Strongly Soft G-Closed Sets and Strongly Soft ∂ -Closed Sets in Soft **Čech** Closure Space

R.Gowri¹, G.Jegadeesan²

Abstract: In this paper, we introduce strongly soft generalized closed sets and strongly soft ∂-closed sets in soft Čech closure spaces, which are defined over an initial universe with a fixed set of parameters. Also, we show that every strongly soft ∂ -closed set is strongly soft g-closed and studied some of their basic properties.

Keywords: Soft set, Strongly soft g-closed set, Strongly soft ∂-closed set

I. Introduction

Fuzzy sets [1], theory of rough sets [2], theory of vague sets [3], theory of intuitionistic fuzzy sets [4], and theory of interval mathematics [5,6] are the tools, which are dealing with uncertainties. But all these theories have their own difficulties, namely inadequacy of parameterization. In 1999, D. Molodtsov [7] introduced the notion of soft set to deals with inadequacy of parameterization. Later, he applied this theory to several directions [8,9].

Levine [10] introduced generalized closed sets in topological space in order to extend some important properties of closed sets to a large family of sets. For instance, it was shown that compactness, normality and completeness in a uniform space are inherited by g-closed subsets.

E. Čech [12] introduced the concept of closure spaces. In Čech's approach the operator satisfies idempotent condition among Kuratowski axioms. This condition need not hold for every set A of X. When this condition is also true, the operator becomes topological closure operator. Thus the concept of closure space is the generalization of a topological space. In 2010, Chawalit Boonpok [11] introduced generalized closed sets in Čech closure spaces.

R. Gowri and G. Jegadeesan [13,14,15,16] introduced and studied the concept of lower separation axioms, higher separation axioms, soft generalized closed sets and soft ∂ -closed sets in soft $\check{C}ech$ closure

In this paper, we introduce the stronger form of soft generalized closed sets and soft ∂ -closed sets in soft Čech closure spaces. Also, we investigate some of their basic properties.

II. **Preliminaries**

In this section, we recall the basic definitions of soft Čech closure space.

Definition 2.1 [12]. Let X be an initial universe set, A be a set of parameters. Then the function $k: P(X_{F_A}) \to P(X_{F_A})$ defined from a soft power set $P(X_{F_A})$ to itself over X is called Čech Closure operator if it satisfies the following axioms:

- (C1) $k(\emptyset_A) = \emptyset_A$.
- (C2) $F_A \subseteq k(F_A)$ (C3) $k(F_A \cup G_A) = k(F_A) \cup k(G_A)$

Then (X, k, A) or (F_A, k) is called a soft Čech closure space.

Definition 2.2 [12]. A soft subset U_A of a soft Čech closure space (F_A, k) is said to be soft k-closed (soft closed) if $k(U_A) = U_A$.

Definition 2.3 [12]. A soft subset U_A of a soft Čech closure space (F_A, k) is said to be soft k-open (soft open) if $k(U_A{}^C) = U_A{}^C.$

Definition 2.4 [12]. A soft set $Int(U_A)$ with respect to the closure operator k is defined as $Int(U_A) = F_A - k(F_A - U_A) = [k(U_A^{\ C})]^{\ C}$. Here $U_A^{\ C} = F_A - U_A$.

Definition 2.5 [12]. A soft subset U_A in a soft Čech closure space (F_A, k) is called Soft neighbourhood of e_F if $e_F \in Int(U_A)$.

¹Department of Mathematics, Govt. College for Women's (A), Kumbakonam-India.

² Department of Mathematics, Anjalai Ammal Mahalingam College, Kovilvenni-India.

Definition 2.6 [12]. If (F_A, k) be a soft Čech closure space, then the associate soft topology on F_A is $\tau = \{U_A^c : k(U_A) = U_A\}$.

Definition 2.7 [12]. Let (F_A, k) be a soft Čech closure space. A soft Čech closure space (G_A, k^*) is called a soft subspace of (F_A, k) if $G_A \subseteq F_A$ and $k^*(U_A) = k(U_A) \cap G_A$, for each soft subset $U_A \subseteq G_A$.

Definition 2.8 [14]. A soft subset U_A of a soft Čech closure space (F_A, k) is said to be soft generalized closed (briefly soft g-closed) set if $k[U_A] \subseteq G_A$, whenever $U_A \subseteq G_A$ and G_A is soft open subset of (F_A, k) .

Definition 2.9 [15]. A soft subset U_A of a soft Čech closure space (F_A, k) is said to be soft ∂ -closed set if $k[U_A] \subseteq G_A$, whenever $U_A \subseteq G_A$ and G_A is soft g-open subset of (F_A, k) .

III. Strongly Soft Generalized Closed Set

In this section, we introduce strongly soft generalized closed sets in soft Čech closure space and investigate some basic properties.

Definition 3.1. Let U_A be a soft subset of a soft $\check{C}ech$ closure space (F_A, k) is said to be

- 1. Soft semi-open set if $U_A \subseteq k[int(U_A)]$ and a soft semi-closed set if $int(k[U_A]) \subseteq U_A$.
- 2. Soft regular-open set if $int(k[U_A]) = U_A$ and a soft regular-closed set if $U_A = k[int(U_A)]$.
- 3. Soft pre-open set if $U_A \subseteq int(k[U_A])$ and a soft pre-closed set if $k[int(U_A)] \subseteq U_A$.
- 4. Soft α -open set if $U_A \subseteq int(k[int(U_A)])$ and soft α -closed set if $k[int(k[U_A])] \subseteq U_A$.
- 5. Soft semi pre-open (soft β -open) set if $U_A \subseteq k[int(k[U_A])]$ and soft semi pre-closed set if $int(k[int(U_A)]) \subseteq U_A$.

The smallest soft Čech semi-closed set containing U_A is called soft Čech semi-closure of U_A with respect to k and it is denoted by $k_s(U_A)$.

The largest soft $\check{C}ech$ semi-open set contained in U_A is called soft $\check{C}ech$ semi-interior of U_A with respect to k and it is denoted by $int_s(U_A)$.

The smallest soft Čech pre-closed set containing U_A is called soft Čech pre-closure of U_A with respect to k and it is denoted by $k_p(U_A)$.

The largest soft $\check{C}ech$ pre-open set contained in U_A is called soft $\check{C}ech$ pre-interior of U_A with respect to k and it is denoted by $int_p(U_A)$.

The smallest soft Čech α -closed set containing U_A is called soft Čech α -closure of U_A with respect to k and it is denoted by $k_{\alpha}(U_A)$.

The largest soft Čech α -open set contained in U_A is called soft Čech α -interior of U_A with respect to k and it is denoted by $int_{\alpha}(U_A)$.

The smallest soft $\check{C}ech$ semi pre-closed set containing U_A is called soft $\check{C}ech$ semi pre-closure of U_A with respect to k and it is denoted by $k_{sp}(U_A)$.

The largest soft $\check{C}ech$ semi pre-open set contained in U_A is called soft $\check{C}ech$ semi pre-interior of U_A with respect to k and it is denoted by $int_{sp}(U_A)$.

Definition 3.2. A soft subset U_A of a soft $\check{C}ech$ closure space (F_A, k) is said to be soft semi-generalized closed set (briefly soft sg-closed) if $k_s(U_A) \subseteq G_A$, whenever $U_A \subseteq F_A$, G_A is soft semi-open in F_A .

Definition 3.3. A soft subset U_A of a soft $\check{C}ech$ closure space (F_A, k) is said to be soft generalized semi-closed set (briefly soft gs-closed) if $k_s(U_A) \subseteq G_A$, whenever $U_A \subseteq F_A$, G_A is soft open in F_A .

Definition 3.4. A soft subset U_A of a soft $\check{C}ech$ closure space (F_A, k) is said to be soft generalized semi pre-closed set (briefly soft gsp-closed) if $k_{sp}(U_A) \subseteq G_A$, whenever $U_A \subseteq F_A$, G_A is soft open in F_A .

Definition 3.5. Let (F_A, k) be a soft $\check{C}ech$ closure space. A soft subset $U_A \subseteq F_A$ is called soft regular generalized closed (briefly soft rg-closed) set if $k[U_A] \subseteq G_A$, whenever $U_A \subseteq G_A$ and G_A is soft regular open subset of (F_A, k) .

Definition 3.6. A soft subset U_A of a soft $\check{C}ech$ closure space (F_A, k) is said to be soft generalized pre-closed set (briefly soft gp-closed) if $k_p(U_A) \subseteq G_A$, whenever $U_A \subseteq F_A$, G_A is soft open in F_A .

Definition 3.7. Let (F_A, k) be a soft $\check{C}ech$ closure space. A soft subset $U_A \subseteq F_A$ is called soft generalized pre-regular closed (briefly soft gpr-closed) set if $k_p(U_A) \subseteq G_A$, whenever $U_A \subseteq G_A$ and G_A is soft regular open subset of (F_A, k) .

Definition 3.8. Let (F_A, k) be a soft $\check{C}ech$ closure space. A soft subset $U_A \subseteq F_A$ is called a strongly soft generalized closed (briefly strongly soft g-closed) set if $k[int(U_A)] \subseteq G_A$, whenever $U_A \subseteq G_A$ and G_A is soft open subset of (F_A, k) .

Example 3.9. Let the initial universe set $X = \{u_1, u_2\}$ and $E = \{x_1, x_2, x_3\}$ be the parameters.

Let
$$A = \{x_1, x_2\} \subseteq E$$
 and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then $P(X_{F_A})$ are

$$F_{1A} = \{(x_1, \{u_1\})\}, F_{2A} = \{(x_1, \{u_2\})\}, F_{3A} = \{(x_1, \{u_1, u_2\})\}, F_{4A} = \{(x_2, \{u_1\})\}, F_{5A} = \{(x_2, \{u_2\})\}, F_{5A} = \{(x_2$$

$$F_{6A} = \{(x_2, \{u_1, u_2\})\}, F_{7A} = \{(x_1, \{u_1\}), (x_2, \{u_1\})\}, F_{8A} = \{(x_1, \{u_1\}), (x_2, \{u_2\})\}, F_{8A} = \{(x_1, \{u_1\}), (x_2, \{u_2\}), (x_2, \{u_1\}), (x_2, \{u_2\})\}, F_{8A} = \{(x_1, \{u_1\}), (x_2, \{u_2\}), (x_2, \{u_2\}), (x_2, \{u_2\})\}, F_{8A} = \{(x_1, \{u_1\}), (x_2, \{u_2\}), (x_2,$$

$$F_{9A} = \{(x_1, \{u_2\}), (x_2, \{u_1\})\}, F_{10A} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}, F_{11A} = \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\}, F_{10A} = \{(x_1, \{u_2\}), (x_2, \{u_1\}), (x_2,$$

$$F_{12A} = \{(x_1, \{u_2\}), (x_2, \{u_1, u_2\})\}, F_{13A} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1\})\},$$

$$F_{14A} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}, F_{15A} = F_A, F_{16A} = \emptyset_A.$$

An operator $k: P(X_{F_A}) \to P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows. $k(F_{1A}) = k(F_{7A}) = k(F_{8A}) = k(F_{11A}) = F_{11A}, k(F_{4A}) = k(F_{5A}) = k(F_{6A}) = F_{6A}, k(F_{2A}) = F_{10A}, k(F_{9A}) = k(F_{10A}) = k(F_{10A}) = k(F_{12A}) = F_{12A}, k(F_{3A}) = k(F_{13A}) = k(F_{14A}) = k(F_{A}) = F_{A}, k(\emptyset_{A}) = \emptyset_{A}.$ Here, \emptyset_A , F_{4A} , F_{5A} , F_{6A} , F_{7A} , F_{8A} , F_{9A} , F_{10A} , F_{11A} , F_{12A} , F_{13A} , F_{14A} , F_{A} are strongly soft g-closed sets in F_{A} .

Theorem 3.10. In a soft $\check{C}ech$ closure space (F_A, k) , every soft closed set is strongly soft g-closed.

Proof. The proof is obvious from the definition (2.2) of soft closed set.

Result 3.11. The converse of the above theorem 3.10, is need not be true from the following example.

Example 3.12. In example 3.9, $F_{4A} = \{(x_2, \{u_1\})\}$ is strongly soft g-closed but not soft closed.

Theorem 3.13. In a soft $\check{C}ech$ closure space (F_A, k) , every soft g-closed set is strongly soft g-closed.

Proof. The proof is obvious.

Result 3.14. The converse of the above theorem 3.13, is need not be true as shown from the following example.

Example 3.15. Let us consider the soft subsets of F_A that are given in example 3.9. An operator $k: P(X_{F_A}) \to P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows.

$$k(F_{1A}) = F_{1A}, k(F_{2A}) = k(F_{9A}) = F_{12A}, k(F_{4A}) = F_{4A}, k(F_{5A}) = k(F_{8A}) = F_{14A}, k(F_{7A}) = F_{7A},$$
 $k(F_{3A}) = k(F_{6A}) = k(F_{10A}) = k(F_{11A}) = k(F_{12A}) = k(F_{13A}) = k(F_{14A}) = k(F_{A}) = F_{A}, k(\emptyset_{A}) = \emptyset_{A}.$
Here, $F_{2A} = \{(x_1, \{u_2\})\}$ is strongly soft g-closed set but not soft g-closed.

Theorem 3.16. Let (F_A, k) be a soft $\check{C}ech$ closure space. If U_A be a soft subset of F_A is both soft open and strongly soft g-closed, then U_A is soft closed.

Proof. Suppose U_A is both soft open and strongly soft g-closed. Since, U_A is strongly soft g-closed. Then $k[int(U_A)] \subseteq U_A$. That is, $k[U_A] = k[int(U_A)] \subseteq U_A$. Since, $U_A \subseteq k[U_A]$. Hence, U_A is soft closed.

Theorem 3.17. Let (F_A, k) be a soft $\check{C}ech$ closure space and let $U_A \subseteq F_A$. If U_A is strongly soft g-closed, then $k[int(U_A)] - U_A$ has no non-empty soft closed subset.

Proof. Suppose that U_A is strongly soft g-closed. Let V_A be a soft closed subset of $k[int(U_A)] - U_A$. Then $V_A \subseteq k[int(U_A)] \cap (F_A - U_A)$ and so $U_A \subseteq (F_A - V_A)$. Consequently, $V_A \subseteq F_A - k[int(U_A)]$. Since,

 $V_A \subseteq k[int(U_A)], \ V_A \subseteq k[int(U_A)] \cap (F_A - k[int(U_A)]) = \emptyset_A$. Thus, $V_A = \emptyset_A$. Therefore, $k[int(U_A)] - U_A$ contains no non-empty soft closed set.

Result 3.18. The converse of the above theorem 3.17, is not true as shown in the following example.

Example 3.19. In example 3.9, take $U_A = F_{2A}$. $k[int(U_A)] - U_A = \{(x_1, \{u_2\}), (x_2, \{u_2\})\} - \{(x_1, \{u_2\})\} = \{(x_2, \{u_2\})\}$, which does not contain non-empty soft closed subset of F_A . But $F_{2A} = \{(x_1, \{u_2\})\}$ is not strongly soft g-closed.

Theorem 3.20. Let (F_A, k) be a soft $\check{C}ech$ closure space. If U_A be a soft subset of F_A is both strongly soft g-closed and soft semi open, then U_A is soft g-closed.

Proof. Suppose U_A is both strongly soft g-closed and soft semi open. Then, $k[int(U_A)] \subseteq G_A$, whenever $U_A \subseteq G_A$ and G_A is soft open subset of F_A . $U_A \subseteq k[int(U_A)]$, since U_A is soft semi-open. Then, $k[U_A] \subseteq k[int(U_A)] \subseteq G_A$. Hence, U_A is soft g-closed.

Corollary 3.21. If U_A is soft subset of a soft $\check{C}ech$ closure space (F_A, k) is both strongly soft g-closed and soft open, then U_A is soft g-closed in F_A .

Proof. Since, every soft open set is soft semi-open. Then, by the above theorem 3.20 result follows.

Result 3.22. Let U_A and V_A are two non-empty strongly soft g-closed subsets of a soft $\check{C}ech$ closure space (F_A, k) . Then the following example shows that, $U_A \cap V_A$ and $U_A \cup V_A$ need not be strongly soft g-closed.

Example 3.23. In example 3.9, take $U_A = F_{7A}$ and $V_A = F_{8A}$. Then, $U_A \cap V_A = F_{7A} \cap F_{8A} = F_{1A}$, which is not a strongly soft g-closed subset in F_A . Also in example 3.15, take $U_A = F_{2A}$ and $V_A = F_{5A}$. Then, $U_A \cup V_A = F_{2A} \cup F_{5A} = F_{10A}$, which is not a strongly soft g-closed subset in F_A .

Theorem 3.24. In a soft $\check{C}ech$ closure space (F_A, k) , every soft ∂ -closed set is strongly soft g-closed.

Proof. The proof is obvious.

Result 3.25. The converse of the above theorem 3.24, is not be true as shown in the following example.

Example 3.26. In example 3.9, $F_{8A} = \{(x_1, \{u_1\}), (x_2, \{u_2\})\}$ is strongly soft g-closed but not soft ∂ -closed.

Theorem 3.27. Let $U_A \subseteq H_A \subseteq F_A$ and if U_A is strongly soft g-closed in F_A , then U_A is strongly soft g-closed relative to H_A .

Proof. Let $U_A \subseteq H_A \subseteq F_A$, and suppose that U_A is strongly soft g-closed in F_A . Let $U_A \subseteq H_A \cap G_A$, where G_A is soft open in F_A . Since, U_A is strongly soft g-closed in F_A , $U_A \subseteq G_A$ implies $k[int(U_A)] \subseteq G_A$. That is, $H_A \cap k[int(U_A)] \subseteq H_A \cap G_A$, where $H_A \cap k[int(U_A)]$ is closure of interior of U_A with respect to E_A in E_A . Thus, E_A is strongly soft g-closed relative to E_A .

IV. Strongly Soft ∂ -Closed Set

In this section, we introduce strongly soft ∂ -closed sets in soft $\check{C}ech$ closure space and investigate some of their basic properties.

Definition 4.1. Let (F_A, k) be a soft $\check{C}ech$ closure space. A soft subset $U_A \subseteq F_A$ is called a strongly soft ∂ -closed set if $k[int(U_A)] \subseteq G_A$, whenever $U_A \subseteq G_A$ and G_A is soft g-open subset of (F_A, k) .

Example 4.2. In example 3.9, the strongly soft ∂ -closed subsets are \emptyset_A , F_{4A} , F_{5A} , F_{6A} , F_{10A} , F_{11A} , F_{12A} , F_A .

Theorem 4.3. In a soft $\check{C}ech$ closure space (F_A, k) , every strongly soft ∂ -closed set is strongly soft g-closed.

Proof. The proof is obvious.

Result 4.4. The converse of the above theorem 4.3, is not be true as shown in the following example.

Example 4.5. In example 3.9, $F_{7A} = \{(x_1, \{u_1\}), (x_2, \{u_1\})\}$ is strongly soft g-closed but not strongly soft θ -closed.

Theorem 4.6. In a soft $\check{C}ech$ closure space (F_A, k) , every soft closed set is strongly soft ∂ -closed.

Proof. The proof is obvious.

Result 4.7. The following example shows that the converse of above theorem 4.6, need not to be true.

Example 4.8. In example 3.9, $F_{10A} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}\$ is strongly soft ∂ -closed but not soft closed.

Theorem 4.9. In a soft $\check{C}ech$ closure space (F_A, k) , every soft ∂ -closed set is strongly soft ∂ -closed in F_A .

Proof. Suppose U_A is soft ∂ -closed subset of F_A . That is, $k[U_A] \subseteq G_A$, whenever G_A is a soft g-open subset of F_A with $U_A \subseteq G_A$. Since, $k[int(U_A)] \subseteq k[U_A]$. This implies, $k[int(U_A)] \subseteq G_A$, whenever G_A is a soft g-open subset of F_A with $U_A \subseteq G_A$. Therefore, U_A is strongly soft ∂ -closed in F_A .

Result 4.10. The converse of the above theorem 4.9, is not true as shown in the following example.

Example 4.11. In example 3.9, $F_{10A} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}$ is strongly soft ∂ -closed but not soft ∂ -closed.

Theorem 4.12. Let (F_A, k) be a soft $\check{C}ech$ closure space. If U_A be a soft subset of F_A is both soft open and strongly soft ∂ -closed then U_A is soft closed.

Proof. It is similar to the proof of the theorem 3.16.

Corollary 4.13. If U_A is both soft open and strongly soft ∂ -closed in F_A , then U_A is both soft regular open and soft regular closed in F_A .

Proof. Since, U_A is soft open, then $U_A = int(U_A)$. Since, U_A is soft closed, then $U_A = int(U_A) = int(k[U_A])$. Hence, U_A is soft regular open. Also, $k[int(U_A)] = k[U_A]$. Since, U_A is soft closed, then $k[int(U_A)] = U_A$. Hence, U_A is soft regular closed.

Corollary 4.14. If U_A is both soft open and strongly soft ∂ -closed, then U_A is soft rg-closed.

Theorem 4.15. Let U_A be a soft subset of soft $\check{C}ech$ closure space (F_A, k) is both strongly soft ∂ -closed and soft semi-open, then U_A is soft ∂ -closed.

Proof. Suppose U_A is both strongly soft ∂ -closed and soft semi-open. Then, $k[int(U_A)] \subseteq G_A$, whenever $U_A \subseteq G_A$ and G_A is soft g-open subset of F_A . Since, U_A is soft semi-open, then $U_A \subseteq k[int(U_A)]$. Then, $k[U_A] \subseteq k[int(U_A)] \subseteq G_A$. Then, U_A is soft ∂ -closed set in V_A .

Corollary 4.16. If U_A is soft subset of a soft $\check{C}ech$ closure space (F_A, k) is both strongly soft ∂ -closed and soft open, then U_A is soft ∂ -closed set in F_A .

Proof. Since, every soft open set is soft semi-open. Then, by the above theorem 4.15, result follows.

Theorem 4.17. Let (F_A, k) be a soft $\check{C}ech$ closure space and let $U_A \subseteq G_A$. If U_A is strongly soft ∂ -closed then $k[int(U_A)] - U_A$ has no non-empty soft closed subset.

Proof. It is analogous to the proof of the theorem 3.17.

Result 4.18. The converse of the above theorem 4.17, is not true as shown in the following example.

Example 4.19. Let us consider the soft subsets of F_A that are given in example 3.9. An operator $k: P(X_{F_A}) \to P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows.

$$k(F_{1A}) = k(F_{5A}) = F_{8A}, k(F_{2A}) = F_{3A}, k(F_{3A}) = k(F_{9A}) = k(F_{13A}) = F_{13A}, k(F_{4A}) = F_{4A}, k(F_{7A}) = F_{7A}, k(F_{6A}) = k(F_{8A}) = k(F_{11A}) = F_{11A}, k(F_{10A}) = F_{14A}, k(F_{12A}) = k(F_{14A}) = k(F_{A}) = F_{A}, k(\emptyset_{A}) = \emptyset_{A}.$$

Take, $U_A = F_{2A}$. Then, $k[int(U_A)] - U_A = \{(x_1, \{u_1, u_2\})\} - \{(x_1, \{u_2\})\} = \{(x_1, \{u_1\})\}$, which does not contain non-empty soft closed subset of F_A . But, $F_{2A} = \{(x_1, \{u_2\})\}$ is not strongly soft ∂ -closed.

Corollary 4.20. A strongly soft ∂ -closed set U_A is soft regular closed if and only if $k[int(U_A)] - U_A$ is soft closed.

Proof. Suppose that U_A is soft regular closed. Since, $U_A = k[int(U_A)]$, then $k[int(U_A)] - U_A = \emptyset_A$ is soft regular closed. Thus, $k[int(U_A)] - U_A$ is soft closed. Conversely, assume that $k[int(U_A)] - U_A$ is soft closed. By the theorem 4.17, $k[int(U_A)] - U_A$ contains no non-empty soft closed set. This implies, $k[int(U_A)] - U_A = \emptyset_A$. Thus, U_A is soft regular closed.

Theorem 4.21. In a soft $\check{C}ech$ closure space (F_A, k) , every strongly soft ∂ -closed set is soft gsp-closed.

Proof. The proof of the theorem is immediate from the definition of strongly soft ∂ -closed and soft gsp-closed.

Result 4.22. The converse of the above theorem 4.21, is not true as shown in the following example.

Example 4.23. In example 3.9, take $F_{2A} = \{(x_1, \{u_2\})\}$ is soft gsp-closed set but not strongly soft ∂ -closed.

Result 4.24. Let U_A and V_A are two non-empty strongly soft ∂ -closed subsets of a soft $\check{C}ech$ closure space (F_A, k) . Then the following example shows that, $U_A \cap V_A$ and $U_A \cup V_A$ need not be strongly soft ∂ -closed.

Example 4.25. In example 4.19, take $U_A = F_{6A}$ and $V_A = F_{8A}$. Then, $U_A \cap V_A = F_{6A} \cap F_{8A} = \{(x_2, \{u_1, u_2\})\} \cap \{(x_1, \{u_1\}), (x_2, \{u_2\})\} = F_{5A}$, which is not a strongly soft ∂ -closed subset in F_A . Also in example 3.15, take $U_A = F_{2A}$ and $V_A = F_{5A}$. Then, $U_A \cup V_A = F_{2A} \cup F_{5A} = F_{10A}$, which is not a strongly soft ∂ -closed subset in F_A .

Result 4.26. The following example shows that, strongly soft ∂ -closed and soft gs-closed sets are independent.

Example 4.27. In example 4.19, $F_{1A} = \{(x_1, \{u_1\})\}$ is strongly soft ∂ -closed set but not soft gs-closed. Also $F_{2A} = \{(x_1, \{u_2\})\}$ is soft gs-closed but not strongly soft ∂ -closed.

Theorem 4.28. In a soft $\check{C}ech$ closure space (F_A, k) , every strongly soft ∂ -closed set is soft gp-closed.

Proof. The proof is obvious.

Result 4.29. The converse of the above theorem 4.28, is not true as shown in the following example.

Example 4.30. In example 4.19, $F_{5A} = \{(x_2, \{u_2\})\}$ is soft gp-closed but not strongly soft ∂ -closed.

Result 4.31. The following example shows that, strongly soft ∂ -closed and soft rg-closed sets are independent.

Example 4.32. In example 4.19, $F_{6A} = \{(x_2, \{u_1, u_2\})\}$ is strongly soft ∂ -closed set but not soft rg-closed. Also $F_{10A} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}$ is soft rg-closed but not strongly soft ∂ -closed.

Result 4.33. In a soft $\check{C}ech$ closure space (F_A, k) , soft g-closed and strongly soft ∂ -closed sets are independent as shown in the following examples.

Example 4.34. In example 3.9, $F_{7A} = \{(x_1, \{u_1\}), (x_2, \{u_1\})\}\$ is soft g-closed set but not strongly soft ∂ -closed.

Example 4.35. In example 3.15, $F_{2A} = \{(x_1, \{u_2\})\}$ is strongly soft ∂ -closed set but not soft g-closed.

Theorem 4.36. Let $U_A \subseteq H_A \subseteq F_A$ and if U_A is strongly soft ∂ -closed in F_A , then U_A is strongly soft ∂ -closed relative to H_A .

Proof. Let $U_A \subseteq H_A \subseteq F_A$, and suppose that U_A is strongly soft ∂ -closed in F_A . Let $U_A \subseteq H_A \cap G_A$, where G_A is soft g-open in F_A . Since, U_A is strongly soft ∂ -closed in F_A , $U_A \subseteq G_A$ implies $k[int(U_A)] \subseteq G_A$. That is, $H_A \cap k[int(U_A)] \subseteq H_A \cap G_A$, where $H_A \cap k[int(U_A)]$ is closure of interior of U_A with respect to K_A . Thus, $K_A \cap K_A$ is strongly soft $K_A \cap K_A$ closed relative to K_A .

V. Conclusion

In the present work, we have introduced strongly soft g-closed sets and strongly soft ∂ -closed sets in soft Čech closure spaces, which are defined over an initial universe with a fixed set of parameters. We studied the behavior relative to union, intersection of strongly soft g-closed sets and strongly soft ∂ -closed sets. Also, we proved that every soft closed set is strongly soft g-closed as well as strongly soft ∂-closed. In future, findings of this paper will contribute to a new types of soft generalized closed sets in soft Čech closure spaces and it may leads to find a new types of separation axioms. Also, the findings in this paper will help to carry out a general framework for their applications in practical life.

References

- L.A Zadeh, "Fuzzy Sets", Inf. Control, Vol. 8, 1965, pp. 338-353. [1].
- Z.Pawlak, "Rough Sets", Int.J. Comput. Sci, Vol. 11, 1982, pp. 341-356. [2].
- [3].
- K.Atanassov, "Intuitionistic Fuzzy Sets", Fuzzy Sets and Systems, Vol.20, 1986, pp.87-96.

 K.Atanassov, "Operators Over Interval Valued Intuitionistic Fuzzy Sets", Fuzzy Sets and Systems, Vol.64, 1994, pp.159-174. [4].
- M.B. Gorzalzany, "A Method of Inference in Approximate Reasoning Based on Interval-Valued Fuzzy Sets", Fuzzy Sets and [5]. Systems, Vol.21, 1987, pp1-17.
- D.A. Molodtsov, "Soft Set Theory First Results", Comput. Math. Appl, Vol. 37, 1999, pp. 19-31. [6].
- D.A. Molodtsov, "The Description of a Dependence with the Help of Soft Sets", *J. Comput. Sys. Sc. Int, 40*, 2001, 977-984. D.A. Molodtsov, "The Theory of Soft Sets (In Russian)", *URSS publishers, Moscow.* [7].
- [8].
- N. Levine, "Generalized Closed Sets in Topology", Rend. Circ. Mat. Palermo, Vol. 19, No. 2, 1970, pp. 89-96. [9].
- [10]. Chawalit Boonpok, "Generalized Closed Sets in Čech Closed Spaces", Acta Universitatis Apulensis, No.22, 2010, pp.133-140.
- [11].
- E. Čech, "Topogical Spaces", Inter Science Publishers, John Wiley and Sons, Newyork, 1966.
 R.Gowri and G.Jegadeesan, "On Soft Čech Closure Spaces", International Journal of Mathematics Trends and Technology, Vol. 9, [12]. 2014.32-37
- R.Gowri and G.Jegadeesan, "Some Higher Separation Axioms in Soft Čech Closure Spaces", Int. Mat. Forum, Vol. 10, No. 11, [13]. 2015,519-525.
- R.Gowri and G.Jegadeesan, "Soft Generalized Closed Sets in Soft Čech Closure Spaces", Global Journal of Pure and Applied [14]. Mathematics, Vol. 2, No. 1, 2016, 909-916.
- R.Gowri and G.Jegadeesan, "Soft ∂ -Closed Sets in Soft $\check{C}ech$ Closure Spaces", (Accepted). [15].