
   The model we formulate here is an SEIRS model, where the population is divided into compartments 

containing susceptible, exposed, infectious and recovered individuals. Compartments with labels S, E, I, R are 

used for epidemiological classes as shown in Figure 1. The class S is the class of susceptible individuals; that is, 

those who can become infected. When there is an adequate contact of a susceptible with an infective so that 

transmission occurs, the susceptible enters the exposed class E of those in the latent period, who are infected but 

not yet infectious. At the end of the latent period, the individual enters the class I of infective, who are capable 

of transmitting the infection (that is, infectious). At the end of the infectious period, the individual enters the 

recovered class R. At time t, there are S(t) susceptible, E(t) exposed, I(t) infectious and R(t) recovered 

individuals in the population of constant size, N. The model assumes that all new-born are susceptible i.e., no 

vertical transmission to the infection and are recruited at rate µN. The susceptible are exposed to the infection 

once in contact with an infectious individual. The exposed become infected at rate 𝛼𝐸 and the infectious 

individuals recover from the infection at rate  𝛾𝐼. The transmission coefficient  𝛽 , the latency coefficient 𝛼 , the 

recovery coefficient  𝛾  and the capital death rate  µ  are positive quantities. Figure 1 represents the 

epidemiological model between classes of susceptible, exposed, infectious and recovered individuals in the 

population and  𝑁 =  𝑆 𝑡 + 𝐸 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 . 

 
Figure 1: Schematic Diagram for SEIRS Model without vaccination 

 

The following system of ordinary differential equations, ODEs, is formulated to represent the model 

 

𝑑𝑆/𝑑𝑡 =  µ𝑁 −  µ𝑆 –  𝛽𝑆𝐼/𝑁                  (1) 

𝑑𝐸/𝑑𝑡 =   𝛽𝑆𝐼/𝑁  − (µ + 𝛼)𝐸               (2) 

𝑑𝐼/𝑑𝑡 =  𝛼𝐸 – ( µ + 𝛾)𝐼                            (3) 

𝑑𝑅/𝑑𝑡 =  𝛾𝐼 − µ𝑅                                     (4) 

 

The nonlinear system of differential equations formulated above has initial conditions which are 

𝑆 𝑡0 = 𝑆0 , 𝐸 𝑡0 = 𝐸0 , 𝐼 𝑡0 = 𝐼0 , 𝑅 𝑡0 = 𝑅0 all positive quantities. Expressing equation (1-4) as a proportion 

of the population we obtain 

𝑢(𝑡)  =  𝑆(𝑡)/𝑁 , 𝑣(𝑡)  =  𝐸(𝑡)/𝑁, 𝑤(𝑡)  =  𝐼(𝑡)/𝑁, 𝑧(𝑡)  = 𝑅(𝑡)/𝑁        (5) 

    Here  𝑍 (𝑡)  = 1 − 𝑢 (𝑡) − 𝑣 (𝑡) − 𝑤 (𝑡). Now, on substituting equation (5) into equation (1-4) we 

obtain 

𝑑𝑢/𝑑𝑡 =  µ − 𝑢(µ + 𝛽𝑤)               (6) 

𝑑𝑣/𝑑𝑡 =  𝛽𝑤𝑢 − (µ + 𝛼)𝑣             (7) 

𝑑𝑤/𝑑𝑡 =  𝛼𝑣 − (µ + 𝛾)𝑤               (8) 

𝑑𝑧/𝑑𝑡 = 𝛾𝑤 − µ𝑧                            (9) 

        Hence, we have equations (6-9) which reduces to three dimensional system of (1-4). Now the basic 

reproductive ratio (R0) will be found by using the method of general matrix   

𝑅0  = 𝛽𝛼 / (µ + 𝛼) (µ + 𝛾)        (10) 

 The stability of the model is obtained by evaluating at steady state of the system of the equations (6-8). We 

consider two states the infectious free state for which 𝑤 =  0 and endemic state for which   𝑤 ≠ 0. 

That is 

µ − 𝑢 (µ + 𝛽𝑤)  = 0              (11) 

𝛽𝑤𝑢 − (µ + 𝛼)𝑣 = 0           (12) 

𝛼𝑣 − (µ + 𝛾) 𝑤  = 0            (13) 

Solving the equations (11-13) at  𝑤 = 0, we get  𝑢 = 1, 𝑣 = 0, the first equilibrium point is (𝑢, 𝑣, 𝑤) =  (1, 0, 0) 

and is disease free equilibrium point. In case of endemic state  (𝑤 ≠ 0), we set   𝑣 =   𝛾 +  µ/𝛼  w   using the 

equation (13) substituting the value of v into equation (12) to obtain   𝑢 =   (µ + 𝛼) (µ + 𝛾)/ 𝛽𝛼  = 1/𝑅0. 

Using the value of 𝑢 in equation (11) we obtain 𝑣 =   µ (𝑅0 − 1) / 𝑅0 (µ + 𝛼)      and  𝑤 =   µ (𝑅0 − 1) /𝛽. 
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Hence, endemic equilibrium state takes the form  (𝑢, 𝑣, 𝑤)  =  (1/𝑅0,   µ(𝑅0 − 1)/𝑅0(µ + 𝛼),      µ(𝑅0 − 1)/
𝛽). We evaluate the local stability of the steady state by linearization the equations (6-8). The Jacobian matrix 

found to be 

𝐽 =  

−µ − 𝛽𝑤 0 −𝛽𝑢
𝛽𝑤 −(µ + 𝛼) 𝛽𝑢

0 𝛼 −(µ + 𝛾)
   (14) 

 

We evaluate the Jacobian matrix at the disease free equilibrium    (𝑢, 𝑣, 𝑤)  = (1,0,0) to obtain 

𝐽𝐷𝐸𝐹 =  

−µ 0 −𝛽
0 −(µ + 𝛼) 𝛽

0 𝛼 −(µ + 𝛾)
  

To determine eigenvalues for DFE we consider Jacobian matrix of the model equation (14)   

 

𝐽𝐷𝐸𝐹 −  λI =    

−µ − 𝜆 0 −𝛽

0 − µ + 𝛼 − 𝜆 𝛽

0 𝛼 − µ + 𝛾 − 𝜆
      (15) 

This gives the characteristic equation 𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0  

where 𝑎1 = 3µ + 𝛼 + 𝛾 , 𝑎2 =  (µ + 𝛼) (µ + 𝛾) − 𝛼𝛽 + µ (2µ + 𝛼 + 𝛾), and  𝑎3 = µ ((µ + 𝛼) (µ + 𝛾) − 𝛼𝛽). 

From Routh – Hurwitz stability criterion if the conditions 𝑎1 > 0, 𝑎3 > 0 and   𝑎1𝑎2 − 𝑎3 > 0  (Flores, 2013) 

are true.  If  𝑎3 <  0  then the free equilibrium point is in an unstable steady state. This means the presence of a 

person infected with pneumonia in a completely susceptible population will eventually result in an outbreak of 

the disease. 

𝐽𝐸𝐸 −  wI =  

−µ𝑅0 − 𝑤 0 − µ + 𝛼 (µ + 𝛾)/𝛽

−µ(𝑅0 − 1) −(µ + 𝛼) − 𝑤  µ + 𝛼 (µ + 𝛾)/𝛽

0 𝛼 − µ + 𝛾 − 𝑤

    (16) 

  This gives the characteristic equation 𝑤3 + 𝑏1𝑤
2 + 𝑏2𝑤 + 𝑏3 = 0  where 𝑏1 = µ𝑅0 + 2µ + 𝛼 + 𝛾     , 

  𝑏2 =   2µ + 𝛾 + 𝛼 µ𝑅0    and    𝑏3 = µ (𝑅0 − 1) (µ + 𝛼) (µ + 𝛾). In the endemic equilibrium EE state   

(𝑢, 𝑣, 𝑤)  =  (1/𝑅0, µ (𝑅0 − 1)/𝑅0 (µ + 𝛼),    µ (𝑅0 − 1)/𝛽). Routh – Hurwitz stability criteria is satisfied. 

Hence the endemic steady state is stable. This means the pneumonia disease would spread. 

 

III. Modeling Pneumonia with inclusion of control strategy 
We extend the SEIR model to take care of effect of vaccination on the spread of pneumonia, the class 𝑆 

of susceptible is increased by birth and natural death at a rate µ.The class 𝐸 of exposed individuals is generated 

through contact with infected individuals at rate   𝛽. The class 𝑆 is decreased by testing and pneumonia therapy 

at a rate  𝛿 , breaks through into expose class at a rate  𝛼  and diminished by natural death at a rate  µ. The class 

 𝐼 of infected individuals is generated by breakthrough of exposed individuals at a rate  𝛼. The class is decreased 

by recovery from infection at a rate  𝛾  and diminished by natural death at a rate   µ. The model assumes that 

both recovered susceptible individuals and recovered infected individuals become permanently immune to the 

disease. This generates a class  𝑅  of individuals who have complete protection against the disease. The  𝑅  of 

recovered individuals diminished by natural death at a rate of   µ. 

Figure 2: Schematic diagram for Vaccination 𝑺𝑬𝑰𝑹 model 
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The transition between model classes can now be expressed by the following system of differential equations:   

𝑑𝑆/𝑑𝑡 =  µ𝑁 −  𝛽𝑆𝐼/𝑁 − µ𝑆 − 𝛿𝑆      (17) 

𝑑𝐸/𝑑𝑡 =   𝛽𝑆𝐼/𝑁 − (µ + 𝛼)𝐸              (18) 

𝑑𝐼/𝑑𝑡 =  𝛼𝐸 − (µ + 𝛾)𝐼                          (19) 

𝑑𝑅/𝑑𝑡 =  𝛾𝐼 + 𝛿𝑆 − µ𝑅                           (20) 

  We now find equilibrium point   𝑢, 𝑣, 𝑤, 𝑧  from equations (17) to (20) as a proportion of the 

population  𝑢 𝑡 =  𝑆 𝑡 𝑁   , 𝑣 𝑡 =  𝐸 𝑡 𝑁  ,   𝑤 𝑡 =  𝐼 𝑡 𝑁  , and  𝑧 𝑡 =  𝑅 𝑡 𝑁   . Thus,    𝑢(𝑡) +
𝑣(𝑡) + 𝑤(𝑡) + 𝑧(𝑡)  =  1 and we obtain the following. 

 

𝑑𝑢/𝑑𝑡 =   µ − 𝑢(µ + 𝛽𝑤 + 𝛿)     (21) 

𝑑𝑣/𝑑𝑡 =   𝛽𝑤𝑢 − (µ + 𝛼)𝑣          (22) 

𝑑𝑤/𝑑𝑡 = 𝛼𝑣 − (µ + 𝛾)𝑤              (23) 

𝑑𝑧/𝑑𝑡 = 𝛾𝑤 + 𝛿𝑢 − µ𝑧                 (24) 

 

For stability of the model we need to evaluate the steady state of the system of the equations from (21) 

to (24), which leads to                                                                  

µ − 𝑢 (µ + 𝛽𝑤 + 𝛿)  = 0                        (25a) 

𝛽𝑤𝑢 − (µ + 𝛼+)𝑣 = 0                            (25b) 

𝛼𝑣 − (µ + 𝛾)𝑤 = 0                                (25c) 

𝛾𝑤 +  𝛿𝑢 − µ𝑧 = 0                                  (25d) 

Now, the basic reproduction number 𝑅0 will be found by using the method of next generation matrix 

and can be described as  𝑅0  =  𝜌 (𝐹𝑉−1) where 𝐹 =   
0 𝛽
0 0

    and
   𝑉 =  

1/(µ + 𝛼) 0
−𝛼 (µ + 𝛾)

 . Hence, the 

reproductive number will have the expression as    𝑅0  =   𝛽𝛼/  (µ + 𝛼) (µ + 𝛾)  . We consider two states, 

infection-free state where 𝑤 =  0 and endemic state where  𝑤 ≠ 0. Equations (25) have a disease free 

equilibrium. At the infection-free state when    𝑤 = 0, the values take the form      𝑢 =  µ/ (µ + 𝛿)  , 𝑣 = 0 

and  𝑧 =  𝛿/ (µ + 𝛿) . We now evaluate Jacobian matrix below:                            

𝐽 (𝑢, 𝑣, 𝑤, 𝑧)   =   

 
 
 
 
−µ − 𝛽𝑤 − 𝛿 0 −𝛽𝑢 0

𝛽𝑤 − µ + 𝛼 𝛽𝑢 0

0 𝛼 − µ + 𝛾 0
𝛿 0 𝛾 −µ 

 
 
 
      (26) 

 

   At the equilibrium point  (𝑢, 𝑣, 𝑤, 𝑧) =  (𝑢, 0, 0, 𝑧) the matrix (26) takes the form as            

𝐽 (𝑢, 0, 0, 𝑧)  =

 
 
 
 
−µ − 𝛿 0 −𝛽𝑢 0

0 − µ + 𝛼 𝛽𝑢 0

0 𝛼 − µ + 𝛾 0
𝛿 0 𝛾 −µ 

 
 
 
                     (27) 

    At the endemic equilibrium point 𝑤 ≠  0 we have   𝑢 =   1/R0   ,  𝑉 =   µ/  (µ + 𝛼)  1 −  𝜌/𝑅0    , 

  𝑤 =   µ𝛼/  (µ + 𝛾) (µ + 𝛼)  1 −  𝜌/𝑅0      and  𝑧 =    𝛾𝛼 /(µ + 𝛼)(µ + 𝛾) 1 −  𝜌/𝑅0   −  𝛿/µ𝑅0   and 

the Jacobian matrix reduces to  

𝐽𝐸𝐸   =   

−µ − 𝛽𝑤 − 𝛿 0 𝛽𝑢 0
𝛽𝑤 −µ − 𝛼 𝛽𝑢 0
0 𝛼 −µ − 𝛾 0
0 0 𝛾 −µ

                       (28) 

     The disease free – equilibrium point is given by   (𝑢, 𝑣, 𝑤, 𝑧)  =  (𝑢, 0, 0, 𝑧). We evaluate the Jacobian 

matrix and find the eigenvalues at this equilibrium point.  Thus, we construct the determinant equation as 

 𝐽𝐷𝐹𝐸  −  𝜆𝐼  =   

−µ − 𝛿 − 𝜆 0 −𝛽𝑢 0

0 − µ + 𝛼 − 𝜆 𝛽𝑢 0

0 𝛼 − µ + 𝛾 − 𝜆 0
𝛿 𝛿 𝛾 −µ − 𝜆

  = 0  (29) 

The evaluation of the determinant (29) gives the characteristic equation in its simplified form as   µ + 𝛿 +
 𝜆µ+𝜆𝜆2+ µ+𝛼µ+𝛾𝜆+2µ+𝛼+𝛾−µ+𝛼µ+𝛾=0.   The eigenvalues of   𝐽𝐷𝐹𝐸  matrix are   𝜆1= −µ−𝛿 ,   𝜆2= −µ  ,    
𝜆3 =  − (µ + 𝛼) , and 𝜆4 =  −   𝛽𝛼µ/ (µ + 𝛿)  +  µ + 𝛾  . Since these four eigenvalues are all negatives the 

disease free equilibrium point is stable. 

     Further, the endemic equilibrium point where  𝑤 ≠  0, we have  𝑢 =   1 𝑅0    , 𝑣 =   µ/   µ + 𝛼   1 −

 𝜌/𝑅0       ,  𝑤 =   µ𝛼   µ + 𝛾    µ + 𝛼   1 −  𝜌 𝑅0        and     𝑧 =   𝛾𝛼  µ + 𝛼  µ + 𝛾  1 −  𝜌/𝑅0     −
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 𝛿 µ𝑅0   . We evaluate the Jacobian matrix and find the eigenvalues at this endemic equilibrium point.  Thus, 

we construct the determinant equation as 

 

 𝐽𝐸𝐸  – 𝑌 𝐼  =    

−µ𝑅0 − 𝛿 − 𝑌 0 − 𝛽/ 𝑅0 0

µ(𝑅0 − 𝜌) − µ + 𝛼 − 𝑌  𝛽/𝑅0 0

0 𝛼 − µ + 𝛾 − 𝑌 0
𝛿 0 𝛾 −µ − 𝑌

   = 0   (30) 

 

The evaluation of the determinant (30) gives the characteristic equation in its simplified form as   𝑌 +
µ 𝑌3+𝑥1𝑌2+𝑥2𝑌+𝑥3=0 where  𝑥1= µ (𝑅0+𝜌+1) +𝛿+2µ+𝛼+𝛾 ,  𝑥2= µ 𝑅0+𝜌+1 + 𝛿 2µ+𝛼+𝛾 + µ+𝛼 µ+𝛼 

and   𝑥3 =  µ   𝑅0 + 𝜌 + 1  +  𝛿   µ + 𝛾   µ + 𝛼  +  µ   µ + 𝛾   µ + 𝛼  𝜌 − 𝛼𝛽) . From Routh – Hurwitz 

stability criterion if the conditions 𝑎1 > 0, 𝑎3 > 0 and  𝑎1𝑎2 − 𝑎3 > 0 (Flores, 2013) are true, then all the 

roots of the characteristic equation have negative real part which means that it is a stable equilibrium point.  

 

IV. Model Application 
       In this section, we study 𝑆𝐸𝐼𝑅 model using data from the Boloso Sore Woreda, Ethiopia. Analysis of 

the data indicates that during July 2014 – June 2015 a total of 846 people attended hospitals for flu screening 

and 477 people were found to be infected by pneumonia. The data are  (𝑆, 𝐸, 𝐼, 𝑅) =  27391, 4388 , 477,
  466 by dividing through by the total population of Boloso Sore Ethiopia which is   𝑁=32,722 , we have   

𝑢 = 0.0.8370,   𝑣 = 0.1341, 𝑤 = 0.00145 and  𝑧 = 0.0145  as initial proportion of susceptible, exposed, 

infectious and recovered respectively.  

   The basic reproductive is found be to  𝑅 = 4. 6136. The free equilibrium (𝑢 . 𝑣, 𝑤)  =  (1, 0, 0) is 

unstable and endemic for equilibrium (𝑢, 𝑣, 𝑤)  =  (0.8370, 0.1341, 0.0145) is stable. In 𝑆𝐸𝐼𝑅 model 

vaccination both with free and endemic equilibriums are stable. The solutions to the pneumonia model equations 

are obtained with the Matlab 𝑂𝐷𝐸45 solver Runge Kutta method. We also determine the stability of the 

equilibrium points of the 𝑆𝐸𝐼𝑅 model and perform sensitivity analysis on the parameter values to determine the 

effect on the spread of pneumonia in Ethiopia. 

 

V. Numerical simulation 
5.1 Disease free equilibrium and endemic equilibrium 

This part gives an illustration of the analytical results of the model by carrying out stability analysis 

and numerical simulations of the model using the parameter values pertinent to Ethiopia in Boloso Sore in 2014 

– 15 .If the value of the parameters are   µ = 0.0012, 𝛾 = 0.1176,   𝛼 =  0.5,   𝛽 =  0.5445, then the effects 

on the reproduction number 𝑅0 = 4.5724 and the stability of the disease – free equilibrium and endemic 

equilibrium points are shown graphically below: 

 

 
Figure 3: Simulation of the SEIR model without vaccination of pneumonia at free-equilibrium point 

 

We find that, the initial proportion of infectious has small or no effect on the susceptible population 

and hence we have disease – free equilibrium state. 
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.  

Figure 4: Simulation of SEIR model without vaccination of pneumonia at Endemic equilibrium point 

      

     Fig 4 showing results that the endemic equilibrium state of SEIR model exhibit   susceptible individual 

decrease with increase in time. The exposed individual at latent period decreases slightly and then increases 

hence as more and more people are infected with the pneumonia, the disease become endemic in the country.  

 

5.2 Numerical simulation of SEIR model with vaccination 

5.2.1 Disease free equilibrium and endemic equilibrium point  

        If the value of the parameter are µ = 0.0012,   𝛾 = 0.1176,   𝛼 =  0.5,   𝛽 =  0.5445 and    𝛿 =  0.966  
the effects on the reproduction number  𝑅0 = 1.6447  and the stability of the disease free equilibrium and 

endemic equilibrium as shown in figures 5 and 6.  

 

 
Figure 5: Simulation of the SEIR model with vaccination pneumonia at Free – Equilibrium Point 

 

   From fig .5 we see that the susceptible population decreases as time increases. This decrease may be 

possibly because of the high rate of recovery due to mass vaccination, as individuals become permanently 

immune upon recovery free equilibrium state. 

 

 
Figure 6: Simulation of the SEIR model with vaccination pneumonia at endemic point 
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From fig 6, we see that the susceptible population decreases as time increases. This decrease may be 

possibly because of the high rate of   recovery due to mass vaccination, as individuals become permanently 

immune upon recovery. Exposed individuals show some rapid decrease after the earlier intervals of rise, the 

decrease in the exposed population could be due to early detection and also possibly due to those who enter the 

infective class. Infected individuals at the very beginning rise sharply as the rate increases and then fall 

uniformly as time increases. This rapid decline of the infected individuals may be due to early detection of the 

pneumonia and partly due to those who revert to the Exposed class. It can also be observed that the population 

of the recovered individuals rise up steadily for some number of months and then drops and remains nearly a 

constant. This could be due to the greater number of infectious individuals who have been treated for the 

Pneumonia transmission 

 

VI. Conclusions 

The present model has shown success in attempting to predict the causes of pneumonia transmission 

within the Boloso sore Ethiopia. The model strongly indicates that the spread of the disease largely depends on 

the contact rates with infected individuals within children. From the results, it is seen that the reproduction 

number   without vaccination for SEIR epidemiological model indicates that  𝑅0  > 1. The sensitivity analysis 

reveals that whenever the infectious rate is increased or the recovery rate is increased, the disease would spread. 

But with vaccination the disease infectious rate is reduced or the recovery rate is increased. This means that as 

more and more children are infected with the pneumonia without vaccination, since vaccination intervention has 

significant impact on the reduction of the disease, if it is implemented at targeted scale in endemic disease 

community, then new generation free of pneumonia disease in terms of different transmission level can be 

expected.  
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