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Abstract: In this paper, we prove some fixed point theorems for two and three maps of Jungck generalized
contractive mappings on spherically complete Ultra metric space using generalized contractive mappings . Our
results extend various known results in ultra metric space such as Pant and Mishra[13],Gajic[7] and others.

. Introduction
Generalization of metric space have been done in many ways such as 2-metric space,G- metric space,
b- metric space, probabilistic metric space, Fuzymetric space etc. Rooji [1] introduced the concept ofultrametric
space.Later on Petals and Vidalis [2] proved a fixed point theorem for contractive mappings on spherically
complete ultrametric space X.

Petals and Vidalis [2] established the following fixed point theorem:

Theorem (1.1): Let (X d) be a spherically complete ultrametric space and T:X—X a contractive mapping. Then
T has a unique fixed point.

In 2001 Gajic [7] obtained the following generalization of the above theorm:

Theorem (1.2): Let (X,d) be a spherically complete ultrametric space and T:X—X a mapping such that for all
x,y € X, x#y,

d(Tx, Ty) <max {d(x,y), d(x,Tx), d(y,Ty)}

Then T has a unique fixed point.

Later on Rao and Kishore [5] extended the above result for a pair of maps of Jungck type as follows:

Theorem (1.3): Let (X,d) be a spherically complete ultrametric space. If fand T are self maps on X satisfying
T(X)= f(X)

d(Tx, Ty)<max{d(f(f(x),f(y)), d(f(x), T(x)).d(f(y). T(y))}, xyex=#y.

then there exists z € X such that fz=Tz.

Further if f and T are coincidentally commutating at z then z is the unique common fixed point of f and T.
Further in 2014, Mishra and Pant [13] extended the result of Gajic [7] by introducing a more gereralized
contractive mapping as follows:

Definition (1.4): A self-mapping T of a metric (resp. an ultrametric) space X is said to be generalized
contractive mapping if

d(Tx,Ty)<M(x,y)for all x,y € X with x£y, where

M(x,y) = max{d(x,y), d(x,Tx),d(y,Ty),d(x, Ty),d(y, Tx)}

and proved the following theorem:

Theorem (1.5): Let (X,d) be a spherically complete ultrametric space and T:X —X a generalized contractive
mapping. Then T has a unique fixed point.
In this paper we have generalized and extended the previous results by:

Q) Increasing the number of maps.

(i) Increasing the number of terms in R.H.S.

Il.  Preliminaries
Definition (2.1): An ultrametric space is a set X together with a function d:XxX —R., which satisfies for all x,y
and zin X
(Uy) d(x,y) 20
(Up) d(x,y) = 0 if x=y
(Us) d(x,y) = d(y,x) (Symmentry)
(Uy) d(x,2) <max{d(x,y),d(y,z)} (strong triangle or ultrametric inequality)
Example (2.2): The discrete metric is an ultrametric.
Example (2.3): the p-adic number form a complete ultrametric space.
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Definition (2.4): An ultrametric space (X,d) is said to be spherically complete if every shrinking collection of
balls in X has non-empty intersection.

Definition (2.5): A self mapping T of a metric (resp. an ultrametric) space X is said to be contractive (or, strictly
contractive) mapping if

d(Tx,Ty)<d(x,y) for all x,y €X with x#y.

Example (2.6): Let X=(- o0, 00) endowed with the usual metric and T:X — X defined by

Tx=x + <
l+e

for all x€X. Here X is complete and T is a contractive mapping but T does not have a fixed point.

Definition (2.7): A self — mapping T of a metric (resp. an ultrametric) space X is said to be generalised

contractive mapping if:

d(Tx,Ty) < M(x,y)for all X,y€X with x#y, where

M(x,y) = max{d(x,y),d(x, Tx).d(y,Ty),d(x,Ty),d(y, Tx)}

Definition (2.8): For x€X, r>0, B/(x) = {y€X : d(x,y)<r} is called the ball (open) with centre x and radius r.

I11.  Main Results
Theorem (3.1): Let (X,d) be a spherically complete ultrametric space. Let f and T are self maps on X satisfying:
1. T(X)c<f(x)
2. d(Tx,Ty) < max{d(f(x),f(y)),d(f(x), T(x)),d(f(y), T(¥)).d(f(x), T(¥)).d(f(y), TG} V x.y€X, x#y.
then there exists z € X such that f(z) = T(2).
Further if f and T are coincidently commutating at z then z is the unique common fixed point of fand T.
Proof:
Let B, = (f, : d(fa,Ta) denote the closed sphere centred at fa with the radius d(fa,Ta) and let A be the collection
of these spheres for all a € X. Then the relation B, <Byif B,C B, is a partial order on A. Let A; be a totally
ordered sub family of A. Since (X,d) is spherically complete, we have N, cq4,
Let f(b)€B and B,€ A;. Then f(b)€ B,. Hence
d(f(b),f(a) <d(f(a),T(a)) ...ovvrenirireriiiininanns @A)
If a=b, then B,=B}. We assume that a#b.
Let x€ By, then

d(x,f(b)) < d(f(b), T(b))
< max{d(f(b),f(a)).d(f(a), T(a)),d(T(a),T(b))}
=max{d(f(a),T(a)),d(Ta,Tb)} ........coevviierrin.. from (i)
<max{d(f(a), T(a)),d(f(a),f(b)),d(f(b),T(b)).d(f(a), T(b))d(f(b), T(a))} from (2)
<d(f(@),T(2)) «+eveveeeiiiaaiienn. (i)

Now, d(x,f(a)) <max {d(x,f(b)),d(f(b),f(a)) <d(f(a), T(a)) from (i) & (ii)
Thus, x€B,.Hence B, C B, for any B,€A;. Thus By, is an upper bound in A and hence by Zorn’s Lemma, A has
a maximal element say B,, zE€X.
Suppose that f(z)#T(z). Since Tz € T(x) C f(x), there exists wEX such that T(z)=f(w). clearlyz#w. Now from
(2) we have:
d(f(w),Tw)) = d(Tz,Tw)
<max{d(f(z),f(w)),d(f(z),T(2)),d(f(w), T(w)),d(f(2), T(w)),d(f(w), T(2))}
But by the strong triangle inequality, we have
d(f(2), T(w)) < max{d(f(z), T(w)),d(f(w), T(w))}
and d(f(w),T(z)) < max{d(f(w),T(2)),d(f(z),T(z))}
Thus, d(f(w),Tw)) = d(T(2),T(w))
< max{d(f(z),f(w)),d(f(2), T(2)),d(f(w), T(w)) }
= d(f(2),f(w)),
Thus fz ¢B,,. Hence fz£B,, .And this contradicts the maximality of B,. Hence f(z) = T(2).
Further assume that f and T are coincidentally commutating at z.
Then £(2)=f(f(2))=f(T (2))=Tf(2)=T(T(2))=T*(2)
Suppose that f(z)#z. Now from (2) we have,
d(Tf(2),T(2)) < max{d(f*(2).f(2)).d(F(2), Tf(2)).d(f(2) T(2)).d(F*(2). T(2)).d(F(2), TF(2))}
= d(Tf(2),T(2))
Hence, f(z) = z. Thus z=f(2)=T(2)
Uniqueness: Suppose (if possible) w is another common fixed point of f and T such that z# w.
Then d(z,w) = d(T(2), T(w))
< max{d(f(z),f(w)),d(f(z), T(2)),d(f(w), T(w)),d(f(2), T(w)),d(f(w), T(2))}
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=max{d(z,w),d(z,z),d(w,w)}

= d(z,w), which is not possible. Thus our supposition is wrong and hence z is the unique
common fixed point of fand T.
Remarks (3.2): If we put f=I, (identity map) theorem (1.1.6) follows.

Oif x=y

Example (3.3): Let X=R, and d (X, y) = {1 i
if x=y

. X+1
We define T, f : X — X as Tx=1 and f(x) = TVX zX.

Then all conditions of theorem (1.3.6) are satisfied and 1 is the unique common fixed point of T and f.
Theorem (3.4): Let (X,d) be a spherically complete Ultra metric space. If S;T:X — X are mappings such that:

(i d(Tx,Ty) <max{d(Sx,Sy),d(Sx,TSx),d(Sy,TSy),d(Sx,TSy),d(Sy,TSX)} VX,y € X, X # Y

(ii) d(Sx,Sy) < d(x,y)

(iii) TS(X) =ST(X) Vx €X
Then S and T have a unique common fixed point in X.
Proof: Using conditions (ii) and (iii) in (i) we have
d(Tx,Ty) < max{d(Sx,Sy),d(Sx,STx),d(Sy,STy),d(Sx,STy),d(Sy,STx)}
or d(Tx,Ty) < max{d(x,y),d(X,Tx),d(y,Ty),d(X,Ty),d(y,Tx)}
By theorem (1.5) T has unique fixed point i.e. there exists a point z€X such that z=Tz.
Now,
d(z,Sz) =d(Tz,STz) = d(Tz,TSz)

< max{d(Sz,5%),d(S%z, TS%),d(S%z, TS%),d(S%z,TS%2),d(S°2, TS’2)}
= max{d(Sz,5%),d(S%z,5°Tz),d(S%2,5°Tz),d(S%z,5°Tz),d(S°2,5%Tz)}
< max{d(z,Sz),d(Sz,Sz),d(Sz,Sz),d(Sz,Sz),d(Sz,Sz)}
i.e. d(z,Sz) < d(z,Sz) which is a contradiction. Hence z=Sz.
Uniqueness: If possible let z and w be two distinct fixed point of S and T. Then,
d(z,w) = d(Tz,Tw) < max{d(Sz,Sw),d(Sz,TS(w)),d(Sz,TS(w)),d(Sz,TS(w)),d(Sw,TS(z))}
= max{d(z,w),d(z,w),d(z,w),d(z,w),d(w,z)

i.e. d(z,w) < d(z,w) which is not possible and hence z=w. Therefore z is the unique common fixed point of S and
T.

Remarks (3.5): If we put S=I (identity map), theorem (3.5) reduces to the theorem (1.6) due to Mishra and
Pant[13].

Theorem (3.6): Let (X,d) be spherically complete ultrametric space. If T, f and g are self maps on X satisfying
(i) 9(x) =f(x)

(ii) d(9(x).9(y))  <max{d(fT(x),fT(y)),d(fT(x),gT(x)),d(FT(y).gT(¥)).d(fT(x),gT(y)).d(fT(y).gT(x))}
X, ye X, Xx#Yy

(iii) d(Tx,Ty) < d(x,y)

(iv) Tf(x) = fT(x) and Tg(x) = gT(x) then z=Tz=f(z)=g(z). further

Proof: using condition (iii) and (iv) condition (i) becomes:
d(9(x).9(y)) < max{d(Tf(x),Tf(y)),d(T(x), Tg(x)),d(Tf(Tg(y)).d(Tf(y), T9(x))}y). Tg(y)).d(Tf(x),
or, d(g(x).g(y)) < max{d(f(x),f(y)).d(f(x),9(x)).d(f(y).g(y)).d(f(x).9(y)).d(f(y).9(x))}
By theorem (1.5) there exists a unique common fixed point for f and g i.e. z=f(z)=g(z2).
Now
d(z,T2) = d(9(2),T9(2)) = d(9(2).9T(2) , , ,
<max{d(fT(2),fT°(2)).d(fT(2).9T(2)),d(fT"(2).9T"(2)).d(fT(2).9T*(2)).d(fT*(2).9T(2))}
< max{d(f(2), Tf(2)).d(f(2).9(2)).d(Tf(2), Tg(2)).d(f(2), T9(2)).d(Tf(2).9(2)) }
= max{d(z,Tz),d(z,2),d(Tz,Tz),d(z,Tz),d(Tz,2)}
i.e. d(z,Tz) < d(z,Tz) which is a contradiction , hence z=Tz and using the theorem (1.6), z is unique for T.
Hence, T, f and g have a unique common fixed point.
Remarks (3.7): If we put T = I, identity map, theorem (3.6) reduces to the theorem (3.5).
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