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I.  Introduction
Many topologists studied the various types of generalizations of continuity [1], [2], [3], [4], [5]. In
1996, Dontchev [6] introduced the notion of contra continuity and strong S-closedness in topological spaces. A
new weaker form of this class of functions called contra semi continuous function was introduced and

investigated by Dontchev and Noiri [7]. Caldas and Jafari [8] introduced and studied the contra /3 -continuous
functions and contra almost /3 -continuity is introduced and investigated by Baker [9].

In this paper, the notion of ga -open sets in topological spaces is applied to introduce and study a
new class of functions called almost contra g -continuous functions as a generalization of contra continuity

and obtain their characterizations and properties. Also discuss the relationship with some other existing
functions.

Il.  Preliminaries
Throughout this paper (X, 7), (Y, &) and (Z, o) (or simply X, Y and Z) always mean topological
spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X the
closure and interior of A with respectto 7 are denoted by cl(A) and int(A) respectively.

Definition 2.1 A subset A of a space X is called a,
(i) semiopen set [10] if A cl(int(A)).
(i) a -openset [11] if Acint(cl(int(A))).
(iii) regular open set [12] if A = int(cl(A)).

The complements of the above mentioned sets are called their respective closed sets. The ¢ -closure
of a subset A of a space X is the intersection of all ¢ -closed sets that contain A and is denoted by ¢« cl(A). The
« -interior of a subset A of space X is the union of all & -open sets contained in A and is denoted by ¢ int(A).

Definition 2.2 [13] A subset A of X is gaa -closed if & cl(A) —U whenever Ac U and U is ama -open in
X. The family of all gwar -closed subsets of the space X is denoted by Gwa C(X).

Definition 2.3 [14] A function f : X —Y iscalled gwa -continuous if the inverse image of every closed set
inYis gwa -closed in X.

Definition 2.4 [15] A function f : X —Y is said to be almost continuous if f (V) isopenin X for each
regular openset V of Y .

Definition 2.5 [16] A function f : X —Y is said to be (6,S)-continuous if f (V) is closed in X for
each regular openset V of Y .

Definition 2.6 [17] Aspace X is called locally gwa -indiscrete if every gwa -open set is closed in X .
Definition 2.7 [17] A function f : X —Y is said to be contra g -continuous if T (V) is gwe -closed
in X foreachopensetV inY .
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Definition 2.8 [18] A function f : X —Y is said to be strongly gmea -open (resp. strongly gwa -closed) if
image of every gwa -open (resp. g -closed) set of X is gawa -open (resp. gwa -closed) setin Y .
Definition 2.9 [18] A topological space X is said to be gwa -T, space if for any pair of distinct points X
and Yy, there exista gwa -opensets G and H suchthat Xe G, ygG and XeH, yeH.

Definition 2.10 [18] A topological space X is said to be gwa -T, space if for any pair of distinct points X
and Yy there exist disjoint e -opensets G and H suchthat X€ G and ye H .

Definition 2.11 [18] A topological space X is said to be gwa -normal if each pair of disjoint closed sets can
be separated by disjoint g -open sets.

Definition 2.12 [17] A space X is called gwa -connected provided that X is not the union of two disjoint
nonempty ga@c -open sets.

Definition 2.13 [17] A function f : X —Y s called weakly gwa -continuous if for each X € X and each
openset V of Y containing f(X), there exists U € GawarO(X, X) such that f(U) <=cl(V).

1. Almost Contra 9% _Continuous Function
In this section, a new type of continuity called an almost contra g -continuity, which is weaker than contra

gwa -continuity is introduced and studied some of their properties and characterizations.

Definition 3.1 A function f : X —Y is said to be almost contra gwer -continuous if f (V) is oo -
closed in X for each regular openset V in Y .

Theorem 3.2 If X is T, -space and f :X —Y isalmost contra gwa continuous, then f is (&,S)-
continuous.

Proof. Let U be a regular open set in Y . Since f is almost contra gmea -continuous, f’l(U) is goo -
closed setin X and X is T,,,-space, which implies f (U) is closed setin X . Therefore f is (6,5)-

continuous.
Theorem 3.3 If a function f:X —Y s almost contra gwa -continuous and X is locally Qoa -

indiscrete space then f is almost continuous.

Proof. Let U be a regular open set in Y . Since f is almost contra g@ea -continuous f‘l(U) is goa -
closed set in X and X is locally gwa -indiscrete space, which implies f"l(U) is an open set in X .
Therefore f is almost continuous.

Theorem 3.4 The following are equivalent for a function f : X —Y :

(i) f isalmostcontra gwa -continuous.

i) f(int(cl(G))) is gwa ~closed setin X for every open subset G of Y .

(i) f'(cl(int(F))) is gwe -opensetin X for every closed subset F of Y .

Proof. (i)=> (ii) Let G be an open set in Y . Then int(cl(G)) is regular open set in Y . By (i),
f (int(cl(G)) e GwaC(X).

(i) = (i) Proof is obvious.

()= (iii) Let F be a closed set in Y. Then cl(int(G)) is regular closed set in Y . By (i),
f (cl(int(G)) e GwaO(X).

(iif)y = (i) Proof is obvious.

Theorem 3.5 The following are equivalent for a function f : X —Y :

(i) f isalmostcontra gwa -continuous.

(ii) For every regular closed set F of Y, f *(F) is gwe -open set of X .

(iii) For each X € X and each regular closed set F of Y containing f(X) there exists gwe -open set U
containing X suchthat f(U)cF.
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(iv) For each X € X and each regular open set V. of Y not containing f (X) there exists gwa -closed set
K not containing X suchthat f (V) c K.

Proof. (i)=> (ii) Let F be a regular closed set in Y then Y —F is a regular open set in Y . By (i),
f (Y -F) = X=f(F) is gwa -closed set in X . This implies f *(F) is gwa -open setin X .
Therefore, (ii) holds.

(ii)=> (i) Let G be aregular open setof Y . Then Y —G s a regular closed setin Y . By (i), f (Y =G) is
gwa -open set in X . This implies X — f (G) is gwa -open set in X , which implies f '(G) is
gwa -closed setin X . Therefore, (i) hold.

(ii)=> (iii) Let F be a regular closed set in Y containing f(X) which implies X e f (F). By (ii),
f (F) is gwa -open in X containing X. Set U = f (F), which implies U is gwe -open in X
containing X and f(U) = f(f *(F)) < F . Therefore (iii) holds.

(iii) = (i) Let F be a regular closed setin Y containing f (X) which implies X € f ™ (F). From (iii), there
exists gwa -open U, in X containing X suchthat f(U,)c F.ThatisU, c f *(F).Thus f *(F) =
) ’{UX X € f’l(F)}, which is union of gwa -open sets. Therefore, f *(F) is gwa -open set of X .
(iii) = (iv) Let V' be a regular open setin Y not containing f (X). Then Y =V s a regular closed set in Y
containing f(X). From (iii), there exists a Qgwa -open set U in X containing X such that
fU)cY -V . This implies Uc f*(Y-V) = X—f(V). Hence, f (V) X-U. Set
K = X —U then K is gwa -closed set not containing X in X suchthat f *(V)c K.

(iv) = (i) Let F be a regular closed setin Y containing f(X).Then Y —F isaregular opensetin Y not
containing f(X). From (iv), there exists gma -closed set K in X not containing X such that
f (Y —F)c K. Thisimplies X — f *(F) = K . Hence, X =K < f (F), thatis f(X —K)cF.
SetU = X —K, then U is gwe -open set containing X in X suchthat f(U)cF .

Definition 3.6 [19] A space X is said to be weakly Hausdorff if each element of X is an intersection of
regular closed sets.
Theorem 3.7 If f : X —Y isan almost contra gwa -continuous injection and Y is weakly Hausdorff then

X is goa -T, .

Proof. Suppose Y is weakly Hausdorff. For any distinct points X and y in X , there exist V. and W
regular closed setsin Y suchthat f(x)eV, f(y)egV, f(y)eW and f(X)gW . Since f isalmost
contra gee -continuous, (V) and f (W) are gwa -open subsets of X such that xe f *(V),
ye f V), ye f (W) and xe f (W) . This shows that X is gowa -T, .

Corollary 3.8. If f: X —Y isacontra gwa -continuous injection and Y is weakly Hausdorff then X is
goa -T,.

Definition 3.9 [20] A topological space X is called Ultra Hausdroff space, if for every pair of distinct points
X and Yy in X , there exist disjoint clopen sets U and V in X containing X and Yy respectively.

Theorem 3.10 If f : X —Y s an almost contra ga -continuous injective function from space X into a
Ultra Hausdroff space Y then X is gowa -T,.

Proof. Let X and Y be any two distinct points in X . Since f isaninjective f(x)= f(y) and Y is Ultra
Hausdroff space, there exist disjoint clopen sets U and V' of Y containing f(X) and f(y) respectively.
Then xe f'(U) and ye f(V), where f*(U) and f (V) are disjoint gewer -open sets in X .
Therefore X is goa -T,.
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Definition 3.11 [20] A topological space X is called Ultra normal space if each pair of disjoint closed sets
can be separated by disjoint clopen sets.
Theorem 3.12 If f : X —Y s an almost contra gaea -continuous closed injection and Y is ultra normal

then X is gwa -normal.

Proof. Let E and F be disjoint closed subsets of X . Since f is closed and injective f(E) and f(F)
are disjoint closed sets in Y . Since Y is ultra normal there exists disjoint clopen sets U and V in Y such
that f(E)cU and f(F)cV . This implies Ec f*(U) and F < f (V). Since f is an almost
contra gwer -continuous injection, f *(U) and f (V) are disjoint geer -open setsin X . This shows X
iS gwa -normal.

Definition 3.13 Let A be a subset of X . Then (gQwa -Cl(A) —gwa -int(A)) is called gwa -frontier of
A and is denoted by gwe - Fr(A)

Theorem 3.14 The set of all points X of X atwhich f : X —Y is not almost contra gme -continuous is
identical with the union of gwa -frontier of the inverse images of closed sets of Y containing f (X) .

Proof. Assume that f is not almost contra Qwa -continuous at Xe€ X . Then, there exists
F eRC(Y, f(x)) such that fU)N(Y —-F)=¢ for every UeGwaO(X,X). This implies
UnTfY—-F)zg¢ for every U e GwaO(X,X) . Therefore, X € gwer -cl(f (Y —=F)) = goo -
cl(X — f(F)) and also xe f (F) c gwa -cl(f *(F)). Thus, x e gowa -cl(f (F))Ngoa -
cl(X — f*(F)). This implies, x € goa -cl(f (F))—gwa -int(f *(F)). Therefore, X € oo -
Fr(f(F)).

Conversely, suppose X € gaer - Fr(f (F)) forsome F € RC(Y, f(x)) and f isalmost contra gw« -
continuous at Xe€ X, then there exists U e GwaO(X,X) such that f(U)cF. Therefore,
xeU < f*(F) and hence X € gwa -int(f *(F)) c X —gwa - Fr(f (F)). This contradicts that
X € goa - Fr(f (F)) . Therefore f is not almost contra gwa -continuous.

Theorem 3.15 If f : X —Y s an almost contra gwa -continuous surjection and X is gwa -connected

space then Y is connected.
Proof. Let f : X —Y be an almost contra gaea -continuous surjection and X is gwa -connected space.

Suppose Y is not connected, then there exist disjoint open sets U and V such that Y =U UV . Therefore
U and V areclopenin Y . Since f is almost contra gma -continuous, f *(U) and f (V) are gowo -
open setsin X . Moreover f *(U) and f (V) are non empty disjointand X = f *(U)u f (V). This
is contradiction to the fact that X is gwa -connected space. Therefore, Y is connected.

Definition 3.16 [21] A function f : X —Y is said to be R-map if f (V) is regular open in X for each
regular openset V of Y .

Definition 3.17 [22] A function f : X —Y is said to be perfectly continuous if f (V) is clopenin X for

each openset V of Y .

Theorem 3.18 For two functions f:X —Y and g:Y >Z, let gof:X —Z is a composition
function.Then, the following properties holds:

(i) If f is almost contra gwa -continuous and @ is an R-map then go f is almost contra gwer -
continuous.

(i) If f is almost contra gme -continuous and g is perfectly continuous then go f is gwa -continuous
and contra gwa -continuous.

(iii) If f is contra Qwa -continuous and g is almost continuous then go f is almost contra gwer -
continuous.
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Proof. (i) Let V be any regular open set in Z . Since ¢ is an R-map, g_l(\/) is regular open in Y . Since

f is an almost contra gewe -continuous f (g™ (V)) = (go f)™(V) is gwa -closed set in X .
Therefore, go f isalmost contra gmea -continuous.

(i) Let V be any open setin Z . Since g is perfectly continuous, g (V) is clopenin Y . Since f is an

almost contra geer -continuous T (g™ (V)) =(go )™ (V) is gwe -open and gwar -closed setin X .
Therefore, go f is gwa -continuous and contra gwa -continuous.

(iii) Let V be any regular open setin Z . Since ¢ is almost continuous, g (V) is openin Y . Since f is
contra gear -continuous (g (V)) = (go f) (V) is gwa -closed set in X . Therefore, go f is
almost contra gwar -continuous.

Theorem 3.19 Let f : X —Y beacontra gwa -continuousand g:Y — Z be gwa -continuous. If Y is
T,,.-spacethen go f : X — Z isan almost contra gwa -continuous.

goa

Proof. Let V be any regular open and hence open set in Z . Since g is g@a -continuous g‘l(\/) is

gwa -openin Y and Y is Tgma -space implies g"l(\/) isopenin Y . Since f iscontra gwa -continuous

f(g™(V)) = (go f) (V) is gwa -closed set in X . Therefore, go f is an almost contra gw« -
continuous.
Theorem 3.20 If f : X —Y is surjective strongly gwe -open (or strongly gae -closed) and g:Y —Z

is a function such that go f : X — Z is an almost contra gwa -continuous then g is an almost contra
gwa -continuous.

Proof. Let V be any regular closed (resp. regular open) setin Z . Since go f isan almost contra gow« -
continuous, (go f)™*(V) = f (g '(V)) is gwa -open (resp. gwe -closed) in X . Since f is
surjective and strongly Qe -open (or strongly g -closed), f(f (g7 (V))) = g*(V) is gowo -
open(or gwa -closed). Therefore g is an almost contra gwa -continuous.

Definition 3.21 A topological space X is said to be gwea -ultra-connected if every two nonempty Qoo -

closed subsets of X intersect.
Definition 3.22 [23] A topological space X is said to be hyper connected if every open set is dense.
Theorem 3.23 If X is gwa -ultra-connected and f : X —Y is an almost contra gwa -continuous

surjection, then Y is hyperconnected.
Proof. Let X be a gwa -ultra-connected and f : X —Y be an almost contra Qe -continuous

surjection. Suppose Y is not hyperconnected. Then there exists an open set V' such that V is not dense in Y .
Therefore, there exist nonempty regular open subsets B, = int(cl(V)) and B, =Y —cl(V) in Y . Since f

is an almost contra g -continuous surjection, f*(B,) and f*(B,) are disjoint gewe -closed sets in
X . This is contrary to the fact that X is gwa -ultra-connected. Therefore, Y is hyperconnected.

Definition 3.24 A space X is said to be a
(i) gwa -compact if every gawa -open cover of X has a finite subcover.

(il) Gowa -closed compact [17] if every gwar -closed cover of X has a finite subcover.

(iii) Nearly compact [24] if every regular open cover of X has a finite subcover.

(iv) Countably gma -compact if every countable cover of X by gma -open sets has a finite subcover.

(v) Countably Gwa -closed compact [17] if every countable cover of X by gwa -closed sets has a finite
subcover.

(vi) Nearly countably compact [24] if every countable cover of X by regular open sets has a finite subcover.
(vii) gwa -Lindelof if every gwa -open cover of X has a countable subcover.

(viii) Goa -Lindelof [17] if every gwar -closed cover of X has a countable subcover.

(ix) Nearly Lindelof [24] if every regular open cover of X has a countable subcover.
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(x) Mildly gwa -compact if every gwa -clopen cover of X has a finite subcover.

(xi) Mildly countably gwa -compact if every countable cover of X by gwa -clopen sets has a finite
subcover.
(xii) Mildly gwa -Lindelof if every gwa -clopen cover of X has a countable subcover.

Theorem 3.25 Let f:X —Y be an almost contra gmea -continuous surjection. Then, the following
properties hold.

(i) If X is Gowa -closed compact then Y is nearly compact.

(ii) If X is countably G @a -closed compact then Y is nearly countabaly compact.

(iii) If X is Gwa -Lindelof then Y is nearly Lindelof.

Proof.(i) Let {\/a ae I} be any regular open cover of Y . Since f is almost contra gwea -continuous,

{f V) ae I} is gwa -closed cover of X . Since X is Gwa -closed compact, there exists a finite

subset I, of | suchthat X = u{f V) :ae IO}. since f is surjective, Y = U, tax € l,}, which is

finite subcover for Y . Therefore, Y is nearly compact.
(ii) Let {Va o e I} be any countable regular open cover of Y . Since f is almost contra gwa -continuous,

{f V) ae I} is countable gaa -closed cover of X . Since X is countably Gwa -closed compact,
there exists a finite subset 1, of | such that X = u{f V) :ae IO}. Since f is surjective,
Y = u{\/a o e IO} is finite subcover for Y . Therefore, Y is nearly countably compact.

(iii) Let {Va o e I} be any regular open cover of Y . Since f is almost contra g« -continuous,
{f V) :ael } is gwar -closed cover of X . Since X is Gwa -Lindelof, there exists a countable subset
I, of I suchthat X = u{f V) :ae IO}. since f issurjective, Y = U, 1 € 1} is finite subcover

for Y . Therefore, Y is nearly Lindelof.

Theorem 3.26 Let f:X —Y be an almost contra gmea -continuous surjection. Then, the following
properties hold.

(i) If X is gwa -compact then Y is S -closed.

(i) If X is countably gwer -closed, then Y is countably S -closed.

(i) If X is gwa -Lindelofthen Y is S -Lindelof.

Proof.(i) Let {Va o e I} be any regular closed cover of Y . Since f is almost contra gma -continuous,
{f V) :ae I} is gwa -open cover of X . Since X is gaea -compact, there exists a finite subset |, of
| such that X = u{f V) :ae IO}. Since f is surjective, Y = u{\/a ‘o€ IO} is finite subcover for

Y . Therefore, Y is S-closed.
(ii) Let {Va o e I} be any countable regular closed cover of Y then as f is almost contra Qoo -

continuous, {f V) ae I} is countable ge -open cover of X . Since X is countably gwa -compact,
there exists a finite subset |, of 1| such that X = u{f V) :ae IO}. Since f is surjective,
Y = u{\/a oAS IO} is finite subcover for Y . Therefore, Y is countably S-closed.

(iii) Let {Va oS I} be any regular closed cover of Y . Since f is almost contra gwa -continuous,
{f ’l(\/a) rael } is gwa -open cover of X . Since X is gwa -Lindelof, there exists a countable subset
I, of I suchthat X = u{f V) :ae IO}. since f issurjective, Y = UV, 1 € I} is finite subcover
for Y . Therefore, Y is S-Lindelof.

Definition 3.27 A function f : X —Y s said to be almost gwa -continuous if f (V) is gwa -open in

X' for each regular openset V of Y .
Theorem 3.28 Let f:X —Y be an almost contra Qgme -continuous and almost g@a -continuous
surjection. Then, the following properties hold.
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@) If X ismildly gwa -closed then Y is nearly compact.

(i) If X is mildly countably Gwe -closed then Y is nearly countabaly compact.
(iii) If X is mildly gwa -Lindelof then Y is nearly Lindelof.

Proof.(i) Let {Va ‘a e I} be any regular open cover of Y . Since f is almost contra gwea -continuous and
almost gwa  surjection, {f V) ae I} is gwa -clopen cover of X . Since X is mildly gwo -
compact, there exists a finite subset 1, of | such that X = u{f V) :ae IO}. Since f is surjective,
Y = u{\/a) o RS IO},which is finite subcover for Y . Therefore, Y is nearly compact.

(i) Let {\/a ae I} be any countable regular open cover of Y . Since f is almost contra gwa -continuous
and almost gwa surjection, {f V) :ae I} is countable g -closed cover of X . Since X is mildly
countably gor -compact, there exists a finite subset I, of | such that X = u{f V) ae |0}- Since
f issurjective, Y = u{\/a a e IO} is finite subcover for Y . Therefore, Y is nearly countably compact.
(iii) Let {Va ‘ae I} be any regular open cover of Y . Since f isalmost contra gwa -continuous and almost
gwa  surjection,, {f V) :ae I} is gwa -closed cover of X . Since X is mildly gwa -Lindelof,
there exists a countable subset |, of | such that X = u{f V) :ae IO}. Since f s surjective,

Y = u{\/a) NoAS IO} is finite subcover for Y . Therefore, Y is nearly Lindelof.

IV. contra closed graphs
In this section, gwa -regular graphs and contra Qo -closed graphs are defined and investigated the

relationships between the graphs and contra functions.

Recall that for a function f : X —Y | the subset {(X, f(x)):xe X}c X xY is called the graph of f and
is denoted by G( f)

Definition 4.1 The graph G(f) of a function f : X —Y s said to be contra gwe -closed if for each
(X, y)e(X,Y)-G(f), there exist UeGwaO(X,x) and V eC(Y,y) such that
UxV)NG(f)=¢.

Theorem 4.2 Let f : X —Y be a function and let g : X — X xY be the graph function of f , defined by
g(x) = (x, f(x)) forevery X X .If g isalmost contra gwa -continuous function, then f is an almost
contra g@a -continuous.

Proof. Let V € RC(Y), then X xV = X xcl(int(V)) = cl(int(X))xcl(int(V))= cl(int(X xV)).
Therefore, XxV eRC(XxY).  Since g is  almost  contra gwa -continuous,
f V) =g (X xV)eGwaO(X).Thus, f isanalmostcontra gwe -continuous.

Lemma 4.3 [25] Let G(f) be the graph of f, for any subset Ac X and BcY, we have
f(A)nB=¢ ifandonly if (AxB)NG(f) =¢.

Lemma 4.4 The graph G(f) of f:X —Y s contra gwa -closed in X xY if and only if for each
(X, ¥) e (X,Y)—-G(f), there exist U € GowaxO(X,X) and V € C(Y,y) suchthat f(U)NV =¢.
Proof. This is a direct consequences of definition 4.1 and lemma 4.3.

Theorem 45 If f : X —Y is contra gwa -continuous and Y is Urysohn, then G(f) is contra gowo -

closed in X xY .
Proof. Let (X,y) €(X,Y)—G(f). Then y = f(X).Since Y is Urysohn, there exist open sets V and W

such that f(X)eV, yeW and cl(V)ncl(W) =¢. Since f is contra gwa -continuous, there exists
U eGwaO(X,Xx) such that f(U)ccl(V). Therefore, (X,y)eU xcl(W)c X xY —G(f). This
shows that G(f) is contra gwa -closed in X xY .
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Theorem 4.6 If f:X —Y is gwa -continuous and Y is T,, then G(f) is contra gwe -closed in

XxY .
Proof. Let (X,y)e(X,Y)—G(f). Then y= f(X) and there exists open set V of Y such that

f(x)eV, yegV .Since f is gwa -continuous there exists U € GawaxrO(X, X) such that f(U) <=V .
Therefore, f(U)N(Y =V)=4¢. Thus, for each (X,y) € (X,Y)—G(f), there exist U € GawarO(X, X)
and Y =V €C(Y,y) suchthat f(U)NY —V =¢. Therefore, G(f) iscontra gwa -closed in X xY .
Definition 4.7 The graph G(f) of a function f : X —Y s said to be gwe -regular (resp. strongly contra
gwa -closed) if for each (X,y) € (X,Y)—G(f), there exist gawa -closed (resp. gwer -open) set U in
X containing X and V € RO(Y, y) (resp. V € RC(Y, y)) such that (U xV)G(f) =¢.

Lemma 4.8 The graph G(f) of f:X —Y is gwa -regular (resp. strongly contra gwe -closed) in
X xY if and only if for each (X, Y) € (X,Y)—G(f), there exist gwa -closed (resp. gawa -open) set U
in X containing X and V € RO(Y, y) (resp. V € RC(Y, y))such that f(U)V = 4.

Proof. Proof is obvious from Lemma 4.8.
Theorem 4.9 Let f : X —Y have a gwa -regular graph G(f). If f is surjective, then Y is weakly

Hausdorff.
Proof. Let Y, and Y, be any two distinct points of Y . Since f is surjective, f(X) =y, for some X € X

and (X,¥,)e(X,Y)—G(f). Since G(f) is gwa -regular, there exist gma -closed set U in X
containing X and F € RO(Y,y,) such that f(U)NF =¢ by Lemma 4.8 and hence Y,  F. Then
yyeY—-F and y,2Y —F and Y —F isregular closed setin Y . This implies Y is weakly Hausdorff.
Theorem 4.10 If f: X —Y is almost gwe -continuous and Y is T,, then G(f) is gwa -regular in
XxY.

Proof. Let (X,¥) €(X,Y)—G(f). Then y= f(X).Since Y is T,, there exist regular open sets V and
W in Y, suchthat f(x)eV, yeW and VAW =¢. Since f isalmost geer -continuous f (V) is
goa -closed setin X containing X. Set U = f (V) , then f(U)V . Therefore, (U)W = ¢ and
G(f) is goa -regularin X xY .

Theorem 4.11 Let f : X —Y have a strongly contra gwa -closed graph G(f). If f is an almost contra
gwa -continuous injection, then X is gwa -T,.

Proof. Let X and Yy be any two distinct points of X . Since X is injective, f(x)== f(y). Then,
(%, T(y)e(X,Y)=G(f). Since G(f) is strongly contra gwc -closed, by Lemma 4.8, there exist
goa -open set U in X containing X and V € RC(Y,y) such that f(U)NV =¢ and hence
Unf(V)=¢.Since f isanalmostcontra gwe -continuous, f (V) is gwa -openin X containing
Yy . This shows that X is gowa -T,.

Theorem 4.12 Let f : X —>Y havea gwa -regular G(f).If f isinjective, then X is goa -T,.
Proof.Let X and Yy be any two distinct points of X . Then, (X, f(y))e(X,Y)—G(f). Since G(f) is
gwa -regular, there exists gwa -closed set U in X containing X and V € RO(Y, f(y)) such that
f(U)NV =¢ by lemma 4.8, and hence U N f (V) =¢. Therefore, yeU . Thus, ye X —U and
Xg X -U and X —U is gwa -opensetin X . Thisimplies X is goa -T;.

Definition 4.13 A function f : X —Y s called almost weakly gwe -continuous if for each X € X and
each openset V of Y containing f (X), there exists U € GawarO(X, X) suchthat f(U) ccl(V).

Theorem 4.14 If f:X —Y is almost contra gwa -continuous, then f is almost weakly g« -
continuous.
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Proof.Let X € X and V be any open set of Y containing f(X). Then cl(V) is a regular closed set of Y
containing f(X). Since f isalmost contra gwa -continuous by theorem 3.5 there exists gea -open set in
X' containing X such that f(U) < cl(V). By definition 4.13 f is almost weakly gwa -continuous.
Corollary 4.15.1f f : X —Y isalmost contra gwa -continuous and Y is Urysohn, then G( ) strongly
contra gwa -closed in X xY .

We recall that a topological space X is said to be extremely disconnected [E.D] if the closure of every open

setof X isopenin X .
Theorem 4.16 Let Y be E.D. Then a function f : X —Y is almost contra gwa -continuous if and only if it
is almost gwar -continuous

Proof. Let X € X and V be any regular open set of Y containing f (X). Since Y is E.D then V is clopen
and hence V is regular closed set of Y containing f(X). Since f isalmost contra gwe -continuous then
there exists gaa -opensetin X containing X such that f(U) <V . Then f isalmost gwe -continuous.

Conversely, let F be any regular closed set of Y . Since Y is E.D, F is also regular open and f *(F) is
gwa -openin X . This shows that f is almost contra gwea -continuous

Theorem 4.17 If f:X —Y is almost weakly gwe -continuous and Y is Urysohn, then G( ) strongly
contra gwa -closed in X xY .

Proof. Let (X,y) e (X,Y)—G(f) implies, y= f(X). Since Y is Urysohn there exist open sets V and
W in Y such that yeV, f(X)eW and cl(V)ncl(W)=¢. Since f is almost weakly goo -
continuous, then there exists U € GwarO(X,x) such that f(U)ccl(W). This shows that
fU)Ncl(V) = fU)ncl(int(V)) =¢, where cl(int(V)) e RC(Y) and hence by lemma 4.8, we
have G( ) strongly contra gwa -closed in X xY .

V.  Conclusion
In this paper, the study of contra gwa -continuous functions is continued. Further almost contra

gwa -continuous functions and gwa -closed graphs in topological spaces are introduced and investigated.
The notions contra gwa -continuous functions and almost contra e -continuous functions can be used to
study some more stronger forms of gcr -continuous functions.
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